1.

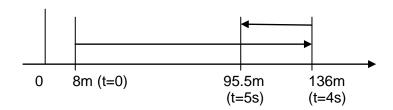
Given: 
$$a = A - 6 t^2$$
; at  $t = 0 s$ ,  $x = 8 m$ ,  $v = 0$   
at  $t = 1 s$ ,  $v = 30 m/s$ 

- Find: (a)  $\mathbf{t}$  when v = 0
  - (b) Total distance traveled when t = 5 s

We have: 
$$a = A - 6 t^2$$
; where  $A = constant$   

$$\frac{dv}{dt} = a = A - 6t^2$$

At 
$$t = 0$$
,  $v = 0$ ;  $\int_0^v dv = \int_0^t (A - 6t^2) dt$   
Or  $v = At - 2t^2$  (m/s)


At 
$$t = 1$$
,  $v = 30$  m/s;  $30 = A(1) - 2(1)^3$   
So,  $A = 32$  m/s<sup>2</sup>  
Therefore,  $v = 32t - 2t^3$  (m/s)

Also, 
$$\frac{dx}{dt} = v = 32t - 2t^3$$
  
At  $t = 0$ ,  $x = 8$  m;  $\int_0^x dx = \int_0^t (32t - 2t^3) dt$   
Therefore,  $x = 8 + 16t^2 - \frac{1}{2}t^4$  (m)

(a) When 
$$v = 0$$
;  $32t - 2t^3 = 2t(16 - t^2) = 0$   
 $t = 0$  and  $t = 4 s$ 

**(b)** At 
$$t = 4 \text{ s}$$
;  $x_4 = 8 + 16(4)^2 - (1/2)(4)^4 = 136 \text{ m}$   
 $t = 5 \text{ s}$ ;  $x_5 = 8 + 16(5)^2 - (1/2)(5)^4 = 95.5 \text{ m}$ 

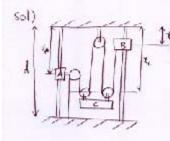
Now we observe that 
$$0 < t < 4s$$
;  $v > 0$   
 $4 < t < 5s$ ;  $v < 0$ 



Then, 
$$x4 - x0 = 136 - 8 = 128 \text{ m}$$
  
 $|x5 - x4| = |95.5 - 136| = 40.5 \text{m}$ 

Therefore, total distance traveled = (128 + 40.5) = 168.5 m

| Integrate  (a) At  The  (b) Time | ng, using ap $ t = 25, $ n, $1 = 6$ e to come t | oppopriate limit $= -\frac{1}{5}V_0V + \frac{1}{10}V$ $V = \frac{1}{5}V_0$ | or $dt = -\frac{1}{5}($ sy $\int_{0}^{t} dt = \frac{1}{10}v^{2} - \frac{1}{5}$ | $-\int_{V_0}^{V} \frac{1}{5} (2\% -$ | v) du           |
|----------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|-----------------|
| (a) At The                       | t = 2S, $n,$                                    | $V = \frac{1}{2}N_0V + \frac{1}{10}N_0$                                    | $\frac{1}{10} = \frac{10}{10} v^2 - \frac{1}{5}$                               |                                      | v) dv           |
| The<br>(b) Tim                   | $t = 2S$ , $n$ , $\lambda = 0$ $e$ to come t    | V = 1 V                                                                    | ,                                                                              | Vov + 3 Vo                           |                 |
| The<br>(b) Tim                   | $t = 2S$ , $n$ , $\lambda = 0$ $e$ to come t    | V = 1 V                                                                    | ,                                                                              |                                      |                 |
| (b) Tim                          | e to come t                                     | = (40 - 5 + 70                                                             |                                                                                |                                      | (0.478          |
|                                  | e to come t                                     |                                                                            |                                                                                | $V_0^{\perp} = 16 \text{ m}^2/$      | 152, Vo = ±4m,  |
| (C) Posi+                        |                                                 | t = $0 - 0 + \frac{3}{10}$                                                 | $V=0$ $V_0^2 = \frac{3}{10}(4)^2$                                              |                                      | (2.27)<br>七=482 |
| 0212                             |                                                 | elocity is Imi                                                             |                                                                                |                                      |                 |
|                                  | on where ve                                     | Vdv = adx                                                                  | or $dx = \frac{vdv}{a}$                                                        | = - = (11/6-1)                       | ) vdv           |
| Int                              |                                                 | g appropriate                                                              |                                                                                | ,                                    |                 |
|                                  | ( )                                             | c, 10V.                                                                    |                                                                                | 1, , ,                               | . 21 10         |
|                                  | ).                                              |                                                                            | 10. V - V2) dv = -                                                             |                                      |                 |
|                                  |                                                 |                                                                            | 7 - 3 N3 - 3 N3 ] =                                                            | = -5 L +4V -                         | 3 V3- 3 (= 64)  |
|                                  | with v =                                        | = 1 11/5,                                                                  |                                                                                |                                      | (0.4점)          |
|                                  |                                                 | $x = -\frac{1}{r} \int +i$                                                 | - 1 7 128 J                                                                    | y = 78                               | o m and -7.61   |
|                                  | The same                                        | 5 1-                                                                       | 3 / 3 /                                                                        |                                      |                 |
|                                  |                                                 |                                                                            |                                                                                |                                      |                 |
|                                  |                                                 |                                                                            |                                                                                |                                      |                 |
|                                  |                                                 |                                                                            |                                                                                |                                      |                 |
|                                  |                                                 |                                                                            |                                                                                |                                      |                 |
|                                  |                                                 |                                                                            |                                                                                |                                      |                 |
|                                  |                                                 |                                                                            | 13                                                                             |                                      |                 |
|                                  |                                                 |                                                                            |                                                                                |                                      |                 |
|                                  |                                                 |                                                                            |                                                                                |                                      |                 |
|                                  |                                                 |                                                                            |                                                                                |                                      |                 |
|                                  |                                                 |                                                                            |                                                                                |                                      |                 |
|                                  |                                                 |                                                                            |                                                                                |                                      |                 |


