
분산시스템 중간고사

1. Shown above, the bounded timestamping system T(3) is consistent when executed

sequentially. What would happen if 3 threads run concurrently ? There are two cases of

inconsistency, Show the scenario of those cases.

 pid(22)=0, pid(11)=1, pid(10)=2.

 (10<11<22, in sequential execution, next-TS() = 20)

next-TS() {

 i = pid; j = (i+1) mod 3; k = (i+2) mod 3;

 read TS(i); read TS(j); read TS(k);

 calculate-new-TS(); update TS(i);

 }

2. This is the abstraction of LL/SC . Please show thar its consensus numbe is the same as

CAS.

public class LLSC {
 Object value;
 boolean busy;
 public LLSC(Object object) {
 this.value = object;
 this.busy = false
 }
 public synchronized Object LL() {
 this.busy = true
 return this.value
 }
 public synchronized
 boolean SC(Object newValue) {
 if (this.busy) {
 this.busy = false
 this.value = newValue
 return true
 } else
 return false
 }
}

3. Using SRSW, MV, Regular registers and Timestamp, we can construct a SRSW, MV, Atomic

register. However, timestamp always may overflow, Can you use the bounded precedence

graph T2 ?

4. We can do n-thread consensus using CAS. When you have to do it again, can you use the

same register again ?

5. How about LL/SC ?

6. We can solve 2-thread consensus using atomic 2-assignment. Would it be possible to

extend it to solve 4-thread consensus ? 4 threads can be grouped in two and do rhe

2-thread consensus twice in the 1st phase. Then the winners can do another 2-thread

consensus. Is this correct ?

7. How many Safe, SRSW, Boolean Register to construct 2-reader/2-writer, atomic, 4bit

Register ? (do not count the registers for timestamp)

8. filter lock can be implemented as follows. Assume we have 3 threads (1,2,3).

Can thread 1 be overtaken by others ? Show the case when 1 is overtaken 3 times..

 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while (($ k != i level[k] >= L) && victim[L] == i);
 } }
 public void unlock() {
 level[i] = 0;

