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1. Derivation of the stiffness equation of a bar element. 

 

1.1. Consider a bar element as a linear spring element, and derive the stiffness equation Kd F  

for a bar element by using the direct equilibrium approach. [5 points] 
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f1, f2 : Nodal forces acting on the ends of the bar element

u1, u2 : Nodal displacement at the ends of the bar element
 

Figure 1 Linear spring element with nodal displacements and forces 

 

1.2 Derive the differential equation governing the following linear-elastic bar element. [10 points] 
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1) The Nodal forces f1 and f2 are acting on the ends of the bar element.

2) There is no distributed force.

Deformation sign conventions 

(0)P ( )P l

l

Static sign conventions 

3) P(0) and P(l) are the stress resultant(tensile forces) at the end of the bar.

f1, f2 : Nodal forces acting on the ends of the bar element

 

Figure 2 Linear-elastic bar element with the nodal displacements and forces  

 

1.3 Derive the stiffness equation Kd F  of the bar element by applying the Galerkin’s residual 

method to the differential equation derived from equation 1.2, and show that the stiffness 

equations derived by using the Galerkin’s residual method and the direct equilibrium approach are 

the same. [10 points] 

 

 



2. Derivation of deflection curve of beam [20 points] 
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Figure 3 Beam element under distributed load and differential beam element 

 

 

 



1) Derive the strain in x-direction at the point P in figure 3-(b). 

 

2) Derive the stress in x-direction at the point P in figure 3-(b). 

 

3) Derive the force in x-direction exerted on the area dA  in figure 3-(c). 

 

4) Derive the bending moment about neutral axis in figure 3-(c). 

 

5) Derive the deflection curve of beam 
2 2/ /M EI d y dx  

 

6) Mark the shear force and bending moment caused by the distributed load ( )f x  in the 

following figure and derive the equations relating the bending moment and the shear force, and 

relating the shear force and the distributed load. 

.  

Figure 4 Differential beam element 
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7) Derive the deflection curve of beam 
4 4/ ( )EI d y dx f x    

 

3. Derivation of the stiffness equation of a beam element. 
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Figure 5 Beam element with nodal displacements, rotations, forces, and moments 

 

3.1 Derive the stiffness equation Kd F  of beam element by applying the direct equilibrium 

approach to the differential equations derived from the problem 2. [10 points] 

 

3.2 Derive the stiffness equation Kd F  of the beam element by applying the Galerkin’s 

residual method to the differential equation derived from the problem 2, and show that the 

stiffness equations derived using the Galerkin’s residual method and the equilibrium approach are 

the same. [15 points] 

 

 



4. Considering the two-dimensional heat conduction problem, the governing equation is derived 

as following 
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 , ,x y t, where : Temperature distribution.

 : Density

c : Specific heat

k : Thermal conductivity

Q : Quantity of the heat

 

Figure 6 Problem of heat flow in a two-dimensional domain 

 

4.1 Suppose that steady-state conditions are assumed and only one-dimensional variation in x-

direction occurs. Simplify the governing equation (1). [5 points] 

 

4.2 Suppose that the quantity of the heat Q  is equal to 
 
and thermal conductivity k is 1 in 

the simplified governing equation derived from the problem 4.1. Determine a function ( )x which 

satisfies the simplified governing equation in the region 0 1x   with associated boundary 

conditions 0 
 
at 0x 

 
and 2   at 1x 

 
using the finite difference method. [10 points] 

Assumption: 

- Mesh spacing 
1

3
x   is chosen 

- Central difference approximation is used for the derivative of the function. 

 

4.3 Determine a function ( )x  which satisfies the governing equation and boundary conditions 

of the problem 4.2 using the Galerkin’s residual method. [15 points]  

Assumption: An approximated function is assumed as 
2
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ˆ a a x a x   

 

 



4.4 
2 2
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 is an exact solution of the problem 4.2 and 4.3. Compare 

the function values determined from the problem 4.2 and 4.3 at x=1/3 and x=2/3 with the exact 

solution. [5 points] 

 


