Seoul National University

Department of Materials Science and Engineering

Final Examination	December 17, 2012
Physical Chemistry of Materials 2	Professor Won Ho Jo

- 1. The hydrofluoric acid molecule (HF) has a moment of inertia of $1.34 \times 10^{-40} g \cdot cm^2$. Calculate the rotational energy jump from the quantum state *J*=0 to the quantum state *J*=1. (10 pt)
- 2. The degeneracies of the singlet (paired electron spins) or triplet (unpaired spins) levels of a certain molecule are 1 and 3, respectively. The energy of the singlet state is greater than that of the triplet by a factor of ε .
 - (a) Write the electronic partition function of the molecule.
 - (b) Given that the factor $\varepsilon = 1.38 \times 10^{-14} erg$ and T=100 K, calculate the ratio of the population of the singlet level to the population of the triplet level. (10 pt)
- 3. Calculate the equilibrium constant for the reaction at 300 K (15 pt) $H_2+D_2 \rightleftharpoons 2HD$

using the following data:

	H_2	HD	D_2
Fundamental vibration $v(cm^{-1})$	4371	3785	3092
Moment of inertia $I \left(g \cdot cm^2 \times 10^{40}\right)$	0.458	0.613	0.919

- 4. The thermal conductivity of Ar at 300 K and 1 *bar* pressure is $0.0177 JK^{-1}m^{-1}s^{-1}$. What is the collisional cross section of Ar assuming ideal gas behavior? (10 pt)
- 5. A certain reaction is first order, and at 540 *s* after initiation of the reaction, 32.5% of the reactant remains. (10 pt)
 - (a) What is the rate constant for this reaction?
 - (b) At what time after initiation of the reaction will 10% of the reactant remain?
- 6. The pre-exponential factor for the gas-phase decomposition of ozone at low pressures is $2.3 \times 10^{13} dm^3 mol^{-1}s^{-1}$ and its activation energy is $30.0 kJ mol^{-1}$. What are (a) the entropy of activation, (b) the enthalpy of activation and (c) the Gibbs energy of activation at 298 *K*?
- 7. A likely mechanism for the photolysis of acetaldehyde (10 pt)

 $CH_{3}CHO + h\nu \rightarrow CH_{3} + CHO \cdot$ $CH_{3} + CH_{3}CHO \xrightarrow{k_{1}} CH_{4} + CH_{3}CO \cdot$ $CH_{3}CO \cdot \xrightarrow{k_{2}} CO + CH_{3} \cdot$ $CH_{3} + CH_{3} \cdot \xrightarrow{k_{3}} C_{2}H_{6}$

Derive the rate law expression for the formation of CO based on this mechanism.

- 8. For a pair of electron donor and acceptor, $k_{et} = 2.02 \times 10^5 s^{-1}$ for $\Delta G^{\circ} = -0.665 eV$. The standard reaction Gibbs energy changes to $\Delta G^{\circ} = -0.975 eV$ when a substituent is added to the electron acceptor and the rate constant for electron transfer changes to $k_{et} = 3.33 \times 10^6 s^{-1}$. The experiments were conducted at 298 K. Assuming that the distance between donor and acceptor is the same in both experiments, estimate the values of the reorganization energy λ and the activation Gibbs energy ΔG^{\ddagger} . (15 pt)
- 9. The data below are for the chemisorption of hydrogen on copper powder at 25 $^{\circ}$ C. Confirm that they fit the Langmuir isotherm at low coverages. Then find the value of *K* for the adsorption equilibrium and the adsorption volume corresponding to complete coverage. (10 pt)

p/Pa	25	129	253	540	1000	1593
V/cm^3	0.042	0.163	0.221	0.321	0.411	0.471