
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006 667

Parallel Programming Models for a Multiprocessor
SoC Platform Applied to Networking and Multimedia

Pierre G. Paulin, Member, IEEE, Chuck Pilkington, Michel Langevin, Essaid Bensoudane,
Damien Lyonnard, Olivier Benny, Bruno Lavigueur, David Lo, Giovanni Beltrame,

Vincent Gagné, and Gabriela Nicolescu, Member, IEEE

Abstract—The MultiFlex system is an application-to-platform
mapping tool that integrates heterogeneous parallel components—
H/W or S/W— into a homogeneous platform programming envi-
ronment. This leads to higher quality designs through encapsula-
tion and abstraction. Two high-level parallel programming models
are supported by the following MultiFlex platform mapping tools:
a distributed system object component (DSOC) object-oriented
message passing model and a symmetrical multiprocessing (SMP)
model using shared memory. We demonstrate the combined
use of the MultiFlex multiprocessor mapping tools, supported
by high-speed hardware-assisted messaging, context-switching,
and dynamic scheduling using the StepNP demonstrator mul-
tiprocessor system-on-chip platform, for two representative
applications: 1) an Internet traffic management application run-
ning at 2.5 Gb/s and 2) an MPEG4 video encoder (VGA resolution,
at 30 frames/s). For these applications, a combination of the
DSOC and SMP programming models were used in interoperable
fashion. After optimization and mapping, processor utilization
rates of 85%–91% were demonstrated for the traffic manager. For
the MPEG4 decoder, the average processor utilization was 88%.

Index Terms—Multimedia computing, multiprocessor intercon-
nection, parallel programming.

I. INTRODUCTION

THE continued increase in the nonrecurring expenses for the
manufacturing and design of nanoscale systems-on-chip

(SoCs), in the face of continued time-to-market pressures,
is leading to the need for significant changes to their design
and manufacturing. These factors are the drivers behind the
emergence of domain-specific software (S/W) programmable
SoC platforms [1], [2] consisting of large, heterogeneous
sets of embedded processors, reconfigurable hardware (H/W)
and networks-on-chip (NoCs) [3]. However, these flexible
platforms are only the foundation of a complete solution. The
key requirement is the effective utilization of the platform by
end-users. This implies better application programming tools,
which in turn rely on high-level parallel programming models.
All of these will be required to reduce the design nonrecurring
expenses and improve the overall quality of the end-product.

In this context, we are working on MultiFlex, which is an
application-to-platform mapping tool that integrates heteroge-
neous parallel components—H/W or S/W— into a homoge-
neous platform programming environment. This leads to higher
quality designs through encapsulation and abstraction.

Manuscript received July 1, 2005; revised January 23, 2006.
P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, D. Lyonnard,

O. Benny, B. Lavigueur D. Lo, G. Beltrame, and V. Gagné are with STMicro-
electronics, Ottawa, ON K2H 8R6, Canada (e-mail: pierre.paulin@ st.com).

G. Nicolescu is with the École Polytechnique de Montréal, Montréal, QC
H3C 3A7, Canada (e-mail: gabriela.nicolescu@polymtl.ca).

Digital Object Identifier 10.1109/TVLSI.2006.878259

The paper is organized as follows. Section II provides a re-
view of SoC platform programming models and highlights our
contributions in relation to other work. Section III gives the
overview of the StepNP multiprocessing SoC (MP-SoC) plat-
form. Section IV presents our vision on programming models
for MPSoC. Sections V and VI explain the distributed system
object component (DSOC) and symmetrical multiprocessing
(SMP) programming models and their implementations in our
system. Section VII introduces the hardware support for SMP
and describes the interoperability of DSOC and SMP program-
ming models. Sections VIII and IX give the experimental results
obtained for two representative applications—an Internet traffic
manager and an MPEG4 video encoder. Section X outlines direc-
tions for future work, and Section XI presents conclusions.

II. REVIEW OF SOC PLATFORM PROGRAMMING MODELS

The motivation for new high-level programmer views of SoC,
and the associated languages which support the development of
these views, is presented in [4]. The advantages of high-level SoC
platform programming models (e.g., hiding hardware complexity,
enhancing code longevity, and portability) and different pro-
gramming model paradigms (e.g., message passing and shared
memory) are presented in the context of NoC design [5], [6].

MESCAL (Modern Embedded Systems: Compilers, Archi-
tectures, and Languages) [7] is a large research program ad-
dressing many SoC system-level design issues. A key direc-
tion involves defining a programmers’ model of a heterogeneous
SoC platform, where details of the underlying architecture are
abstracted, while retaining a sufficient level of control so that
the application programmer can develop an efficient solution.
The MESCAL work includes several case studies of how to
provide a programmer’s view for existing architectures. For ex-
ample, a programming model inspired from Click is presented
that is dedicated to the Intel IXP family of network processors
[8]. Other projects under the MESCAL research umbrella have
defined a small set of concurrency primitives in a shared ad-
dress space (e.g., thread creation and synchronization), as well
as a subset of the message passing interface (MPI) standard.

Our MultiFlex work shares many of the background motiva-
tions of MESCAL. Like MESCAL, we support a small set of
concurrency primitives in a shared address space. However, we
try to align more with the POSIX threads standard. Again, like
MESCAL, we also support a message-passing style of parallel
programming. However, whereas MESCAL may be viewed as
a subset of MPI, the MultiFlex approach may be viewed as a
subset of CORBA.1 MultiFlex objects may be implemented en-

1[Online]. Available: http://www.omg.org

1063-8210/$20.00 © 2006 IEEE

668 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006

tirely in hardware, with no additional software abstraction layer
required. This is in contrast with the MESCAL approach of pro-
viding software layers over the underlying hardware in order
to provide the necessary abstraction. Finally, the MultiFlex ap-
proach has a set of software tools and hardware implementa-
tions that are ready for commercial product development. The
MESCAL research is more ambitious in scope, but is currently
in the exploratory phase, and more convergence is necessary be-
fore this work can be viewed as a comprehensive solution that
is directly useable by industry.

An abstract task-level interface named TTL is presented in
[9]. TTL provides an SoC platform interface for implementing
applications as communicating hardware and software tasks on
a platform infrastructure. In the TTL framework, tasks com-
municate with each other through ports, which can exchange a
vector of tokens of some fixed type. The communication may
be blocking or nonblocking or ordered or out-of-order and may
optionally allow direct access of data in the channel, avoiding
unnecessary data movement. The various permutations of these
options are supported, which allows the developer to trade off
efficiency and portability. A threading application program-
ming interface (API) is also provided, for parallel execution in
a shared memory space.

MultiFlex and TTL both approach the heterogeneous SoC
problem with an interface-centric strategy. However, MultiFlex
is at a higher abstraction level, in that communication between
MultiFlex objects consists of method calls which may have ar-
bitrary type signatures, with parameter types including, but not
limited to, vectors of tokens of some type. MultiFlex supports
custom memory allocators, which may result in zero-copy com-
munication for particular bindings. However, MultiFlex uses the
same high-level object-oriented interface for both zero-copy and
message passing communication, whereas TTL must rewrite the
application to explicitly change the communication API calls.
MultiFlex and TTL interfaces support dataflow type applica-
tions fairly naturally. However, TTL interfaces may be difficult
to use for more complex control interfaces, due to the fixed token
types. TTL assumes that both sending and receiving ends share
the same data representation. This is a limiting assumption, as a
future SoC will have many heterogeneous components, and data
bit widths and representations will not necessarily be homoge-
neous. Even if they are, it is not guaranteed that different com-
pilers will represent data structures in the same way. The Multi-
Flex interface definition language and communication synthesis
tools avoid these TTL limitations.

Like TTL, MultiFlex communication may be blocking or
nonblocking. MultiFlex also allows the option of a hardware or
software broker between objects (or “tasks” in the TTL termi-
nology), which can implement load balancing and scheduling.
Like TTL, the MultiFlex communication interface may be di-
rectly supported by the SoC platform hardware. The MultiFlex
threading support is more complete, with support for POSIX
threading and synchronization primitives, as well as allowing
the option of hardware acceleration, if required.

