Homework set 3 (David K. Cheng, Fundamentals of Engineering Electromagnetics)

P. 3-1 The cathode-ray oscilloscope (CRO) shown in Fig. 3-2 is used to measure the voltage applied to the parallel deflection plates.

- a) Assuming no breakdown in insulation, what is the maximum voltage that can be measured if the distance of separation between the plates is h?
- b) What is the restriction on L if the diameter of the screen is D?
- c) What can be done with a fixed geometry to double the CRO's maximum measurable voltage?

P. 3-4 Three point chares $Q_1 = -9(\mu C)$, $Q_2 = 4(\mu C)$, and $Q_3 = -36(\mu C)$ are arranged on a straight line,. The distance between Q_1 and Q_3 is 9 (cm). It is claimed that a location can be selected for Q_2 such that each charge will experience a zero force. Find this location.

P. 3-7 A line charge of uniform density ρ_l forms a semicuircle of radius b in the upper half xyplane. Determine the magnitude and direction of the electric field intensity at the center of the semicircle.

P. 3-8 A spherical distribution of charge $\rho = \rho_0 \left[1 - \left(R^2 / b^2 \right) \right]$ exists in the region $0 \le R \le b$. This charge distribution is concentrically surrounded by a conducting shell with inner radius $R_i (> b)$ and outer radius R_0 . Determine **E** everywhere.

P. 3-11 Determine the work done in carrying a $+5(\mu C)$ charge from $P_1(1,2,-4)$ to $P_2(-2,8,-4)$ in the field $\mathbf{E} = \mathbf{a}_x y - \mathbf{a}_y x$

- a) along the parabola $y = 2x^2$, and
- b) along the straight line joining P_1 and P_2

P. 3-12 A finite line charge of length L acarrying uniform line charge density ρ_l is coincident with the x-axis.

- a) Determine V in the plane bisecting the line charge.
- b) Determine **E** if ρ_l directly by applying Coulomb's law.
- c) Check the answer in part (b) with $-\nabla \mathbf{V}$.