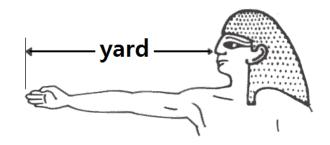
Chapter 4


Describing Physical Quantities

UNITS

Metric system

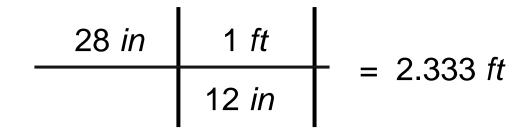
- cgs system: cm, gram, second
- SI system (Systeme Internationale d'Unites)
- American engineering system
 - Based on cultural definitions from British history
 - e.g. a yard
 - the length from the king's nose to the tip of his middle finger on his fully-extended right arm

UNITS

System	Mass	Length	Time	Temperature
cgs	g	ст	S	Celsius
SI	kg	m	5	Kelvin
American	lb_m	ft	S	Fahrenheit

 Table 4.1
 Base or Sample Units for Three Measurement Systems

Conversion Factors


Acceleration	$1 m/s^2 = 3.2808 ft/s^2$	$1 ft/s^2 = 0.3048 m/s^2$
Area	$1 \ cm^2 = 0.155 \ in^2$ $1 \ m^2 = 10.764 \ ft^2$	$1 in^2 = 6.4516 cm^2$ 1 ft ² = 0.092903 m ²
Density	$\frac{1 \ g/cm^3 = 62.43 \ lb_m/ft^3}{1 \ kg/m^3 = 0.06243 \ lb_m/ft^3}$	$\frac{1 \ lb_m/ft^3}{1 \ lb_m/ft^3} = 0.016019 \ g/cm^3$ 1 \ lb_m/ft^3 = 16.019 \ kg/m^3
Energy	$1 J = 0.7376 ft lb_f$ $1 J = 9.478 \times 10^{-4} Btu$ $1 J = 2.778 \times 10^{-7} kW hr$ $1 J = 10^7 ergs$ 1 J = 0.2390 cal	1 ft $lb_f = 1.3558 J$ 1 Btu = 1055.0 J = 778.1 ft lb_f 1 kW hr = $3.600 \times 10^6 J$ 1 hp s = 550 ft lb_f
Force	$1 N = 0.22481 \ lb_f$ $1 N = 10^5 \ dynes$	$1 \ lb_f = 4.4482 \ N$
Length	1 cm = 0.3937 in 1 m = 3.2808 ft 1 km = 0.6214 mi (statute) 1 km = 0.5400 nmi (nautical)	1 $in = 2.540 cm$ 1 $ft = 12 in = 0.3048 m$ 1 $yd = 3 ft$ 1 mi (statute) = 1609 $m = 5280 ft$ 1 nmi (nautical) = 1.8520 km
Mass	$\begin{array}{l} 1 \ g = 0.03527 \ oz \\ 1 \ kg = 2.2046 \ lb_m \\ 1 \ metric \ ton = 1000 \ kg = 2205 \ lb_m \end{array}$	1 oz = 28.35 g $1 lb_m = 16 oz = 453.6 g$ $1 ton = 2000 lb_m = 907.2 kg$

Conversion Factors

Power	1 $W = 0.7376 ft lb_f/s$ 1 $W = 9.478 \times 10^{-4} Btu/s$ 1 $W = 1.341 \times 10^{-3} hp$	1 ft $lb_f/s = 1.3558 W$ 1 Btu/s = 1055.0 W = 778.1 ft lb_f/s 1 hp = 745.7 W = 550 ft lb_f/s
Pressure	1 $Pa = 1.450 \times 10^{-4} lb_f/in^2$ (psi) 1 Torr = 1 mm Hg (@ 0°C)	$1 \ lb_f/in^2 = 6894.8 \ Pa$ $1 \ atm = 101,325 \ Pa$ $1 \ atm = 760 \ mm \ Hg \ (@ \ 0^\circ C)$ $1 \ atm = 14.696 \ lb_f/in^2 \ (psi)$ $1 \ atm = 33.9 \ ft \ H_2O \ (@ \ 4^\circ C)$
Temperature	$T(^{\circ}C) = 5/9 [T(^{\circ}F) - 32]$ T(K) = T(^{\circ}C) + 273.15	$T(^{\circ}F) = 1.8 T(^{\circ}C) + 32$ $T(R) = T(^{\circ}F) + 459.67$ T(R) = 1.80 T(K)
Viscosity	$1 cp = 6.7197 \times 10^{-4} lb_m/ft s$	1 lbm/ft s = 1488.2 cp = 14.882 Poise
Volume	$1 cm^{3} = 1 mL = 0.06102 in^{3}$ $1 m^{3} = 35.3145 ft^{3}$ $1 m^{3} = 1000 liters$ $1 m^{3} = 264.17 gal$ 1 L = 0.26417 gal	$\begin{array}{l} 1 \ in^3 = 16.387 \ cm^3 \\ 1 \ ft^3 = 0.028317 \ m^3 \\ 1 \ ft^3 = 7.4805 \ gal \\ 1 \ ft^3 = 28.317 \ liters \\ 1 \ gal = 3.785 \times 10^{-3} \ m^3 = 3.785 \ L \end{array}$
Volume Flow	$1 m^3/s = 15,850 gal/min$	1 gal/min = $6.309 \times 10^{-5} m^3/s$ 1 gal/min = $2.228 \times 10^{-3} ft^3/s$ 1 ft ³ /s = 448.8 gal/min

