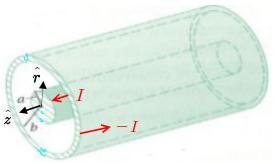
June 16, 2009

Plasma Electrodynamics 1

Final Exam

(15 points)

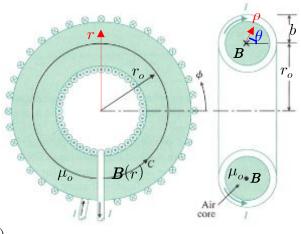

- If each of the following statements is true, please mark O in the parenthesis.
 If false or incorrect, mark X and make corrections of the false statement or word in the parenthesis.
- 1) $\nabla \cdot B = 0$ implies that magnetic flux lines always close upon themselves and there are no isolated magnetic charges. ()
- 2) Biot-Savart law is a formula for determining B caused by current density J(r) flowing in a three-dimensional conducting fluid. ()
- 3) The magnetic dipole moments of atoms determine a magnetization vector M, which can be analytically proved by the equivalence to a magnetization surface current density $J_{ms} = \nabla \times M$. (
- 4) The normal component of *B* and the tangential component of *E* are continuous across the boundary of any two physical media in both static and time-varying cases.(
- 5) **B** is proportional to **H** in ferromagnetic materials having very large χ_m .()
- 6) The magnetic flux density B in a current-carrying toroidal coil is inversely proportional to the major radius (= radius from the axis of the torus), and its self-inductance is proportional to the square of the number of coil turns.()
- 7) The total internal inductance of a long copper coaxial transmission line is $\mu_o/8\pi$ (H/m).()
- 8) Hysteresis loss in a ferromagnetic material is the energy loss in the form of heat produced by eddy currents.(
- 9) E in a time-varying magnetic field is not conservative, and the time-varying electric field linking with a circuit induces an emf in the circuit by Faraday's law of electromagnetic induction.()
- 10) Only in an ideal transformer, the primary-to-secondary current ratio depends on the turns ratio of its windings.()

(35 points)

- 2. Answer the following questions.
 - 1) Write Ampere's circuital law in a time-varying case, and state its physical meaning.
 - 2) From the definition of the magnetic flux Φ through an area S bounded by contour C, show that Φ relates to the magnetic vector potential A in a way: $\Phi = \oint_{C} A \cdot dl.$
 - 3) Describe the magnetic dipole moments m of electrons and ions in a magnetized plasma, and explain why the plasma is a diamagnetic medium.
 - 4) Define remanent flux density and coercive field intensity, and show where they are located on a hysteresis loop.
 - 5) What are the magnetic force F_m and the torque T on a current(I)-carrying loop of radius a in a uniform magnetic field B?
 - 6) How is the time-varying electric field *E* determined in terms of potentials *V* and *A* from Maxwell's equations? Show that the time-varying potentials *V* and *A* satisfy the wave equation.

(15 points)

 Consider an infinitely long coaxial line with a current I flowing in the inner conductor and returning via the outer conductor. The radii of the inner and outer conductors are a and b, respectively.



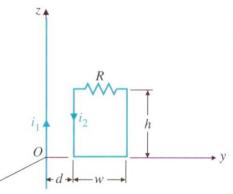
Find the magnetic flux density B inside the two conductors (a < r < b) by applying the following two ways, repectively:

- 1) Ampere's circuital law.
- 2) Boundary-value problem (BVP) for vector potential A.

(20 points)

- 4. Consider a toroidal coil of N turns of wire wound on an air frame with mean radius r_o and a circular cross section of radius b.
 - 1) Find B(r) inside the toroidal coil $[(r_o - b) < r < (r_o + b)]$ by using Ampere's circuital law.
 - 2) Show that the magnetic flux Φ crossing the circular cross section is derived as $\Phi = \mu_o NI(r_o - \sqrt{r_o^2 - b^2})$.

(Note that $r = r_o + \rho \cos\theta$ where r is the major radial position from the major axis, ρ is the manor radius from the minor axis, and θ is the poloidal angle.


Use the integral relation: $\int_{0}^{2\pi} \frac{dx}{a+b\cos x} = \frac{2\pi}{\sqrt{a^2-b^2}}$, if necessary)

3) Determined the self-inductance of the toroidal coil.

(15 points)

- 5. In FIGURE, a constant current $i_1 = I_o$ is flowing along a long wire and the rectangular loop moves away with
 - a constant velocity $\boldsymbol{u} = \hat{\boldsymbol{y}} u_o$.
 - 1) Determine B_1 in the loop due to the wire current $i_1 = I_o$.
 - 2) Find the motional emf in the moving loop.
 - 3) Determine the induced current i_2 flowing around the loop when the loop is at a position as shown in FIGURE.

FIGURE A rectangular loop near a long current-carrying wire