| consto   | ent acceleration. Choose t=0 at end of powered flight.                                                       |    |
|----------|--------------------------------------------------------------------------------------------------------------|----|
|          | $y_1 = 27.3 \text{ m}$ $a = -g = -9.81 \text{ m/s}^2$                                                        |    |
|          | preaches the ground, $y_4 = 0$ and $t = 16s$ .                                                               |    |
|          | $y_1 = y_1 + y_1 + \frac{1}{2}at^2 = y_1 + y_2 + \frac{1}{2}gt^2$                                            |    |
|          |                                                                                                              |    |
|          | $V_1 = \frac{44 - 41 + 14t^2}{t} = \frac{6 - 27.3 + \frac{1}{2}(9.81)(16)^2}{16} = 76.8 \text{ m/s}  (0.13)$ | 57 |
| (b) When | the rocket reaches its maximum altitude ymaxs                                                                |    |
|          | V= 0                                                                                                         |    |
|          | $V^{2} = V_{1}^{2} + 2a(y - y_{1}) = V_{1}^{2} - 2g(y - y_{1})$                                              |    |
|          | $y = 4, -\frac{v^2 - v^2}{29}$<br>$y = 4, -\frac{v^2 - v^2}{29} \approx 328 \text{ m}$ (0.574)               |    |
|          | $4 \text{max} = 27.3 - \frac{0 - 8.8^2}{(3)(881)} \approx 328 \text{ M}$ (0.5%)                              | )  |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |
|          |                                                                                                              |    |

4. Given 
$$0.4 = 9 \text{min}/s^2$$
 (constant, at  $t=0$ ) - (upward)
$$0.8 = \text{constant}, \quad V_{B_{400}} = 8 \text{min}/s - (downword)$$
between  $t=0$  and  $t=2$ ,  $B$  mores through  $20 \text{min}$ 

Find a) at , ac

s) the time at VL=0

() the distance through which slock Could have moved at that time.



a) since 
$$a_{15} = constant$$

$$x_{0} - ki_{0}k = ki_{0}k + \frac{1}{2}a_{0}t^{2}$$

$$x_{0} = \frac{z(x_{0} - (x_{0})_{0} + (x_{0})_{0}t)}{t^{2}} = \frac{z((z_{0}) - o - (-R) \cdot z)}{z^{2}} = \frac{1}{2}(-z_{0} \cdot (16) = -z_{max} \cdot (upword)) \quad \text{C.i.}$$
from  $(xx_{0})$ 

$$a_c = \frac{1}{4}(a_B + 7a_A) = \frac{1}{4}(-2 + 7 \cdot 7) = 3min/s$$
 (downward), e.z.

b) 
$$V_{c} = (V_{c})_{o} + \alpha_{c} + c + \frac{V_{c} - (V_{c})_{o}}{\Omega_{c}}$$
 from (\*)

$$(V_{c})_{o} = \frac{1}{4} ((v_{0})_{a} + 2(v_{0})_{a}) = \frac{1}{4} [(-8) + 2 \cdot 0] = -2 \text{ num forc (in pread)}$$

$$() \pm \frac{0 - (-2)}{3} = \frac{2}{3} \sec_{\#} 0.3$$

$$\pi_{c} - (\pi_{c})_{o} = (V_{c})_{o} + \frac{1}{2} \Omega_{c} + \frac{1}{2} \Omega_{c} + \frac{1}{2} \cdot 3 \cdot (\frac{2}{3})^{2} - \frac{4}{3} + \frac{2}{3} = -\frac{2}{3} \text{ non (upward)}$$

