Homework #3 - Solutions

Due: April 20, 2018 (Fri), 18:00 (35-517)

Instructor: Yongju Choi

1. Read the following article discussing the ecology of *Vibrio cholerae* and briefly summarize the article. (in less than 0.5 page, strictly monitored for plagiarism).

Cottingham, K.L.; Chiavelli, D.A.; Taylor R. K. Environmental microbe and human pathogen: the ecology and microbiology of *Vibrio cholerae*. *Frontiers in Ecology and the Environment*. Vol. 1, No. 2, 80-86, 2003.

link:

http://onlinelibrary.wiley.com/doi/10.1890/1540-9295(2003)001%5B0080:EMAHPT%5D2.0.C O;2/abstract

(15 points)

2. Select one from the types of pathogenic protozoa and helminthes in the box below. Attach a figure illustrating the life cycle of the pathogen you selected. Describe each stage of the life cycle (in Korean).

Pathogenic protozoa	Pathogenic helminthes
Giardia lamblia	Hymenolepis nana (a tapeworm species)
Entamoeba histolytica	Diphyllobothrium latum (a tapeworm species)
Malaria parasites (genus: Plasmodium)	

(15 points)

3. The following data are obtained in a laboratory completely-mixed batch reactor for a degradation reaction of compound A (CA: concentration of A). Answer the questions below.

Instructor: Yongju Choi

Time (hr)	$C_A (g/m^3)$
0	30.0
0.5	12.0
1	7.5
2	4.3
4	2.3
8	1.2
16	0.6
32	0.3

C_A: concentration of A

- 1) Determine the reaction order and the reaction rate constant. (10 points)
- 2) A CSTR is receiving an influent containing 20.0 g/m³ of A at a flow rate of 10 m³/hr. To achieve 90% removal efficiency of A, what is the volume required for the CSTR being operated at a steady state? (10 points)
- 3. 하수도 시설기준에 의하여 주거지역만으로 이루어진 국내 어떤 도시의 하수처리 시설을 설계하고자 한다(즉, 공장폐수, 영업오수 및 관광오수 제외). 이 지역에는 분류식 관거(separate sewer)가 설치되어 있다. 도시의 15년전 인구수는 78000명, 현재 인구수는 95000명이며, 상수도계획 상의 1인1일최대급수량은 400 L/인-일이다. 다음 물음에 답하시오.
- i) 계획목표년도를 20년으로 할 때, 등비급수법을 이용하여 이 도시의 계획인구수를 계산하시오. (5 points)
- ii) 지하수량(I/I)을 1인1일최대오수량의 20%로 가정하여 계획1일최대오수량을 구하시오. (5 points)

iii) 계획1일평균오수량 및 계획시간최대오수량을 구하시오. 단, PF_{season} = 1.3, PF_{day} = 1.5. (5 points)

Instructor: Yongju Choi

- iv) 이 도시의 생활오수 오염부하량 원단위는 BOD 100 g/인-일, SS 80 g/인-일이다. 이 때, 하수처리시설의 계획오염부하량 및 계획유입수질을 계산하시오. (5 points)
- 4. Determine the settling velocity (in m/s) of a spherical particle with a density of 2.00×10^3 kg/m³ and a particle diameter of i) 0.5 mm and ii) 1.0 mm. Use the water density of 1.00×10^3 kg/m³ and the dynamic viscosity of 1.00×10^{-3} N-s/m². Assume the settling of both particles are in <u>transient region</u> of flow regime. You can choose any methods you would like, including manual calculation with trial-and-error and computer software such as Microsoft Excel or MATLAB. If you used computer software, attach the screenshot of the program. (30 points)