SEOUL NATIONAL UNIVERSITY SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

SYSTEM ANALYSIS	Spring 2014
HW #8	Assigned : May 7 (Wed)
	Due: May 14 (We)

1. The oven shown in Figure 1 has a heating element with appreciable capacitance C_1 . The other capacitance is that of the oven air C_2 . The corresponding temperatures are T_1 and T_2 , and the outside temperature is T_0 . The thermal resistance of the heater-air interface is R_1 ; that of the oven wall is R_2 . Develop a model for T_1 and T_2 , with input q_i , the heat flow rate delivered to the heater mass.

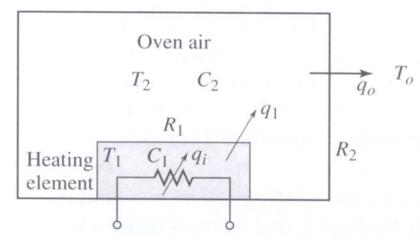


Figure 1

In figure 2 the piston of area A is connected to the axle of the cylinder of radius R, mass m, and inertia I about its center. Given p₁ - p₂ = 3 x 10⁵ Pa, A = 0.005m², R = 0.4m, m = 100kg, and I = 7kg.m², determine the angular velocity ω(t) of the cylinder assuming that it starts from rest.

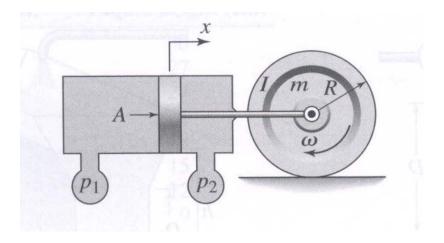


Figure 2 3. Design a piston –type damper using an oil with a viscosity at 20°C of $\mu = 0.9$ kg/(m.s). The desired damping coefficient is 2000N.s/m. See Figure 3. (Assume laminar, incompressible and $m\ddot{y} \approx 0$)

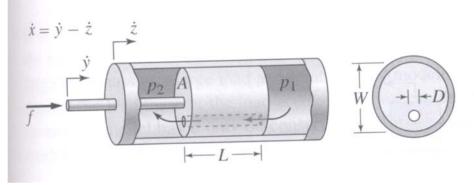


Figure 3

Hints:

$$m\ddot{y} = f - A(p_1 - p_2)$$

$$q_v = \frac{1}{\rho R}(p_1 - p_2)$$

$$q_v = A(\dot{y} - \dot{z})$$

$$R = \frac{128\mu L}{\pi \rho D^4}$$