5 Given 
$$a_{k} = 3t^{2} \text{ mals}^{2}$$
 (upwort)

 $a_{k} = \text{Constant}$ ,  $a_{k} = \text{Constant}$ , then  $a_{k} = \text{Constant}$ ,  $a_{k} = \text{Constant}$ , then  $a_{k} = \text{Constant}$ ,  $a_{k} =$ 

 $= 9 + \frac{1}{14} = 9.0625 \text{ mm} = 05$ 

b. 
$$\overrightarrow{F} = (R + \cos \log t)^{\frac{1}{2}} + (R + \sin \log t)^{\frac{1}{2}}$$
 $\overrightarrow{V} = \frac{d\overrightarrow{F}}{dt} = R[rescurt - \omega_{n}t + Sin \omega_{n}t]^{\frac{1}{2}} + R[an \omega_{n}t + \omega_{n}t + cos \omega_{n}t]^{\frac{1}{2}}$ 
 $\overrightarrow{R} = \frac{d\overrightarrow{F}}{dt} = R[-\omega_{n} a_{n}\omega_{n}t - \omega_{n}\sin \omega_{n}t - \omega_{n}^{2}t \cos \omega_{n}t]^{\frac{1}{2}} + R[\omega_{n} \cos \omega_{n}t + \omega_{n} (\cos \omega_{n}t - \omega_{n}^{2}t + \sin \omega_{n}t)]^{\frac{1}{2}}$ 
 $= R[(-2\omega_{n}\sin \omega_{n}t - \omega_{n}t \sin \omega_{n}t)]^{\frac{1}{2}} + (2\omega_{n}\cos \omega_{n}t - \omega_{n}^{2}t + \sin \omega_{n}t )]^{\frac{1}{2}}$ 
 $= R[(\cos \omega_{n}t - \omega_{n}t \sin \omega_{n}t)]^{\frac{1}{2}} + (c)^{\frac{1}{2}} + [R(\sin \omega_{n}t + \omega_{n}^{2}t \cos \omega_{n}t)]^{\frac{1}{2}}$ 
 $= R^{2}[\cos \omega_{n}t - 2\omega_{n}t \sin \omega_{n}t \cos \omega_{n}t + \omega_{n}^{2}t \cos \omega_{n}t] + c^{2}$ 
 $+ R^{2}[\sin^{2}\omega_{n}t + 2\cos \omega_{n}t + \omega_{n}^{2}t \cos \omega_{n}t] + c^{2}$ 
 $+ R^{2}[\sin^{2}\omega_{n}t + 2\cos \omega_{n}t + \cos \omega_{n}t + \omega_{n}^{2}t \cos^{2}\omega_{n}t]$ 
 $= R^{2}[(+\omega_{n}^{2}t^{2}) + C^{2}$ 
 $O[V] = [R^{2}((+\omega_{n}^{2}t^{2}) + C^{2}]$ 
 $O[V] = [R^{2}((+\omega_{n}^{2}t^{2}) + C^{2}]$ 

| CI.     | He are a first the appearance wheel so that the                                               |
|---------|-----------------------------------------------------------------------------------------------|
|         | the origin at the center of the grinding wheel, so that the                                   |
| hor 7   | ntal and vertical motions are:                                                                |
|         | $x - x_0 = \frac{1}{6} \cos \alpha t$ , or $v_0 = \frac{x - x_0}{t \cos \alpha}$              |
| And     | $y - y_0 = V_0 \sin \alpha t - \frac{1}{2}gt^2 = (x - x_0) \tan \alpha - \frac{1}{2}gt^2$     |
| from    | which                                                                                         |
|         | $t^2 = 2 E(4 - 4) + (x - x_0) \tan x $                                                        |
|         | 4                                                                                             |
| Data    | : d = -6°, xo = -20 mm, yo = 205 mm, r = 1d = 175 mm                                          |
|         | g = 9810 mm/s2                                                                                |
| (a) Str | can lands of B.                                                                               |
|         | $\chi = r_{Sin} 10^{\circ} = 30.39 \text{ mm}$                                                |
|         | $y = r \cos 10^{\circ} = 172.34 \text{ mm}$                                                   |
|         | $t^{2} = 2 \left[ (205 - 172.34) + (30.39 + 20) tan(-6°) \right] = 0.005579 S^{2}$            |
|         | 9810                                                                                          |
|         | $t = 0.07469 s$ $V_0 = \frac{(30.39 + 20)}{(0.07469)(0.05(-6))} = 678.37 mm/s \qquad (0.572)$ |
|         | $V_0 = \frac{1}{(0.07469) \cos(-6^\circ)} = 0.0.5\% \text{ mm/s} = 0.5\%$                     |
| (b) St  | ream lands at c.                                                                              |
|         | x = 100530° = 151.55 mm                                                                       |
|         | $y = r \sin 30^\circ = 87.5 \text{ mm}$                                                       |
|         | V ,                                                                                           |
|         | $t^2 = {}^{1}E(205 - 87.5) + (151.55 - (-20))ton(-6°)7 = 0.020179 s^2$                        |
|         | t = 0.14240 S                                                                                 |
|         | (151.55 + 20) - 124                                                                           |
|         | $V_0 = \frac{(0.424)(0.5\%)}{(0.424)(0.5\%)} = 1211.34 \text{ min/s} (0.5\%)$                 |
|         |                                                                                               |
| •       |                                                                                               |
|         |                                                                                               |
|         |                                                                                               |