A parallel programming model for the communication in
behavioral modeling of signal processing application is pro-
posed by Kiran et al. [10]. This model, named the shared
messaging model (SMM), integrates the message passing
and shared-memory communication paradigms. It exploits
advantages of both paradigms, providing up to an order of

magnitude improvement in the communication latency over
the message passing model. SMM avoids the zero-copy versus
copy problem of the TTL model, in that SMM provides one
API that is used by application developers, and the zero copy
option is deferred to the implementation and mapping phase.

The solution is conceptually the same as the MultiFlex solu-
tion, in that custom allocators are used. In any case, TTL and
SMM appear to provide the same basic abstractions, and so the
advantages of MultiFlex over TLL also apply to the SMM.

Forsell [11] presents a sophisticated support for a concrete
NoC (Eclipse) that is realized through multithreaded pro-
cessors, interleaved memory modules, and a high-capacity
interconnection network. This is based on a parallel random
access machine (PRAM) paradigm, rather than the message
passing paradigms of TTL and SMM. The Eclipse proposal
attempts to solve the problems of PRAM approaches that
are frequently cited by message-passing advocates (primarily
interconnect bandwidth usage, memory coherency problems,
memory consistency problems, and access latency). The claim
in the Eclipse work is that message-passing approaches have
problems of a poor parallel-computing models, requiring
programmers to explicitly handle synchronization, data parti-
tioning, and inter-resource communication [11]. This appears
to be the standard objection to message passing (often called
the “marshaling problem”) that is cited by PRAM advocates.

The MultiFlex approach is to acknowledge that the PRAM
and message-passing advocates both have valid viewpoints.
However, rather than choosing one model over the other, the
MultiFlex system supports both in a unified, interoperable
framework. With some platforms, with some applications, the
PRAM-derived approach will be better. In other situations, a
message-passing approach will be better. The SoC platform
programming model should support both approaches and allow
the system developer to exercise judgment as to the most
appropriate tool for the problem at hand.

The Eclipse approach does suggest interesting techniques for
increasing the viability of PRAM-derived models. We believe
one key technique is hardware multithreading. We also advo-
cate this technique for MultiFlex implementation platforms, as
described in Section III. The Eclipse work also presents a novel
NoC proposal, which is an acyclic variant of a two-dimensional
(2-D) sparse mesh. Although interesting, the power and area
requirements of the proposal are not given, and thus message-
passing advocates will probably remain unconvinced that signif-
icant headway has been made for PRAM programming models.
In any case, most of the Eclipse work may be regarded as dealing
with platform implementation issues and does not address SoC
platform programming models in any depth. We assume that
any programming model abstractions suitable for PRAM-de-
rived architectures, such as POSIX threads, would be suitable
for the Eclipse approach. Therefore, an Eclipse platform would
be a natural target for the MultiFlex SMP style programming
model primitives.

To summarize, we believe the MultiFlex approach has four
key contributions in comparison with the systems cited above.

1) Interoperable distributed objects and SMP programming
model support, with abstractions more inline with widely
adopted industry standards (POSIX threads and distributed
object systems such as CORBA).

PAULIN et al.: PARALLEL PROGRAMMING MODELS FOR A MULTIPROCESSOR SOC PLATFORM 669

Fig. 1. StepNP MP-SoC Platform.

2) An extremely efficient implementation of these models is
achieved using novel hardware accelerators for message
passing, context switching, and dynamic task scheduling
and allocation. Lower performance implementations are
possible using software libraries that support the program-
ming models.

3) Support of homogenous programming styles for MP-SoC
platforms composed of heterogeneous H/W-S/W pro-
cessing elements. This is achieved via a system interface
definition language (SIDL) and an associated compiler,
which support a neutral data format for message passing.

4) All application programming may use a high-level lan-
guage (C or C++, with high-level calls to the parallel pro-
gramming model APIs).

III. STEPNP MP-SOC PLATFORM

The MultiFlex programming model abstractions may be im-
plemented on a range of SoC targets with varying degrees of
efficiency. We have developed the StepNP [12] multiprocessor
SoC (MP-SoC) architecture platform as a vehicle for exploring
efficient SMP and message-passing implementations. Fig. 1 de-
picts the StepNP platform, which includes:

• models of (re)configurable processors;
• a NoC;
• reconfigurable H/W (embedded FPGA or embedded con-

figurable sea-of-gates) and standard H/W;
• general-purpose and domain-specific I/Os.
In Fig. 1, the platform is shown with a communications-ori-

ented I/O configuration. Note that, aside from the selection of
domain-specific I/O, StepNP is a general-purpose, flexible MP
platform.

The StepNP platform makes a very important assumption on
the interconnect topology: namely, it uses a single intercon-
nect channel that connects all I/O and processing elements. This
channel is referred to as an NoC. An orthogonal, scaleable, NoC
interconnect approach with predictable bandwidth and latency
is essential. Here, we use STMicroelectronics’ STBus intercon-
nect technology generation framework,2 which supports a wide
range of interconnect topologies, including buses, bridges, and
crossbars. The STBus protocol supports similar advanced fea-
tures to OCP-IP, for example, out-of-order and split-transac-
tions. Despite the name, STBus is not a bus per se, but is in fact
an NoC interconnect generation framework, which supports the
automatic generation of a range of interconnect topologies made
up of buses, bridges, and crossbars. The STBus toolset generates

2[Online]. Available: http://www.stmcu.com/inchtml-pages-STBus_intro.
html

an RTL-synthesizable implementation. We have integrated the
STBus SystemC models into StepNP.

A common issue with all NoC topologies is communica-
tion latency [3]. Effective latency hiding is therefore key in
achieving efficient parallel processing. For this reason, the
StepNP platform includes models of hardware multithreaded
processors [13]. Multithreading lets the processor execute other
streams while another thread is blocked on a high-latency
operation. A hardware multithreaded processor has separate
register banks for different threads, allowing low-overhead
switching between threads, often with no disruption to the
processor pipeline.

The StepNP simulation framework allows easy integration
of a range of general-purpose to application-specific processor
models. We have integrated public domain instruction-set
models of the most popular RISC processors. The base StepNP
architecture platform includes the public-domain models of the
ARMv43 and the PowerPC (versions 603, 603a, and 604), and
MIPS (32- and 64-b) instruction-set architectures.

In order to explore network-specific instruction-set optimiza-
tions, the Tensilica Xtensa configurable processor model4 has
been integrated by our academic research partners [14]. Other
researchers within ST have demonstrated the use of embedded
FPGA to implement user-defined instructions, therefore imple-
menting a reconfigurable processor [1515].

For the exploration of application-specific instruction-set pro-
cessors (ASIPs), we support the inclusion of instruction-set sim-
ulation (ISS) models generated from the CoWare/LisaTek ISS
model generator toolset.5 As a first demonstrator of this ap-
proach, we have developed a LisaTek-based ISS for the Xilinx
MicroBlaze soft RISC processor and are currently extending it
for hardware multithreading. Researchers can use this as a basis
for further architecture extension or specialization.

IV. PROGRAMMING MODELS

It is our conviction that programming model development
will be evolutionary, rather than revolutionary, and the trend
will be to support established software languages and technolo-
gies, rather than the development of entirely new programming
paradigms. Currently, and in the foreseeable future, large sys-
tems will be written mostly in C++, Java, or languages supported
by the Microsoft Common Language Runtime (CLR), such as
C#. The Java and CLR-supported languages have established
programming models for both tightly coupled and loosely cou-
pled programming. Briefly stated, tightly coupled computing is
done with some variant on an SMP model (i.e., threads, mon-
itors, conditions, and signals), and heterogeneous distributed
computing is accomplished with some variant on a component
object model (e.g., CORBA, Enterprise Java Beans, Microsoft
DCOM,6 and its evolutions). Recent proposals for C++ evolu-
tion7 have also called for SMP and distributed object models
inside the C++ standard library specification.

The two SoC parallel programming models used in the Mul-
tiFlex system are inspired by mainstream approaches for large

3[Online]. Available: http://www.fsf.org
4[Online]. Available: http://www.tensilica.com
5[Online]. Available: http://www.coware.com
6[Online]. Available: http://www.microsoft.com/com/tech.DCOM.asp
7[Online]. Available: http://www.research.att.com/~bs/C++0x_panel.pdf

670 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006

Fig. 2. DSOC model to platform mapping.

system development, but adapted and constrained for the SoC
domain.

