Advanced Solidification

Incentive Homework 3

Quar-ternary or higher eutectic system

Lopes, Éder SN, et al.

"Crystallographic features of the Al_3Nb , Nb_2Al and $Nb(Ni_{1-x}Al_x)_2$ phases in a directionally solidified ternary eutectic microstructure." Materials Characterization 147 (2019) 303-310.

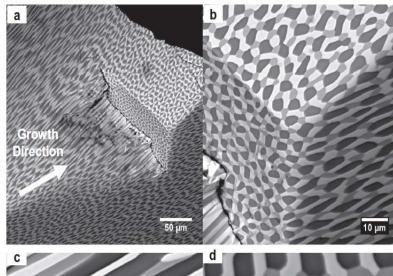
Objective

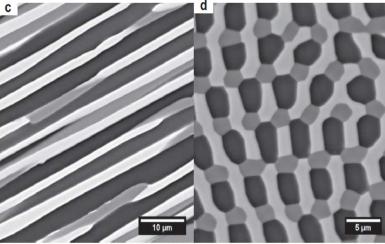
 Apply electron microscopy and X-ray diffraction techniques to investigate chemical composition and crystallographic features of the Al₃Nb, Nb₂Al and Nb(Ni_{1-x}Al_x)₂ phases in a directionally solidified ternary eutectic microstructure.

■ Experimental Procedure

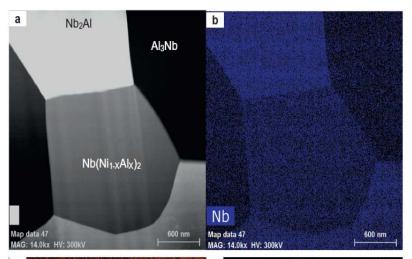
- Al-Nb-Ni system with eutectic composition
 - Arc melted using a water-cooled Cu hearth and a non-consumable W electrode.
 - Under an inert atmosphere of high purity Ar.
- Homogenization
 - Inverting and re-melting them at least 5 times.
- Directional solidification using a Bridgman furnace (high purity Al₂O₃ crucible)
 - Under an inert atmosphere.
 - Solidification rate of 10 mm/h.

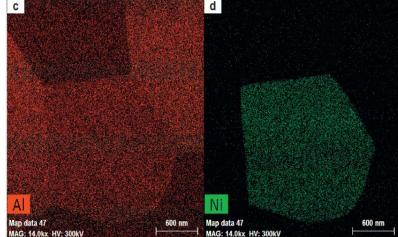
Lopes, Éder SN, et al.

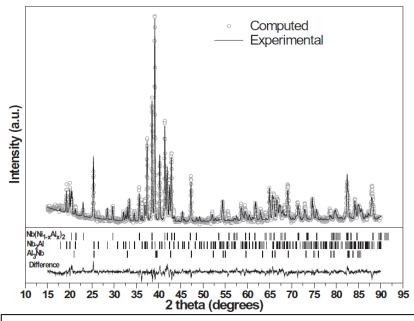

"Crystallographic features of the Al_3Nb , Nb_2Al and $Nb(Ni_{1-X}Al_X)_2$ phases in a directionally solidified ternary eutectic microstructure." Materials Characterization 147 (2019) 303-310.


Analysis

- Conventional metallographic preparation procedures
- Microstructure and chemical composition were examined using SEM
- Interplanar spacings (d) of the diffraction maxima were calculated using TEM
- Lattice parameters were determined using XRD


Conclusion


- A directionally solidified ternary eutectic in the Al-Nb-Ni system made up of Al₃Nb, Nb₂Al
- $Nb(Ni_{1-x}Al_x)_2$ intermetallic phases was investigated using SEM, TEM and XRD.
- Eutectic growth resulted in a well-organized rod-like three-phase arrangement.
- $Nb(Ni_{1-x}Al_x)$ 2 intermetallic phase possesses the MnZn2 type structure.
 - Composition 56.91 \pm 0.43 at.% Al / 10.11 \pm 0.12 at.% Ni / 32.98 \pm 0.53 at.% Nb, (which corresponds to x=0.85).
 - Lattice parameters of the Nb(Ni_{1-x}Al_x)₂ (x=0.85) are a=5.031 Å and c=8.298 Å (c/a=1.649), which is close to the ideal hcp lattice ratio.


SEM backscattered electron images: (a) simultaneous longitudinal and transverse views; (b) magnification of (a); (c) longitudinal view, and (d) transverse view.

STEM-EDS images showing Nb, Al and Ni distribution in the three-phase microstructure.

Result of TEM/SADP observations is omitted

The experimental, computed, and difference values of the X-ray diffraction pattern of the ternary eutectic sample after Rietveld refinement.

Chemical composition of the three phases in the directionally solidified ternary eutectic determined by EDS

Phase	Al (at.%)	Nb (at.%)	Ni (at.%)
Al ₃ Nb	75.52 ± 0.31	24.02 ± 0.29	0.46 ± 0.06
Nb ₂ Al	42.70 ± 0.49	56.39 ± 0.83	0.90 ± 0.34
$Nb(Ni_{1-x}Al_x)_2$	56.91 ± 0.43	32.98 ± 0.53	10.11 ± 0.12