MEMS Fabrication & Design HW#2

Question)

1. What are the properties of Si and GaAs. What are the respective advantages and disadvantages of Si and GaAs?

2. What are their applications?

Answer)

1. Write a report on properties of Si/GaAs and advantages of Si/GaAs

① Si: Silicon is the chemical element that has the symbol Si and atomic number 14. A tetravalent metalloid, silicon is less reactive than its chemical analog carbon. As the eighth most common element in the universe by mass, silicon occasionally occurs as the pure free element in nature, but is more widely distributed in dusts, planetoids and planets as various forms of silicon dioxide (silica) or silicates. On Earth, silicon is the second most abundant element (after oxygen) in the crust making up 25.7% of the crust by mass.

Silicon has three major advantages over GaAs for integrated circuit manufacture. First, silicon is **abundant and cheap to process**. Si is highly abundant in the Earth's crust, in the form of silicate minerals. The economy of scale available to the silicon industry has also reduced the adoption of GaAs.

The second major advantage of Si is **the existence of silicon dioxide—one of the best insulators**. Silicon dioxide can easily be incorporated onto silicon circuits, and such layers are adherent to the underlying Si. GaAs does not form a stable adherent insulating layer.

The third, and perhaps most important, advantage of silicon is that it possesses a **much higher hole mobility**. This high mobility allows the fabrication of higher-speed P-channel field effect transistors, which are required for CMOS logic. Because they lack a fast CMOS structure, GaAs logic circuits have much higher power consumption, which has made them unable to compete with silicon logic circuits.

General				
Name, symbol, number	silicon, Si, 14			
Chemical series	metalloids			
Group, period, block	14, 3, p			
Appearance	As broken ingot: crystalline			
	with dark reflective bluish-tinged faces			

Standard atomic weight			28	8.0855(3)	g·mol⁻¹		
Electron configuration		[]	[Ne] 3s ² 3p ²				
Electrons per shell		2,	8, 4				
		Phy	si	cal prope	erties		
Phase			so	olid			
Density (near r.t.)		2.33 g·cm ^{−3}					
Liquid density at m.p.		2.57 g·cm⁻³					
Melting point		1687 К (1420 °С, 2577 °F)					
Boiling point		3538 К (2355 °C, 5909 °F)					
Heat of fusion		50	50.21 kJ·mol ⁻¹				
Heat of vap	leat of vaporization		359 kJ·mol ^{−1}				
Heat capac	ity		(2	25 °C) 19.	789 J∙mol	⁻¹ ·K ⁻¹	
		V	ар	or press	ure		
<i>P</i> /Pa	1	10		100	1 k	10 k	100 k
at <i>1</i> //K	1908	2102		2339	2636	3021	3537
		Ato	om	nic prope	rties		
Crystal structure			Diamond cubic				
Oxidation states		4, 3 [1], 2 [2], 1 [3] (amphoteric oxide)					
Electronegativity		1.90 (Pauling scale)					
Ionization energies		1st: 786.5 kJ·mol ⁻¹					
(more)		2nd: 1577.1 kJ·mol ⁻¹					
		3rd: 3231.6 kJ·mol ^{−1}					
Atomic radius		117.6 pm					
Atomic radius (calc.)		111 pm					
Covalent radius		111 pm					
Van der Waals radius		210 pm					
Miscellaneous							

Magne	tic ordering		Nonmagnetic				
Thermal conductivity			(300 K) 149 W·m ⁻¹ ·K ⁻¹				
Thermal expansion			(25 °C) 2.6 µm·m ^{−1} ·K ^{−1}				
Speed of sound (thin rod)			(20 °C) 8433 m/s				
Young's modulus			150 GPa				
Bulk modulus			100 GPa				
Mohs	Mohs hardness			7			
CAS registry number			7440-21-3				
Band gap energy at 300 K			1.12 eV				
Selected isotopes							
Main article: Isotopes of silicon							
iso	NA	half	-life	DM	DE (MeV)	DP	
²⁸ Si	92.23%	²⁸ Si is stable with 14 neutrons					
²⁹ Si	4.67%	²⁹ Si is stable with 15 neutrons					
³⁰ Si	3.1%	³⁰ Si is stable with 16 neutrons					
³² Si	syn	170 y		β⁻	13.020	³² P	

