Optoelectronics EE 430.423.001

1. (10 point) (1) Derive the Maxwell wave equations for the electric field \overrightarrow{E} and magnetic field \overrightarrow{H} in the vacuum. And express the speed of light in terms of the permittivity of the vacuum ϵ_o and the permeability of the vacuum μ_o .

2. (20 point)

(1) Derive the Fresnel's equations for the TM polarized wave (p-polarized wave).

(2) Plot schematically the reflectance as a function of the incidence angle θ for the relative index of refraction $n=\frac{n_2}{n_1}>1$. And mark the Brewster angle θ_B in the plot.

3. (20 point)

- (1) Find the deflection angle δ in terms of the angle of incidence θ_1 , angle of transmission θ'_2 , and the apex angle of the prism ϕ .
- (2) Show that $\sin\theta_1 = \sqrt{n^2-1} \sin\phi \cos\phi$ when $\theta'_2 = 90^o$. The index of refraction n of the prism can be obtained using the above relation.

Midterm Exam 1 2016. 10. 11.

- **4.** (20 point) The Jones matrix for a quarter-wave plate $(\lambda/4$ -plate) with a fast axis horizontal is $\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$.
- (1) Find the eigenvalues and eigenvectors of the Jones matrix for a $\lambda/4$ -plate.
- (2) Calculate the polarization of the emerging beam when the $\lambda/4$ -plate is inserted into a beam of linearly polarized light polarized at angle θ with respect to the *x*-axis? What is the polarization of the emerging beam if $\theta = 45^{\circ}$?
- 5. (30 point) In Lloyd's single-mirror interference experiment shown below, the angle of incidence is $90^{o}-\alpha$, where α is very small. Assume that the mirror is halfway between the aperture and the screen.
- (1) At a point P in the screen, find the difference in phase between the two waves, one directly arriving at P and the other reflected from the mirror before arriving at P.
- (2) Is the first fringe at the point y=0 bright or dark? And explain your answer.
- (3) Calculate the fringe spacing in terms of α , the wavelength λ , the slit separation h, and the aperture-to-screen distance x.

