Fully Coupled Constituitive Model for Electrostrictive Ceramic Materials -Hom and Shankar

SangJoon Shin School of Mechanical and Aerospace Engineering Seoul National University

Active Aeroelasticity and Rotorcraft Lab.

Active smart materials system

Sensors ... to detect changes in environment actuators ... used in a feedback loop to respond to those changes

Most common ceramic materials

- Piezoelectrics ... based on lead zircomate titanate $Pb(Zr,Ti) O_3$
 - can convert electrical energy into small but accurate displacements

with a fast response time

- more compact, consume less power, less prone to overheating
- can detect minute displacements by converting mechanical work into electrical energy

- electrostrictive ceramics
 - generally offer higher electrically induced strains with lower hysteresis
 - but with the penalties of complicated electromechanical behavior and temperature dependency
 - electromechanical coupling efficiency for eletrostrictors is comparable to that for piezoelectrics
- $\begin{cases} \text{piezoeletrics} \\ \text{electrostrictor} \end{cases} \rightarrow \text{belong to a class of ionic crystals known as ferroelectrics} \\ \end{cases}$
 - Ferroelectrics ... consist of subvolumes, called domains that have a uniform, permanent, reorientable ,polarization
 - direction of polarization for each domain is randomly oriented \rightarrow the crystal itself has no not bulk polarization

- Above a characteristic temperature (the Curie temperature),
 a ferroelectric undergoes a transition where the spontaneous polarization
 disappears
- Piezoelectricity is induced in a ferroelectric ceramic by applying a high electric field at elevated temperatures during manufacture → "poling" process
 → partially aligns the polar axes of the domains to create a macroscopic
 - polarization in the crystal.
- The resulting piled-piezoelectric will deform when subjected to an electric field and polarize when mechanically stressed

for low electric field[< 0.1MV / m for $Pb(Zr,Ti) O_3$] electrically induced strain \propto the applied field electric field \propto induced polarization For higher AC fields [> $0.6 \sim 1.1MV / m$ peak – peak] significant electromechanical hysteresis \rightarrow can create servo-displacement control problems

✤ Electrostrictiction

- induced strain \propto (induced polarization)²
- the same deformation occurs when the field is reversed, in contrast to piezoelectricity
- relaxor ferroelectrics can exhibit large electrostricve strains
- spontaneous polarization is not suddenly lost at a specific Curie temperature but slowly decays with increasing temperature
- significant electrostriction with minimal hysteresis is possible both above and below the nominal transition temperature
- most promising relaxor ferroelectrics materials ... lead magnesium niobate $Pb(Mg_{1/3} Nb_{2/3}) O_3(PMN)$, or its solid relations with lead titanate $Pb(Mg_{1/3} Nb_{2/3}) O_3 - PbTiO_3 (PMN - PT)$
- high electrically-induced strains (~0.1%) and low hysteresis (<5%) over moderate electric fields (~1 MV/m peak peak)