② GaAs: Gallium arsenide (GaAs) is a compound of two elements, gallium and arsenic. It is an important semiconductor and is used to make devices such as microwave frequency integrated circuits (ie, MMICs), infrared light-emitting diodes, laser diodes and solar cells. GaAs has some electronic properties which are superior to those of silicon. It has a **higher saturated electron velocity** and **higher electron mobility**, allowing transistors made from it to function at frequencies in excess of 250 GHz.

Also, GaAs devices generate **less noise** than silicon devices when operated at high frequencies. They can also be operated at **higher power levels** than the equivalent silicon device because they have higher breakdown voltages.

Another advantage of GaAs is that it has a **direct band gap**, which means that it can be used to emit light efficiently. Silicon has an indirect band gap and so is very poor at emitting light.

Due to its **high switching speed**, GaAs would seem to be ideal for computer applications, and for some time in the 1980s many thought that the microelectronics market would switch from silicon to GaAs. The first attempted changes were implemented by the supercomputer vendors Cray Computer Corporation, Convex, and Alliant in an attempt to stay ahead of the ever-improving CMOS microprocessor. Cray eventually built one GaAs-based machine in the early 1990s, the Cray-3, but the effort was not adequately capitalized, and the company filed for

bankruptcy in 1995.

Gallium arsenide				
IUPAC name	Gallium arsenide			
Identifiers				
CAS number	[1303-00-0]			
SMILES	Ga#As			
Properties				
Molecular formula	GaAs			
Molar mass	144.645 g/mol			
Appearance	Gray cubic crystals			
Melting point	1238°C (1511 K)			
Boiling point	°С (? К)			
Solubility in water	< 0.1 g/100 ml (20°C)			
Structure				
Crystal structure	Zinc Blende			
Molecular shape	Linear			
Hazards				
MSDS	External MSDS			
Main hazards	Carcinogenic			

2. Applications

① Si: Pure silicon is used to produce ultra-pure silicon wafers used in the semiconductor industry, in electronics and in photovoltaic applications. Ultra-pure silicon can be doped with other elements to adjust its electrical response by controlling the number and charge (positive or negative) of current carriers. Such control is necessary for transistors, solar cells, integrated circuits, microprocessors, semiconductor detectors and other semiconductor devices which are used in electronics and other high-tech applications. In Photonics, silicon can be used as a continuous wave Raman laser medium to produce coherent light, though it is ineffective as a light source. Hydrogenated amorphous silicon is used in the production of low-cost, large-area electronics in applications such as LCDs, and of large-area, low-cost thin-film solar cells.

② GaAs: There are some advantages like high resistivity, high electron mobility, high saturated drift velocity, wide direct band gap, operability over a wide temperature range, etc. These properties recommend GaAs circuitry in mobile phones, satellite communications, microwave point-to-point links, and some radar systems. It is used in the manufacture of Gunn diodes for generation of microwaves.

Another important application of GaAs is for high efficiency solar cells. GaAs solar cells took over from silicon as the cell type most commonly used for Photovoltaic arrays for satellite applications. Later, dual- and triple-junction solar cells based on GaAs with germanium and indium gallium phosphide layers were developed as the basis of a triple junction solar cell which held a record efficiency of over 32% and can operate also with light as concentrated as 2,000 suns. This kind of solar cell powers the rovers Spirit and Opportunity, which are exploring Mars' surface. Also many solar cars utilize GaAs in solar arrays.

Complex designs of AlxGa1-xAs-GaAs devices can be sensitive to infrared radiation (QWIP). GaAs diodes can be used for the detection of x-rays.