• DSOC model: This model supports heterogeneous dis-
tributed computing, reminiscent of CORBA and Mi-
crosoft DCOM distributed component object models. It
is a message-passing model and it supports a very simple
CORBA-like system interface definition language (dubbed
SIDL in our system).

• SMP, supporting concurrent threads accessing shared
memory: The SMP programming concepts used here are
similar to those embodied in Java and Microsoft C#. The
implementation performs scheduling and includes support
for threads, monitors, conditions, and semaphores.

Both programming models have their strengths and weak-
nesses, depending on the application. In the MultiFlex system,
both can be combined in an interoperable fashion, as will be
demonstrated further in the traffic manager and MPEG4 video
encoder applications. On the one hand, this approach should
be natural for programmers familiar with Java or C#, but, on
the other hand, it should be sufficiently efficient (both in terms
of execution efficiency and resource requirements) for use in
emerging SoC devices. The following sections describe both of
the MultiFlex programming models in more detail.

MultiFlex does not supply tools for extracting parallelism
from sequential descriptions. In practice, this has not been an
issue for the industrial multimedia, networking, and wireless ap-
plications with which we have been involved. In most cases, the
application developer is deeply familiar with the inherent par-
allelism and is able to express this parallelism in the DSOC or
SMP programming models in a matter of days or weeks—even
for complex applications like MPEG4 video encoders. Relative
to the total product development timeframe, this does not have
a significant schedule impact.

V. DSOC PROGRAMMING MODEL

The DSOC programming model relies on a high-level repre-
sentation of parallel communicating objects, as illustrated in the
simple example of Fig. 2, where the seven objects represent ap-
plication functions. Each DSOC object has a language-neutral
SIDL interface.

As illustrated in Fig. 2, the DSOC objects can be assigned to
general-purpose processors running a standard operating system
(e.g., for objects Control1, Control2, and Control3), or to mul-
tiple hardware multithreaded processors (objects Imaging1 to
Imaging3), or to hardware processing elements (object Video).

Due to the underlying heterogeneous components involved
in the implementation of the inter-object communication, a
translation to a neutral data format is required. In the MultiFlex
system, this is achieved with the SIDL compiler. In this context,
the use of SIDL is similar to the Java Remote Method Invoca-
tion philosophy, where object interfaces are defined in terms of
a Java interface. Similarly, SIDL looks much like a pure virtual
C++ class, and is patterned after the approach
in SystemC. As explained below, the use of SIDL is key to the
message passing implementation.

Our implementation of the DSOC programming model relies
on three key services. As we are targeting this platform at high
performance applications, a key design choice is the implemen-
tation of those services in hardware.

• The hardware message passing engine (MPE) is used to op-
timize interprocess communication. It translates outgoing
messages into a portable representation, formats them for
transmission on the NoC and provides the reverse function
on the receiving end.

• The hardware object request broker (ORB) engine is used
to coordinate object communication. As the name sug-
gests, the ORB is responsible for brokering transactions
between clients and servers.

• Hardware Thread Management coordinates and synchro-
nizes execution threads. All logical application threads
are directly mapped onto hardware threads of processing
units. No multiplexing of software threads onto hardware
threads is done in the current implementation presented
here. While the global thread management is performed
by the object request broker (i.e., synchronizing and
matching client threads with server threads), the cycle-by-
cycle scheduling of active hardware threads on individual
processors is done by the processor hardware, which
currently uses a round robin scheduler. A priority-based
thread scheduler is also being explored.

A. DSOC Message Passing Implementation

In the MultiFlex system, a compiler is used to process the
SIDL object interface description and generate the communica-
tion wrappers that are appropriate for the (H/W or S/W) pro-
cessing element sending/receiving a message. For processors,
the SIDL compiler generates the low-level communication soft-
ware driving the message passing hardware. For each hardware
processing element, the compiler generates the data conversion
hardware model and links it to the NoC interface.

The end result is that the initiating object wrapper takes
method calls, and, with the help of the message passing engine,
“marshals” the data into a language-neutral, portable representa-
tion. This marshaled data is transferred over the NoC to the target
object wrapper. The target wrapper “unmarshals” the data and
invokes the target object implementation. The return values are
then marshaled, sent back to the initiator, and unmarshaled in a
similar way. Due to the hardware support for message passing,
the software overhead for the remote invocation is between

PAULIN et al.: PARALLEL PROGRAMMING MODELS FOR A MULTIPROCESSOR SOC PLATFORM 671

20–30 instructions. Note that no software context switching is
done. If the target method is declared as blocking, the client
hardware thread is stalled until the result is ready.

B. DSOC ORB

The ORB assists in parallel execution and system scheduling.
Parallel execution in a DSOC application is achieved using one
or more of the following mechanisms.

• Objects using non-blocking interfaces may execute in
parallel.

• A service may be load balanced over a number of
resources.

• Services may be implemented by calling other servers.
DSOC objects may be directly connected, connected in a

chain (for example, to implement a data flow style of program-
ming), connected through custom binding objects, or go through
one or more object request brokers. The hardware ORB is useful
if high-performance run-time load balancing is required. The
ORB matches client requests for service with a server, according
to some criteria. In the current implementation, the least loaded
server is selected.

In our approach, logical threads are mapped one-to-one to
the physical threads of the hardware multithreaded processing
elements. This may seem like a limitation, but, on the other
hand, for even fairly small systems we envisage have 64 hard-
ware threads or more (e.g., eight processors with eight threads
each). In actual systems we have designed, the limitation on the
number of threads has rarely proved to be an issue (indeed, until
recently, some Unix workstations had process table restrictions
limiting the number of processes to under 256).

As a result of our mixed HW/SW implementation, the soft-
ware overhead for a complete DSOC call is very low. For ex-
ample, a call with a few integer parameters takes less than 50
instructions for a complete round trip between client and server.
This includes the following:

• call from the client to the server proxy object;
• insertion of the call arguments into message passing

engine;
• retrieval of the arguments at the server side;
• dispatching of the call to the server object;
• insertion of the result into the server message passing en-

gine;
• reading of the results by the server proxy from the client

message passing engine;
• return from the server proxy object to the client with result.
The client-side code emitted by the SIDL compiler for the

above looks much like a normal function call. However, instead
of pushing arguments on a stack, the arguments are pushed into
the MPE. Instead of a branch to subroutine instruction, a special
MPE command is given to trigger the remote call. If the object
call is blocking, the client thread is stalled until the request is
serviced. No special software accomplishes the stall; rather, the
client immediately reads the return result from the MPE, and
this read stalls the client thread until results are ready. All of
this can be inlined at compilation time, so the client-side DSOC
code can be a handful of assembler instructions.

The server-side code is slightly more complex, as it first reads
an incoming service identifier and function identifier from the
MPE. It then does a table lookup and branches to the code han-
dling this object method. This is implemented in ten to twelve

Fig. 3. Mixed DSOC-SMP model to platform mapping.

RISC instructions, typically. From there, arguments are read
from the MPE, and the object implementation is called. Finally,
results (if any) are put in the MPE for transmission back to the
client. Again, the overhead for this is roughly the same as a local
object method call.

The end result of this HW/SW architecture is that we are able
to sustain end-to-end DSOC object calls from one processor to
another, at a rate of about 35 million per second, using 500-MHz
RISC-style processors.

VI. SMP PROGRAMMING MODEL

Modern languages such as Java and C# support both
tightly coupled SMP-style programming (with shared memory,
threads, monitors, and signals), as well as support for distributed
object models, as described above. Unfortunately, SoC resource
constraints make languages such as Java or C# impractical for
high-performance embedded applications. For example, in a
current STMicroelectronics multimedia application, the entire
“operating system” budget is less than 1000 instructions. As
we have seen in the previous section, DSOC provides an ad-
vanced object-oriented programming model that is natural to
Java or C# programmers, with essentially no operating system
software or language run-time. Next, we will describe how
we support a high-level SMP programming model in the same
resource-constrained environment.

SMPfunctionality in theMultiFlexsystemis implementedbya
combination of a lightweight software layer and a hardware Con-
currency Engine (CE), as depicted in the platform of Fig. 3. The
SMP access functions to the concurrency engine are provided by
a C++ API. It defines classes and methods for threads, monitors
(with enter/exit methods), and condition variables (with methods
for signal and wait). A POSIX thread C binding is also available.

