P. 3-4 Three point chares $Q_1 = -9(\mu C)$, $Q_2 = 4(\mu C)$, and $Q_3 = -36(\mu C)$ are arranged on a straight line,. The distance between Q_1 and Q_3 is 9 (cm). It is claimed that a location can be selected for Q_2 such that each charge will experience a zero force. Find this location.

For zero force on Q1, Q2, and Q3,
$$\frac{Q_1Q_2}{4\pi\varepsilon_0x^2} + \frac{Q_1Q_3}{4\pi\varepsilon_09^2} = 0 \quad \cdots \quad (1)$$

$$\frac{Q_1Q_2}{4\pi\varepsilon_0x^2} + \frac{Q_2Q_3}{4\pi\varepsilon_0(9-x)^2} = 0 \quad \cdots \quad (2)$$

$$\frac{Q_1Q_3}{4\pi\varepsilon_09^2} + \frac{Q_2Q_3}{4\pi\varepsilon_0(9-x)^2} = 0 \quad \cdots \quad (3)$$
 From (1), $x = 9\sqrt{\frac{Q_2}{-Q_3}} = 9\sqrt{\frac{4}{36}} = 3 \quad (cm)$ or from (2), $Q_3x^2 + Q_1(9-x)^2 = 0 \Rightarrow -36x^2 - 9(9-x)^2 = 0 \Rightarrow x = 3$ or from (3), $Q_29^2 + Q_1(9-x)^2 = 0 \Rightarrow 4 \cdot 9^2 - 9(9-x)^2 = 0 \Rightarrow x = 3$

P. 3-7 A line charge of uniform density ρ_l forms a semicuircle of radius b in the upper half xy-plane. Determine the magnitude and direction of the electric field intensity at the center of the semicircle.

$$\begin{split} d\vec{E} &= d\vec{E}_x + d\vec{E}_y \\ \text{Where } d\vec{E}_x &= -\hat{x} \frac{\rho_l (b d\phi)}{4\pi \varepsilon_0 b^2} \cos \phi \\ d\vec{E}_y &= -\hat{y} \frac{\rho_l (b d\phi)}{4\pi \varepsilon_0 b^2} \sin \phi \\ \vec{E} &= \int d\vec{E} = \frac{\rho_l}{4\pi \varepsilon_0 b} \bigg[-\hat{x} \int_0^\pi \cos \phi d\phi - \hat{y} \int_0^\pi \sin \phi d\phi \bigg] \\ &= -\hat{y} \frac{\rho_l}{2\pi \varepsilon_0 b} \end{split}$$