
Midterm Exam of Advanced Compilers (2008)

(1) Show the result code after global CSE (common expression elimination),

followed by LICM (loop-invariant-code-motion) for the following example.

 a = b + c

 b = m + n

 d = e + 10

 a = b + c b = m + n

 m = 10 a = b + c

 b = m + n f = d * 2

 b = m + n exit

 a = b + c

 g = f * f

(2) Find all natural loops from the following control flow graphs

 1 1

 2 2

 3 3 4

 4 5 5

 6

 (a) (b)

(3) Find induction variables in the following program. Show the result code after

applying strength reduction and loop test replacement.

 i = 1

 top: i = i + 1

 d = i - 2

 a = *c

 if a > 0 goto L

 i = i + 3

 e = 2 * i

 L: k = i * 2

 if i > 10 goto top

(4) We consider a language that allows only boolean variables which can hold either

TRUE or FALSE value, and allows only the following four statements:

a = TRUE, a = FALSE, a = b, a = NOT b

For each point of the program, we want to determine if a variable can possibly (not

definitely) hold a TRUE value. Devise a data flow framework for this purpose.

(a) The domain of values for one variable is {}, {T}, {F}, {T, F}. Draw a diagram

for the lattice for one variable with these values. Mark the top and the bottom.

(b) For which values can we say that the variable can possibly hold a TRUE value?

(c) What is your meet operator?

(d) Is this a forward problem or a backward problem?

(e) Specify the boundary condition and the initialization of the iterative algorithm.

(f) Define a transfer function for a basic block when we assume that the basic

block has a single statement (we can easily compose these functions to get the

transfer function of a whole basic block). For this, let us denote the value of a

variable x at the beginning and at the end of a basic block B as IN(B, x) and

OUT(B, x), respectively. Then, define OUT(B, x) for each of the following cases:

i) if B does not assign to x

ii) if B contains x = TRUE

iii) if B contains x = FALSE

iv) if B contains x = y

v) if B contains x = NOT y

(g) Is the data flow framework monotone? Explain using only one case when B has

a single statement a = NOT b.

(h) Is the data flow framework distributive? Explain using only one case when B

has a single statement a = NOT b.

(i) Will the iterative algorithm converge? Explain your answer.

(5) Consider the following program.

f = 4

e = 10

 c = f * f

d = e * e

if(d>0)

c = d + 10

if(c>0)

e = c + d

d = c * c

d = e * 2 if(d> 0)

a = d +10

(a) Find the live ranges of each variable. Is there a variable that has multiple live

ranges? If so, specify which one it is. Replace the operands of each instruction by

live ranges such that if there is a single live range for a variable, use the variable

name itself as previously, but if there are multiple live ranges for a variable x, use

x1, x2, x3, etc, as new operands. Show the replaced code.

(b) Draw the interference graph for this replaced program with the live ranges.

(c) Is there any way to color all nodes in the graph with three registers by

Chaitin's coloring algorithm? If so, show how it works. If not, state why not and

state if the graph can be colored with Briggs's optimistic coloring algorithm. If so,

show how it works. If not, state why not.

(6) Let us assume that a load takes two cycles while other instructions take a

single cycle. And, there are no dependences between load and store. Draw a data

dependence graph for the following basic block with delay cycles added to each

edge. Then, show a schedule with infinite resources.

i1 : LD r2 = 9(r4)
i2 : ST r4, 0(r3)
i3 : LD r4 = r2(r3)
i4 : ADD r1 = r5, r4
i5 : SUB r2 = r1, 1
i6 : ADD r5 = r2, r3
i7 : ADD r6 = r5, r4