The concurrency engine appears to the processors as a
memory-mapped device, which controls a number of con-
currency objects. For example, a special address range in
the concurrency engine could correspond to a monitor, and
operations on the monitor are achieved by reading and writing
addresses within this address range. Most operations associated
with hundreds or thousands of instructions on a conventional
SMP operating system are accomplished by a single read or
write operation to a location in the concurrency engine.

672 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006

To motivate the need for a hardware concurrency engine, con-
sider the traditional algorithm for entering a monitor. This usu-
ally consists of the following steps.

1) Acquire lock for monitor control data structures. This is
traditionally done with some sort of atomic test-and-set in-
struction, with a spin and back-off mechanism for heavily
contested locks.

2) Look at busy flag of monitor. If clear, the thread can enter the
monitor. If the busy flag is set, the thread must: 1) link itself
into a list of threads trying to enter the monitor; 2) release the
lock for the monitor; and 3) save the state of the calling
thread (e.g., CPU registers) and switch to another thread.

This control logic is quite involved. In contrast, with the Mul-
tiFlex concurrency engine, entering a monitor, or signaling a
condition, is done with one memory load instruction at a special
address in the concurrency engine that indicates the monitor ob-
ject index and the operation type. Similarly, forking up to 8192

threads at a time can be accomplished with one memory
write. The atomic maintenance of the linked lists, busy flag in-
dicators, and timeout queues is done in hardware.

Any operation that should block the caller (such as entering a
busy monitor) will cause the concurrency engine to defer the re-
sponse to the read until the blocking condition is removed (e.g.,
by the owner of the monitor exiting). This causes the suspen-
sion of the execution of the hardware thread. The split-trans-
action nature of the StepNP interconnect makes this possible,
since the response to a read request can be delivered at any time
in the future and does not block the interconnect. Therefore, the
response to a read from a concurrency engine location repre-
senting a monitor entry will not return a result over the inter-
connect until the monitor is free.

Notice that no software context switching takes place for
blocking concurrency operations. The hardware thread is
simply suspended, allowing other hardware threads enabled on
the processor to run. This can often be done with no “bubbles”
in the processor hardware pipeline. The large number of system
hardware threads would make software context switching
unnecessary for most applications.

The concurrency engine is also responsible for other tasks
such as run queue management and load balancing. Our exper-
iments to date indicate that a simple first-come first-served task
scheduling H/W mechanism results in excellent performance
with good resource utilization.

Therefore, the MultiFlex system provides an SMP program-
ming model with essentially no “operating system” software,
in the conventional sense. The C++ classes controlling con-
currency are implemented directly with in-line read/write in-
structions to the concurrency engine. A C-based POSIX thread
(“p-thread”) API is also available.

This high-performance SMP implementation simplifies
programming for the application developer. With conventional
SMP implementations, the cost of forking a thread or synchro-
nizing must be carefully considered and balanced against the
granularity of the task to be executed.

Making the task granularity too large can reduce opportuni-
ties for parallelism, while making tasks too small can result in
poor performances, due to SMP overhead. Finding the right bal-
ance requires a great deal of trial and error. However, with the
high-performance MultiFlex SMP implementation, the tradeoff
analysis is greatly simplified.

VII. IMPACT OF DSOC/SMP ACCELERATION AND

INTEROPERATION

Here, we take a closer look at the impact of the hardware-
based message passing and scheduling accelerators and describe
the SMP and DSOC programming model interoperability. Some
of the more far-reaching system-level implications are also
discussed.

A. H/W Support for Programming Models

The overheads of conventional software-based SMP and
message passing programming models dramatically confine the
space of potential system solutions. If these overhead roadblocks
can be removed or minimized, we believe this will enable entirely
new classes of parallelism, with far-reaching consequences.

The limitations imposed by SMP overheads are well recog-
nized, and, over the years, many techniques for accelerating
SMP operations have been studied. One common approach is
the hardware acceleration of hardware locks. A hardware-lock
solution for simultaneous multithreaded processors, and a re-
view of related mechanisms, is presented in [16].

Another limitation is the context switch overhead. The over-
head of a conventional software-only SMP context switch is typ-
ically over one thousand cycles, and in the context of MP-SoCs
with long NoC latencies, can exceed ten thousand cycles [3].
Lee et al. [17] have reported an experiment where SMP con-
text switch times take 3218 cycles and communication takes
18 944 cycles for a medium-grained computation taking 8523
cycles. This results in application execution efficiency of only
30%. They also experimented with a partial hardware accelera-
tion for the scheduling and the lock management, and observed
efficiencies approaching 63%. However, they noted that the im-
provement due to the hardware acceleration of the scheduling
and the synchronization was limited by the software context
switch overheads.

Other approaches focus on the acceleration of task sched-
uling. Kohout et al.perform task scheduling in H/W and demon-
strate up to 10 speedup of processing time (from 10% to 1%
overhead). Absolute times for processing are not given, but the
interrupt response time portion was between 1400–2200 ns for a
clock cycle of 200 MHz [1818]. Ignios8 provides a commercial
solution for H/W accelerated task scheduling.

The results from these various H/W acceleration techniques
are encouraging. However, point solutions will not realize all of
the potential benefits due to problems in other areas. We there-
fore advocate a comprehensive set of techniques so that the ben-
efits are realized at the system level. This not only involves H/W
acceleration of context switching, SMP synchronization, and
message passing; it also requires clean programming model ab-
straction of the H/W facilities and platform mapping tools.

In the MultiFlex system running on StepNP (assuming the
same 200-MHz clock frequency), the exploitation of hardware
multithreaded processors [13] supports context switches of
5 ns (1 clock cycle); message passing requires less than 200 ns
(i.e., 20–40 instructions typically); and scheduling of DSOC
and SMP objects is achieved in less than 200 ns (also 20–40
instructions). More importantly, it is the combination of the
three accelerator engines and H/W multithreaded processors

8[Online]. Available: http://www.ignios.com

PAULIN et al.: PARALLEL PROGRAMMING MODELS FOR A MULTIPROCESSOR SOC PLATFORM 673

that enables the effective mapping of medium- to fine-grained
parallelism onto MP architectures like StepNP. In the traffic
manager and video codec application examples below, we are
dealing with fine-grained parallel tasks that represent less than
500 RISC instructions typically. Finally, since the StepNP
architecture hides latency with H/W threads rather than caches,
there are no cache-related overheads in context-switching.

B. Interoperability of DSOC and SMP Programming Models

As discussed in Section II, MultiFlex supports both SMP and
message passing programming approaches. This is in contrast to
other approaches, which typically favor either one or the other.
We remain agnostic as to which approach is “better,” leaving this
choice in the hands of the application developer. Some aspects
of a system will be best solved using SMP-type abstractions.
Message passing may be better for other aspects. Based on our
experience, any proposed abstraction that is limited to only one
of these basic approaches will be very limiting for a SoC-scale
platform programming model.

An example of MultiFlex DSOC and SMP interoperability
is illustrated in Fig. 3. In this example, the control, digital still
camera (DSC), audio, and the video hardware objects all com-
municate through well defined interfaces using the DSOC mes-
sage passing model described above. On the other hand, the
SMP programming model is used internally by one control ob-
ject and one DSC object. In the object mapping phase, the DSC
objects are placed on the hardware multithreaded RISC proces-
sors, and the SMP programming model is implemented with
the SMP hardware scheduler. The control objects are mapped
into user mode of the general-purpose processor, so the SMP
primitives are implemented using native user-level threads, e.g.,
POSIX threads on Linux.

The use of explicit user-visible shared memory between ob-
jects is not encouraged, as this introduces nonportability and
requires additional mechanisms and abstractions to manage the
shared memory between objects. However, the DSOC object
binding layer may use shared memory communication internally
to implement first-in first-out buffers and/or zero-copy com-
munication, if the platform has the necessary shared memory
hardware.

By default, all DSOC object invocations are single-threaded,
that is, the programmer does not need to worry about multiple
concurrent invocations of the methods of one server object. Of
course, multiple object instances implementing the same ser-
vice may execute in parallel. Also, the DSOC implementation
layer may provide mechanisms to enable multithreaded invoca-
tions of the same server object, in case the developer requires
this, and is prepared to deal with parallel execution inside the
object.