Conversion Factors

1 *ft* = 12 *in*, 28 *in* = ? *ft*

Moles

 One mole = Avogadro's number of particles (6.02 x 10²³)
 Molecular weight (MW) of H₂O

> 2(1.01) + 16.00 = 18.02 H O

- gmol (gram-mole)
 - 18 g water = 1 gmol water
- Ibmol (pound-mole)
 - 18 *lb_m* water = 1 *lbmol*

Symbols

- *m* = mass
- *m_A* = mass of "A"
- n = the number of moles
- n_A = the number of moles of "A"
- MW_A = molecular weight of "A"

Combined Units

System	cgs System	SI Systems	American System
density	g/cm^3	kg/m^3	lb_m/ft^3
velocity	cm/s	m/s	ft/s
acceleration	cm/s^2	m/s^2	ft/s^2
volumetric flow rate	cm^3/s	m^3/s	ft^3/s
mass flow rate	g/s	kg/s	lbm/s
concentration	gmol/L*	$kgmol/m^3$	$lbmol/ft^3$

Table 4.2 Examples of Combined Units for Three Measurement Systems

*often abbreviated M (i.e., molarity)

Force & Defined Units

Newton's 2nd law
 F = m a

- *Ib_m* "pound-mass"
- *Ib_f* "pound-force"

Weight

 $F_{weight} = m g$

Table 4.3	Gravitational	Acceleration	(at Sea	Level) and	Defined	Units of I	Force	

System	g	Defined Unit of Force
cgs	980.66 cm/s ²	$1 dyne \equiv 1 g cm/s^2$
SI	9.8066 m/s ²	1 Newton (N) $\equiv 1 \text{ kg m/s}^2$
American	32.174 ft/s ²	1 pound-force $(lb_f) \equiv 32.174 \ lb_m \ ft/s^2$

Pressure & Defined Units

Pressure

Force exerted per area

psi "pound per square inch"

Table 4.4 Commonly Used Units of Pressure

System	Units of Pressure	Abbreviation	Defined and Equivalent Units
cgs	Pascals	Pa	$1 Pa \equiv 1 N/m^2 = 10 g/cm s^2$
SI	kiloPascals	kPa	$1 kPa \equiv 1000 N/m^2 = 1000 kg/ms^2$
American	1b f/in2	psi	$1 lb_f / in^2 = 4633 lb_m / ft s^2$

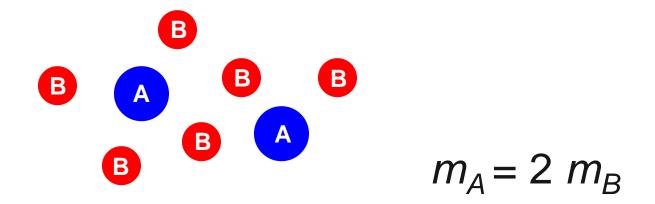
Symbols

Density

$$\rho = \frac{m}{V}$$

- Flow rate
 - mass flow rate (ⁱ/_m)
 - molar flow rate (\dot{n})
 - volumetric flow rate (i/)

$$\dot{m} = \rho \dot{V}$$


Mixture Composition

• Mole Concentration of A $c_{A} = \frac{moles \, of \, A}{volume \, of \, mixture} = \frac{n_{A}}{V}$

- Mass Fraction of A $x_A = \frac{mass of A}{mass of mixture} = \frac{m_A}{m}$
- Mole Fraction of A

$$y_A = \frac{moles \, of \, A}{moles \, of \, mixture} = \frac{n_A}{n}$$

Mole Fraction & Mass Fraction

- Mole Fraction of A = 2/8 = 0.25
- Mass Fraction of A = 4/10 = 0.4

Mixture Composition

Mass Percent of A

 (commonly expressed as wt%)
 = 100 x_A

• Mole Percent of A = 100 \mathcal{Y}_A

Dimensional Consistency

 Terms that are added together (or subtracted) must have the same units.

 $Q = ab + c^2$

- Exponents must be unitless.
 - The units in the term *ab/c* must all cancel out to leave no units.

$$y = x^{ab/c}$$