HW#3

7-15. A uniform plane wave propagate in the +z-(downward) direction into the ocean $(\epsilon_r = 72, \mu_r = 1, \sigma = 4 S/m)$. The magnetic field at the ocean surface(z=0) is $\mathbf{H}(0,t) = \mathbf{a}_y 0.3 \cos 10^8 t$ (*A*/*m*).

- a) Determine the skin depth and the intrinsic impedance of the ocean water.
- b) Find the expressions of $\mathbf{E}(z,t)$ and $\mathbf{H}(z,t)$ in the ocean.
- c) Find the average power loss per unit area in the ocean as a function of z.

7-17. A right-hand circularly polarized plane wave represented by the phasor

 $\mathbf{E}(z) = E_0 (\boldsymbol{a}_x - j \boldsymbol{a}_y) e^{-j\beta z} \qquad (V/m)$

Impinges normally on a perfectly conducting wall at z=0.

- a) Determine the polarization of the reflected wave.
- b) Find the induced current on the conducting wall.
- c) Obtain the instantaneous expression of the total electric intensity based on a cosine time reference.

7-19. A uniform plane wave in air with with $E_i(z) = a_x 10e^{-j6z} (V/m)$ is incident normally on an interface at z=0 with a lossy medium having a dielectric constant 2.25 and a loss tangent 0.3. Find the following:

- a) The phasor expressions for $E_r(z)$, $H_r(z)$, $E_t(z)$, and $H_t(z)$.
- b) The standing-wave ratio for the wave in air.
- c) The expressions for time-average Poynting vectors in air and in the lossy medium.

7-27. A uniform plane wave with perpendicular polarization represented by $E_i(x,z) = a_y E_{i0} e^{-j\beta_1(xsin\theta_i + zcos\theta_i)}$ and $H_i(x,z) = \frac{E_{i0}}{\eta_1} (-a_x cos\theta_i + a_z sin\theta_i) e^{-j\beta_1(xsin\theta_i + zcos\theta_i)}$ is incident on a plane interface at z=0, as shown in following figure. Assuming $\epsilon_2 < \epsilon_1$ and $\theta_i > \theta_c$, (a) obtain the phasor expressions for the transmitted field (E_t, H_t) , and (b) verify that the average power transmitted into medium 2 is zero.

7-30. Glass isosceles triangular prisms shown in following fig. are used in optical instruments. Assuming $\epsilon_r = 4$ for glass, calculate the percentage of the incident light power reflected back by the prism.

7-33. For an incident wave with parallel polarization, fine the relation between the critical angle θ_c and the Brewster angle $\theta_{B||}$ for two contiguous media of equal permeability.