In Sections VIII and IX, we illustrate the use of the DSOC
and SMP programming models for two application domains:
high-speed packet processing and video encoding. Both make
significant use of programming model interoperability.

VIII. TRAFFIC MANAGER APPLICATION

To illustrate the concepts discussed in this paper, we have
mapped a MultiFlex model of the IPv4 packet traffic manage-
ment application of Fig. 4(a) onto the StepNP multiprocessor

Fig. 4. Traffic manager application platform.

platform instance depicted in Fig. 4(b). In contrast with the sim-
pler IPv4 packet forwarding application presented in [12], this
application has the following challenges.

• While there is natural inter-packet parallelism, there are
also numerous inter-packet dependencies to account for,
due, for example, to packet queuing and scheduling.

• The intra-packet processing consists of a dozen tasks with
complex data dependencies. Also, these tasks are medium-
to small-grained (less than 500 RISC instructions).

• All user-provided task descriptions are written in C++. No
low-level C or assembly code is used. The DSOC and SMP
runtime support code is also entirely written in C++.

We will demonstrate that, in spite of these constraints, the
MultiFlex tools support the efficient mapping of high-level ap-
plication descriptions onto the StepNP platform. Packet pro-
cessing at 2.5 Gb/s implies that for 54 byte packets (worst case),
the processing time per packet is less than 100 clock cycles (at
500 MHz). As the traffic manager requires over 750 RISC in-
structions (compiled from C++), this implies a lower bound of
eight processors (at one instruction/cycle), nearly fully utilized.

A. Traffic Manager Functionality

A packet traffic manager is a functional component located
between a packet processor and the external world, which can be
a switch fabric. We assume the packet processor is performing
header validation/modification, as well as address lookup and
classification.

An system packet interface (SPI) is used to interface with the
application, both as input and output. Such an interface, for ex-
ample,SPI4.2,cansupportabandwidthof10Gb/s,wherepackets
are transmitted as sequences of fixed-size segments interleaved
between multiple logical ports (up to 256 ports for SPI4.2).

The main functions of the traffic manager are packet
reassembly and queuing from input SPI segment, packet
scheduling, rate shaping, packet dequeuing, and SPI output
segmentation.

Typically, the queues are implemented as linked lists of fixed-
size buffers, and large queues are supported using external mem-
ories. SRAMs are used to store the links and DRAMs for the
buffer content. We assume in the following that both the SPI
segment size and buffer size are 64 bytes.

674 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006

B. DSOC Model

A DSOC model of the traffic manager application is depicted
in Fig. 4(a). This model is composed of the following tasks:

• IngSPI: input SPI protocol;
• IngSeg: temporary buffer for input SPI segment;
• DataMgr: interface to link-buffer data storage;
• QueMgr: link-list management, supporting lists for

packet reassembly and lists for packet queuing,
where is the number of SPI ports, and the number of
traffic classes;

• IngPkt; packet reassembly and queuing;
• SchPkt: packet scheduling (strict priority per port);
• EgrPkt: packet dequeuing and segmentation;
• ShPort: output port rate-shaping;
• EgrSeg: temporary buffer for output SPI segment;
• EgrSPI: output SPI protocol.
Each task is a parallel DSOC object (whose internal function

is described in C++). The object granularity is user-defined. The
arrows in Fig. 4(a) represent the object calls between the DSOC
objects. The object invocations are summarized as follows.

Ingress direction: 1) ingSPI invokes ingSeg to buffer seg-
ment; 2) at end-of -segment, ingSPI invokes ingPkt to manage
a segment; 3) ingPkt invokes queMgr to push a buffer in the
queue associated with the segment input port; 4) ingPkt invokes
ingSeg to forward the segment to the address associated with the
pushed buffer; 5) ingSeg invokes dataMgr to store the segment;
6) at the end-of-packet, ingPkt invokes queMgr to append the
packet (input queue) in its associated output queue, and invokes
schPkt to inform about the arrival of a new packet.

Egress direction: 7) shPort invokes egrPkt to request a seg-
ment for an output port; 8) at end-of-packet, egrPkt invokes
schPkt to decide from which class a packet need to be forwarded
for a given output port; 9) egrPkt invokes queMgr to pop a buffer
from the queue associated with the output port and scheduled
class; 10) egrPkt invokes dataMgr to retrieve the buffer content
of the pop buffer; 11) dataMgr invokes egrSeg to store the seg-
ment; and 12) egrSeg invokes egrSPI to output the segment.

C. StepNP Target Architecture

The application described above is mapped on the StepNP
platform instance of Fig. 4(b). In order to support wire-speed
network processing, a mixed H/W and S/W architecture is used.
The use of DSOC objects, combined with the SIDL interface
compiler, allows easy mapping of tasks to H/W or S/W.

The simple but high-speed ingSPI/ingSeg, egrSeg/egrSPI,
queMgr, and dataMgr tasks are mapped onto H/W. A similar
partition is used for the Intel IXP network processor [19]. The
remaining blocks of the DSOC application model are mapped
onto S/W. Multiple instances of each of these blocks are mapped
onto processor threads in order to support a given wire-speed
requirements. For the output processing, in order to use processor
local memory to store output status, each instance of the schPkt,
egrPkt, and shPort are associated with a disjoint subset of ports.

The platform was configured with the following parameters:
• RISC processor ISA: ARM v4;
• Number of processor pipeline stages: 4;
• Processor clock frequency: 500 MHz;
• Number of H/W threads (per proc.): 8;
• One-way NoC latency (jitter): 40 ns ns .

Fig. 5. DSOC + SMP traffic manager model.

TABLE I
EXPERIMENTAL RESULTS

Using a configuration with 16 ports and two classes and a mix
of packets with random length between 54–1024 B, simulation
shows that a bandwidth of at least 2.5 Gb/s can be supported
with seven ARM processors. However, when using short 54-B
packets (worst case condition), the supported bandwidth drops
to 2.1 Gb/s. Because some of the functional blocks are mapped
on a thread-per-port basis, it is not possible to simply increase
the number of ARMs to support a higher bandwidth. The sim-
plest way to achieve this is to relax the constraint on using local
memory to store output port status. This is achieved by using
shared memory, as described next.

D. DSOC SMP Model

A mixed DSOC and SMP model of the traffic manager
application is depicted in Fig. 5. The main differences with
the previous model are that: 1) shared-memory is used to store
temporary segments and 2) port status data are protected with
semaphores.

The DSOC and SMP model is mapped to the same platform
as for the DSOC model (with minor modifications of the ingSPI
and egrSPI H/W blocks). Using the same configuration param-
eters as for the reported DSOC-only experiment above, a band-
width of 2.6 Gb/s is supported for the case of 54-B packet using
nine ARMs. In this configuration, one ARM is used for the sh-
Port, while the other eight ARMs are used to perform any of the
ingPkt, schPkt, and egrPkt functions, as scheduled by the object
request broker.

This automatic task balancing by the DSOC object request
broker, combined with shared memory management using the
SMP support, allows for easy exploration of different applica-
tion configurations, as described next.

E. Experimental Results

Experimental results for different number of ports and classes
are summarized in Table I, showing the number of ARMs re-
quired to support a bandwidth of at least 2.5 Gb/s when using
strict-priority scheduling.

PAULIN et al.: PARALLEL PROGRAMMING MODELS FOR A MULTIPROCESSOR SOC PLATFORM 675

TABLE II
MULTIFLEX O/S ACCELERATOR ENGINE COSTS

We can see that increasing the number of classes requires
more processing, while increasing the number of ports has al-
most no impact. The table also shows the bandwidth achieved
using a variant of schPkt functionality supporting 3 class cate-
gories: 1) high-priority; 2) fair-sharing; and 3) best-effort. Fair-
sharing classes are scheduled following a round-robin scheme.
The table indicates that the processing impact of this scheduler
is more significant when there are less supported ports.

The average processor utilization in all the experiments varied
from 85% to 91%, allowing us to get close to the eight processor
theoretical lower bound. For the most complex scheduler (the
round-robin version for 32 classes), the egrPkt schPkt pair
runs in 401 instructions on average. Of these, 87 instructions
are needed for seven DSOC calls or 22% of instructions. This
is similar to the cost of seven procedure calls and demonstrates
the importance of the fast message passing, task scheduling and
context switching hardware for these medium- to fine-grained
tasks.