8.  $\vec{v}_{\tau}$ : velocity of the ferry THE velocity of the forty related to the river Tor: velocity of the tiver

 $\vec{n} = (-9.8 \cos 400) \hat{i} + (-9.8 \sin 400) \hat{j}$ 10 th = 10 (knots) A 30° = (-10 sim no°) i+ (-10 cos no°) s

$$\vec{v}_{R} = \vec{v}_{T} - \vec{v}_{TR}$$

$$= \left[ (-9.8\cos 90^{\circ}) - (-10\sin 90^{\circ}) \right] \hat{i} + \left[ (-9.8\sin 90^{\circ}) - (-10\cos 30^{\circ}) \right] \hat{i}$$

$$= 1.648 \hat{i} - 0.549 \hat{j} + \left[ (-9.8\sin 90^{\circ}) - (-10\cos 30^{\circ}) \right] \hat{i}$$

## constraints

$$2N_A + 2B/A = const$$
 $| \overline{D}_{B/A} | = 400 \text{ mm/s}$ 
 $2N_A + N_B/A = 0$ 
 $| \overline{Q}_{B/A} | = 300 \text{ mm/s}$ 
 $2Q_A + Q_{B/A} = 0$ 

Solution 17

$$\vec{Q}_{1} = 200 \, \text{mm/s} = 200 \, \text{mm/s}$$

$$\vec{Q}_{1} = 200 \, \text{mm/s} = 200 \, \text{mm/s}$$

$$= (200 \, \cos 30) \, \hat{i} + (-200 \, \text{sm sto}) \, \hat{j}$$

$$= (-400 \, \cos 40) \, \hat{i} + (400 \, \text{sm 46}) \, \hat{j}$$

(a) 
$$\vec{v}_{B} = \vec{v}_{A} + \vec{v}_{BYA}$$

$$= (200 60625^{\circ} - 400 60540^{\circ}) \hat{i} + (-2005 in 240^{\circ}) \hat{j}$$

$$= -125.157. \hat{i} + 172.591 \hat{j} (mm/s)$$

(b) 
$$\vec{a} = 150 \text{ mm/s}^2 = 150605 240 = 150605 240 = 150605 240 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605 = 150605$$

$$= (150 \cos 26^{\circ} - 300 \cos 40^{\circ}) \hat{i} + (-150 \sin 26^{\circ} + 300 \sin 46^{\circ}) \hat{j}$$

$$= -93.867 \hat{i} + 129.444 \hat{j} \quad (mm/32)$$

constraints 1

i)  $\alpha_B + (\alpha_B - \alpha_A) + \omega(d - \alpha_A) = Const.$ , where d is distance of the A block from the left wall.

 $2a_{B} - 3a_{A} = 0$   $2a_{B} - 3a_{B} = 0$   $0_{A} = \frac{3}{3}a_{B} = \frac{3}{3} \times 300 = 200 \left( \frac{m m}{5^{2}} \right)$ 

and = 200 i (mm/62) Solution  $= (d-x_A) + y_{C/A} = Const.$ 

 $\begin{cases} -2N_A + N_{CA} /= 0 \\ -2R_A + a_{CA} = 0 \end{cases} \Rightarrow Q_{CA} = 400 \left[ mm/s^2 \right]$ 

Qc/A = 400 J(mm/52)

6) NA = NOA + OA t

= 0+ 200x2 = 400 (mm/s)

( = 400 2 (mm/s)

NCA = NogA + agA t

 $\frac{1}{\sqrt{1000}} = \frac{0 + 400 \times 2}{\sqrt{100}} = \frac{800 \text{ mm/s}}{\sqrt{1000}}$   $\frac{1}{\sqrt{1000}} = \frac{1}{\sqrt{1000}} = \frac{1}{$