HW#2

7-1. (a) Obtain the wave equations governing the **E** and **H** fields in a source-free conducting medium with constitutive parameters ϵ , μ , and σ . (b) Obtain the corresponding Helmholtz's equations for time-harmonic fields.

7-3. Obtain a general formula that expresses the phasor $E(\mathbf{R})$ in terms of the phasor $H(\mathbf{R})$ of a TEM wave and the intrinsic impedance of the medium, where **R** is the radius vector.

- **7-5.** The E-field of a uniform plane wave propagating in a dielectric medium is given by $\mathbf{E}(t,z) = \mathbf{a}_x 2\cos(10^8 t z/\sqrt{3}) \mathbf{a}_y \sin(10^8 t z/\sqrt{3})$ (V/m)
 - a) Determine the frequency and wavelength of the wave.
 - b) What is the dielectric constant of the medium?
 - c) Describe the polarization of the wave.
 - d) Find the corresponding **H**-field.

7-7. A 3-(GHz), *y*-polarized uniform plane wave propagates in the +x-direction in a nonmagnetic medium having a dielectric constant 2.5 and a loss tangent 0.05

- a) Determine the distance over which the amplitude of the propagating wave will be cut in half.
- b) Determine the intrinsic impedance, the wavelength, the phase velocity, and the group velocity of the wave in the medium.
- c) Assuming $\mathbf{E} = a_y 50 \sin(6\pi 10^9 t + \pi/3) (V/m)$ at x = 0, write the instantaneous expression for **H** for all *t* and *x*.

7-10. There is a continuing discussion on radiation hazards to human health. The following calculations provide a rough comparison.

- a) The U.S. standard for personal safety in a microwave environment is that the power density be less than 10(mW/cm²). Calculate the corresponding standard in terms of electric field intensity. In terms of magnetic field intensity.
- b) It is estimated that the earth receives radiant energy from the sun at a rate of about 1.3(kW/m²) on a sunny day. Assuming a monochromatic plane wave(which it is not), calculate the equivalent amplitudes of the electric and magnetic field intensity vectors.

7-11. Show that the instantaneous Poynting vector of a circularly polarized plane wave propagating in a lossless medium is a constant that is independent of time and distance.