Table II summarizes the gate count and approximate area
(using ST’s 90-nm CMOS process technology) of the MultiFlex
hardware O/S accelerator engines required for the traffic man-
ager example above. This assumes ten processors (eight threads
per processor). The ORB and concurrency engine support up to
128 process identifiers each.

To the best of our knowledge, there is no public-domain
traffic manager implementation benchmark available, hence, we
cannot perform a direct comparison of our results with published
experimental results. However, the results we obtained with our
own implementation of a traffic manager with a StepNP-based
platform are consistent with application performance achievable
with the commercial IXP2400 NPU [19], which is composed of
eight RISC processors (named uEngine), clocked at 600 MHz,
and each supporting eight hardware threads. For instance, it is
reported that a 2.5-Gb/s packet application can be supported by
the IXP2400,9 including features such as packet segmentation
and reassembly, and packet queuing and dequeuing. We believe
that such results are obtained using hand-optimized assembly
application coding and hand-optimized application mapping
on processors; in our case, although our implementation may
potentially be less optimized, the application is captured at a
more abstract level, and the mapping on the platform is much
simpler as a result of automatic load balancing.

IX. MPEG4 VIDEO ENCODER

The MPEG4 standard is a video codec application framework
which addresses various encoding and decoding services at dif-
ferent bit rates and complexity, depending on the end-user appli-

9[Online]. Available: http://www.intel.com/design/network/papers/
ixp2400.htm

cation requirements. In this architecture, exploration and map-
ping demonstration, we are targeting consumer-oriented low-
cost and low-power mobile multimedia applications.

A. Related Work

Many MPEG4 codec implementations are proposed in the lit-
erature. In [20], the authors propose a DSP-based architecture
with an embedded pre-/post-processing engine. This implemen-
tation was proposed for communications applications such as
video telephony. In [21], an implementation is proposed for the
Philips Co-vector Processor (CVP). This implementation is de-
signed to meet the 3G standards requirements with low power
consumption. The Xilinx MPEG4 Part 2 Simple Profile En-
coder core is implemented on a Xilinx FPGA.10 Cradle Tech-
nologies11 mapped an MPEG4 encoding version on Cradle’s
multiprocessor DSP (MDSP). This architecture employs mul-
tiple DSPs, RISCs, and DMAs, as well as a hierarchical memory
management system. This type of architecture offers great flex-
ibility and programmability by shifting the burden design from
hardware to software, but the performance is lower than a spe-
cialized hardware implementation.

Emerging media microprocessors, such as VIRAM and
Imagine, are specialized architecture to run data-parallel code
[22], [23]. They offer a programmable architecture that nearly
achieves the performance of special hardware for multimedia
applications. These processors have the advantage of good
software support while achieving good energy efficiency.

In the next sections, we describe a proprietary MPEG4 video
encoder algorithm for VGA images, with a target performance
of 30 frames per second (fps). This algorithm has been mapped
using the MultiFlex tool on a StepNP platform instance, using
the DSOC and SMP programming models.

Each of the implementations described above have their own
specific service and bit-rate requirements. This makes it diffi-
cult to draw a fair comparison between the various architectures
proposed. Moreover, the use of an ST-proprietary algorithm for
motion estimation in our MPEG4 algorithm compounds the dif-
ficulty of a fair comparison. Therefore, rather than comparing
implementations, we analyze the results and evaluate the map-
ping efficiency of software to the proposed architecture. There-
fore our objective is to find the best match between the algorithm
and the proposed architecture. To achieve this goal, we mea-
sured the load average, the execution time and the data band-
width for various configurations. We compared the results with
the achievable theoretical upper bound. The results presented on
this paper are based on system level simulations; therefore, area
and cost results are beyond the scope of this study.

B. MPEG4 Application and Architecture Overview

The MPEG4 codec is a good application driver to test the
applicability of MultiFlex for the multimedia domain for several
reasons.

1) The MPEG4 video codec exhibits a large degree of paral-
lelism at various levels of granularity: the image is divided
into slices of macroblocks, and each macroblock is divided
into blocks. For most of computation processing stages,
the encoding could be performed in parallel on a slice, a

10[Online]. Available: http://www.xilinx.com
11[Online]. Available: http://www.cradle.com

676 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006

Fig. 6. Target MPEG4 video encoder MP-SoC.

macroblock or a block. Since macroblocks are particularly
small, the possible number of threads working in parallel
is very high (in the order of one thousand). All of these
threads access the same frame buffer, making it a good test-
bench for our SMP accelerators.

2) Executing an MPEG4 encoder at VGA resolution at a rate
of 30 fps, requires 4.08 GIPS of computational power, for
ST’s implementation of the encoder algorithm. This makes
a full software implementation unrealistic for a low-cost
consumer target market. Therefore, a mixed HW/SW im-
plementation will be necessary.

3) The application was provided in sequential C code, which
was manually parallelized using the DSOC and SMP pro-
gramming models. The modifications affected the existing
code minimally, showing how these programming models
can be easily integrated starting from sequential code.
The complete parallelization, architecture exploration
(e.g., hardware, software, and memory) and optimization
required less than two months for one person.

This application consists of 8068 lines of C code to be
mapped on the target MP-SoC architecture shown in Fig. 6.
This platform includes a variable number of multithreaded
ARM processors with local memory (for the stack), a two-level
instruction cache hierarchy, a shared data storage (five-way
multiple bank with address interleaver), the SMP concurrency
engine (to support both thread and task level parallelism), the
DSOC ORB engine (to support the message passing program-
ming model), and an interconnection channel implemented
using the STBus interconnect generator. The ARM clock
frequency is 200 MHz, the internal crossbar one-way latency is
equal to 10 ns (two cycles) and the system bus one-way latency
is 20 ns. The application is optimized during the exploration
phase using special instruction coprocessors closely coupled
to the ARM processors. These implement special-purpose
instructions: division, value clipping, absolute value, and sign.
Loosely coupled dedicated hardware coprocessors are con-
nected to the local STBus communication channel. The choice
of these hardware coprocessors is the result of initial guidance
from the video platform architect, as well as the subsequent
application profiling, platform mapping, and performance
analysis, as explained below.

The MPEG4 encoder takes images from a frame buffer in
system memory and applies step by step all the necessary op-
erations to produce the encoded MPEG4 stream. Each frame
is encoded individually, taking pixels from system memory
while keeping necessary data (previous frame pixels, motion
vectors, quantization coefficients, etc.) in the L1 data bank
memory. The MPEG4 standard considers three types of frame
encoding: I-frames, P-frames, and B-frames. I-frames contain
a whole image, encoded without any reference to previous or
future frames, and P-frames contain images encoded as motion
vectors applied to the previous frame blocks or the difference
between current and previous frame. B-frames apply the same
principle but code the differences between both the previous and
the next frame. Our application supports the encoding of I- and
P-frames. Each frame is divided in blocks that are grouped into
macroblocks. The encoding algorithm applies several operations
sequentially.

1) Motion Estimation: if the current frame is a P-frame, it
is compared with the previous one to determine motion
vectors.

2) Macroblock difference, prediction and discrete cosine
transform (DCT): the difference with previous frame
blocks is computed, and the blocks are encoded in fre-
quency with a DCT transformation.

3) Macroblock quantization and inverse quantization: blocks
are quantized to reduce their size.

4) Macroblock inverse DCT (IDCT), zigzag, and run-level
encoding: blocks are brought back from frequency to color
space, ordered, and compressed with a run-level algorithm.

5) Stream generation: the output is written to a video-out
device.

C. Architecture Exploration

The HW/SW architecture was achieved using a combination
of approaches, including architect guidance, high-level appli-
cation profiling, and a stepwise refinement process of platform
mapping and performance analysis.

The sequential application was initially profiled statically,
using and (GNU open source tools) on a Linux
machine. Profiling defined a lower bound on the number of
processors needed for execution: the computing power needed
by the applications amounts to 4.08 GIPS. A full software
solution would require a minimum of 21 ARM CPUs running
at 200 MHz (each one providing at most 200 MIPS). Table III
shows the results for the nine functions that take most of the
execution time during the encoding of a frame. These functions
represent only a very small portion of the application code
(approximately 6% of 8086 lines of code), but they cover
82.9% of all computational resources needed for execution.

The first top-level HW/SW partition was proposed by the ar-
chitecture design team, based on their experience with a pre-
vious MPEG4 codec design. Based on this input, the block DCT
(BCDT), block IDCT (BICDT), and block sum of absolute dif-
ferences (BSADs) were selected to be implemented as hardware
coprocessors. These functions are present in all versions of the
MPEG algorithm [24], and making them hardware blocks does
not hinder the overall flexibility of the system. These blocks cor-
respond to 44% of all computation time but less than 5% of all
the application lines of code.

PAULIN et al.: PARALLEL PROGRAMMING MODELS FOR A MULTIPROCESSOR SOC PLATFORM 677

TABLE III
PROCESSING-INTENSIVE FUNCTIONALITIES IDENTIFICATION OF THE

MPEG4 ENCODER

A preliminary platform mapping using these four hardware
components showed that 15 processors were required to achieve
30 fps for the remaining functions mapped into software. This
number was considered to be too high by the video platform
architects. Previous designs had shown that an implementation
with six processors or less was achievable.

In order to reduce the processor costs, the remaining five
functions in the table were also assigned to hardware. The hard-
ware blocks were modeled as timed-functional SystemC com-
ponents implementing DSOC servers: at system initialization,
they register with the hardware object request broker and wait
for requests from the DSOC clients. Functions executed in soft-
ware or hardware in the platform access these servers to perform
the most computationally intensive tasks.

In this final HW/SW partition, the remaining 17% of the ap-
plication computation (94% of original lines of code) remains
in software. The profiling of the distributed application shows
that 800 MIPS are required to run the application on the ARM
processors. The data access bandwidth of these processors is
1.7 GB/s.

D. Parallelism Exploitation

To exploit the MP-SoC architecture, the application was
split into parallel sections working on independent data. This
parallelization phase has been optimized manually (by iden-
tifying data dependencies at very coarse-grained, e.g., image
macroblocks) for the target MPEG4 application, guided by the
results obtained with automatic platform mapping. The inner
loops were parallelized using the fork-join constructs of the
SMP programming model. Data dependencies were carefully
analyzed and any modification to the reference source code has
been validated against the reference data, to avoid losing the
original program behavior due to some neglected dependencies.
The global flow of the parallelized application makes use of a
combination of the SMP and DSOC programming models.

Once the parallel independent tasks have been identified, the
load balancing of the forked threads is performed dynamically
by the SMP concurrency engine, which optimizes the distribu-
tion of the load over all the processing elements. The DSOC pro-
gramming model is used to access the hardware accelerators.

Fig. 7. Distribution of average load on processors.

Fig. 8. Frames per second achieved for various numbers of processors.

E. Load-Balancing Results

The graph of Fig. 7 shows a well-distributed load over the five
ARM processors for both I- and P-frames, thanks to the dynamic
load balancing supported by the MultiFlex system. The results
demonstrate the effectiveness of the combination of the appli-
cation parallelization with the capabilities of the concurrency
engine (CE) and object-request broker (ORB) dynamic hard-
ware-based schedulers. The average load of all processors is 88%
overall. A well-balanced workload allows a better usage of archi-
tecture resourcesand, therefore,betterapplicationperformances.

F. Overall Performance Results

The graph of Fig. 8 summarizes the overall performance re-
sults, expressed in frames per second achieved, for a range of ar-
chitecture parameters. These include the number of processors
(two–five) and the number of threads per processor (one–eight).
The upper curve represents the theoretical upper limit for a per-
fect parallelization (i.e., results for a single processor accessing
local memory and then simply multiplied by the number of
processors). This theoretical result does not include any inter-
processor communication code and assumes zero bus latency.

This architecture uses a cycle-accurate model of the STBus
channel, consisting of four parallel links. Processors models are
cycle-based (with approximately accuracy). The models
for the local memories and the multi-bank memory are cycle-
accurate. Finally, the timing model of the hardware accelerators
are modeled as timed-functional components, with delays based

678 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006

on the actual delay figures of a previous MPEG4 codec product
design.

The best result for the MultiFlex system makes use of 8 hard-
ware threads per processor. In this case, 28.5 fps is achieved or
86% of the theoretical best result of 33 fps.

The result depicted with the small square (30 fps for five pro-
cessors), is achieved using an artificial zero latency channel.
This demonstrates that the multithreading is effective in ab-
sorbing most of the channel latency, as the achieved perfor-
mance with real buses is very close to this 30-fps result. How-
ever, with one to four threads, the bus latency cannot be ab-
sorbed. Note that the additional cost in area of moving from a
single thread core to an eight-thread core is approximately 1.5 ,
based on ST internal multithreaded core implementations. How-
ever, the speedup achieved is over 4 (from 7 to 28.5 fps).

The additional cost of the four message passing engines and
the two schedulers is approximately 0.4 mm , as can be calcu-
lated using the figures in Table II of Section VIII-E, for a 90-nm
process technology.

Overall, the results show a good application speed-up and a
very good usage of computation resources. Moreover, the use
of hardware multithreading is effective in hiding the channel
latency. However, we believe that there is still room to optimize
the data bandwidth and the memory accesses by exploiting data
locality within the application, as discussed in Section IX-G.

G. Communication Channel Bandwidth Results

When the application is simulated on the full architecture
with all caches and stack memories local to each processor,
the overall bandwidth on the internal STBus channel is mea-
sured at 1.6 GB/s (close to the 1.7-GB/s results obtained using
ARM-only instruction-set simulator profiling).

The throughput to the concurrency engine and the DSOC
ORB schedulers was also measured. This bandwidth represents
only 3.8% of the total local channel bandwidth. Therefore, the
presence of these schedulers has little impact on overall band-
width requirements.

Although this result is achievable with a four-link STBus,
we consider this still an expensive solution. We are currently
exploring a two-level memory hierarchy, consisting of a dis-
tributed L1 data cache architecture and a shared L2 cache. This
will reduce the data bandwidth and benefit from the spatial and
temporal locality of the application.

We are also exploring application functional pipelining com-
bined with better scheduling policy. Each section of the code
is partially overlapped with the others, reducing the need of
memory, and letting a frame be encoded line by line. Basically,
a frame window of a given number of lines is chosen, and each
code section is executed sequentially over the frame window as
it slides over the frame.

Using a combination of these optimizations, our early results
show we can reduce the processor-based data bandwidth from
1.6 GB/s to less than 1.1 GB/s.

X. FUTURE WORK

The MultiFlex technology is currently being applied for a
range of multimedia and wireless applications. These include
the following.

• Mapping of a high-level H.264 video encoder (VGA res-
olution at 30 frames per second) onto a mixed multipro-
cessor and hardware platform.

• The exploration of the next-generation application
processor architecture for ST’s Nomadik mobile multi-
media platform.12 Early results of this work are presented
in [25].

• Exploring the mapping of Layer1 modem functions for a
3G basestation. This includes CRC attachment, channel
coding, first interleaver, second interleaver and deinter-
leaver, rate matching, spreading, and despreading. These
base functions will be integrated with the public-domain
3G stack from the Eurecom engineering school.13

• The mapping of digital still camera applications such as
demosaicing, using an edge-directed directional interpo-
lation algorithm, onto an MP-SoC platform consisting of
multiple configurable processors and H/W coprocessors.

Future development of the MultiFlex mapping technology in-
cludes the following.

• Support for priority-based scheduling, improved resource
class management, and improved support for blocking and
nonblocking message passing.

• Support for the management of logical software threads
on top of available hardware-based threads. This is useful
for applications with a large number of transitory logical
threads or for platforms with limited number of hardware
threads.

• Development of a fully software-based version of the Mul-
tiFlex schedulers for applications with coarse-grained par-
allelism or for existing legacy platforms that do not include
the hardware schedulers and message passing engines.

• Code size reduction: For a pure software DSOC imple-
mentation, the run-time footprint for the DSOC libraries is
around 1000 assembler instructions, depending on the de-
tails of the instruction set architecture (ISA) and platform
configuration. Each DSOC interface method requires an
additional overhead (approximately 50 instructions), again
depending on the ISA and the number of parameters. We
have encountered situations where this overhead was prob-
lematic. Similarly, the run time footprint of the pure-soft-
ware SMP programming model libraries is around 1000 in-
structions, which may be too large for some applications.
We are investigating ways of reducing this.

• Efficient data flow: The DSOC programming model sup-
ports dataflow programming styles. However, we have
not yet implemented efficient point-to-point hardware
accelerators. The current implementations all move data
over the NoC through a central buffer, which may con-
sume more power than point-to-point connections. Also,
asynchronous execution and buffering support should be
improved.

• Component-based programming model support: MultiFlex
component support is inspired by the Fractal component
model14 and is currently in active development. This will

12[Online]. Available: http://www.st.com/stonline/prodpres/dedicate/proc/
flyer/flyer.htm

13[Online]. Available: http://www.wireless3G4Free.com
14[Online]. Available: http://fractal.objectweb.org

PAULIN et al.: PARALLEL PROGRAMMING MODELS FOR A MULTIPROCESSOR SOC PLATFORM 679

provide frameworks for composing and (re)configuring
DSOC objects.

On the MultiFlex technology research front, we are working
with researchers from the Politecnico di Milano on the inte-
gration of their power estimation framework [26] and dynamic
voltage scaling. We are also cooperating with researchers
at École Polytechnique de Montréal in the areas of config-
urable processors [14], token-ring-based NoC topologies,
priority-based scheduling, loop fusion, loop tiling, and buffer
allocation [27], and with the Université de Montréal in the area
of memory architecture exploration.

XI. SUMMARY

We have described the StepNP flexible SoC platform and
the associated MultiFlex platform programming environ-
ment. The StepNP platform consists of multiple configurable
hardware multi-threaded processors, configurable and recon-
figurable hardware processing elements, shared memory and
networking-oriented I/O, all connected via a network-on-chip
(NoC). The key characteristic of the StepNP platform is that, al-
though it is composed of heterogeneous hardware and software
PEs, memories, and I/O blocks, the use of a single standardized
protocol to communicate with a single global NoC allowed us
to build a homogeneous programming environment supporting
automatic application-to-platform mapping.

The MultiFlex MP-SoC programming environment supports
two parallel programming models: a DSOC message passing
model and an SMP model using shared memory. The Multi-
Flex tools map those models onto the StepNP multiprocessor
SoC platform. Using this approach, the system-level applica-
tion development is largely decoupled from the details of a par-
ticular target platform mapping. Application objects can be ex-
ecuted on a variety of processors, as well as on configurable
or fixed hardware. Moreover, this approach makes use of hard-
ware-assisted messaging and dynamic task scheduling and allo-
cation engines that support the platform mapping tools in order
to achieve low-cost communication and high processor utiliza-
tion rates.

We presented the results of mapping an Internet traffic man-
agement application running at 2.5 Gb/s and a MPEG4 video en-
coder for VGA resolution running at 30 fps. The combined use
of the MultiFlex MP-SoC mapping tools, supported by high-
speed hardware-assisted messaging and dynamic task sched-
uling, supports the rapid exploration of algorithms written using
interoperable DSOC and SMP programming models, automati-
cally mapped to a range of parallel architectures. Processor uti-
lizations of 85%–91% have been demonstrated for the traffic
manager. For the MPEG4 encoder, the average processor uti-
lization was 88%. The low granularity of the tasks parallelized
(typically less than 500 RISC instructions) highlights the impor-
tance of the efficient hardware engines used for task scheduling,
context switching, and message passing.

Moreover, in the case of the MPEG4 video encoder, we have
demonstrated a mixed HW/SW solution which combines flexi-
bility and high performance. In this case, 94% of the function-
ality (as measured in lines of C code) is mapped onto five simple
RISC processors. The remaining 6% are mapped onto regular,
parallel hardware components which perform 80% of the equiv-
alent MIPS.

Finally, the application of MultiFlex to these two very dif-
ferent application domains serves to demonstrate the general na-
ture of the programming models supported.

REFERENCES

[1] J. Henkel, “Closing the SoC design gap,” IEEE Comput. Mag., pp.
119–121, Oct. 2003.

[2] P. Magarshack and P. G. Paulin, “System-on-Chip beyond the
nanometer wall,” in Proc. 40th Design Autom. Conf., 2003, pp.
419–424.

[3] A. Jantsch and H. Tenhunen, Eds., Networks on Chip Kluwer Aca-
demic Publishers, 2003.

[4] J. M. Paul, “Programmers’ views of SoCs,” in Proc. CODES/ISSS,
2003, pp. 156–161.

[5] L. Benini and G. De Micheli, “NoC: A new SoC paradigm,” Computer,
vol. 35, no. 1, pp. 70–78, Jan. 2002.

[6] G. DeMicheli, “Networks on a chip,” in Proc. MPSoC, 2003, pp. 5–36.
[7] K. Keutzer, “System level design: Orthogonalization of concerns and

platform-based design,” IEEE Trans. Comput.-Aided Des. Integr. Cir-
cuits Syst., vol. 19, no. 12, pp. 1523–1543, Dec. 2000.

[8] N. Shah, “NP-Click: A programming model for the intel IXP1200,”
in Proc. Workshop Network Processors, Int. Symp. High Perf. Arch.,
2003, pp. 100–111.

[9] P. van der Wolf, “Design and programming of embedded multipro-
cessors: An interface-centric approach,” in Embedded Systems Hand-
book. Boca Raton, FL: CRC, 2006.

[10] S. Kiran, “A complexity effective communication model for behavioral
modeling of signal processing application,” in Proc. 40th Des. Autom.
Conf., 2003, pp. 412–415.

[11] M. Forsell, “A scalable high-performance computing solution for net-
work on chip,” IEEE Micro, vol. 22, no. 5, pp. 46–55, Sep.—Oct. 2002.

[12] P. G. Paulin, “Application of a multi-processor SoC platform to high-
speed packet forwarding,” in Proc. DATE (Designer Forum), 2004, pp.
58–63.

[13] P. G. Paulin, C. Pilkington, and E. Bensoudane, “StepNP: A system-
level exploration platform for network processors,” IEEE Des. Test
Comput., vol. 19, no. 6, pp. 17–26, Nov. 2002.

[14] D. Quinn, “A system-level exploration platform and methodology for
network applications based on configurable processors,” in Proc. Des.
Autom. Test Eur. (DATE), 2004, pp. 364–369.

[15] M. Borgatti, “A 0.18 �m, 1GOPS reconfigurable signal processing IC
with embedded FPGA and 1.2 GB/s, 3-Port flash memory subsystem,”
in Proc. Int. Solid-State Circuits Conf. (ISSC), 2003, pp. 50–55.

[16] D. M. Tullsen, Supporting Fine-Grained Synchronization on a Simul-
taneous Multithreading Processor UCSD , CSE Tech. Rep. CS98-587,
1998.

[17] J. Lee, “A comparison of the RTU hardware RTOS with HW/SW
RTOS,” in Proc. ASP-DAC, 2003, pp. 683–688.

[18] P. Kohout, “Hardware support for real-time operating systems,” in
Proc. Codes-ISSS, 2003, pp. 45–51.

[19] E. J. Johnson, IXP2400/2800 Programming, Intel Press, Hillsboro, OR,
2003.

[20] S. Kurohmaru, “A MPEG4 programmable CODEC DSP with an em-
bedded pre/post-processing engine,” in Proc. IEEE Custom Integr. Cir-
cuits Conf., 1999, pp. 69–72.

[21] B. An, “Implementation of MPEG4 on philips co vector processor,” in
Proc. 14th Annu. Workshop Circuits, Syst. Process., ProRISC, 2003,
pp. 8–17.

[22] U. J. Kapasi, S. Rixner, W. J. Dally, B. Kkailany, J. H. Ahn, P. Mattson,
and J. D. Owens, “Programmable stream processors,” IEEE Comput.,
vol. 36, no. 8, pp. 54–62, Aug. 2003.

[23] S. Chatterji, “Performance evaluation of two emerging media proces-
sors: VIRAM and imagine,” in Proc. Int. Parallel Distrib. Process.
Symp. (IPDP’2003), pp. 229a–229a.

[24] D. J. Murray and W. VanRyper, Encyclopedia of Graphics File Formats
O’Reilly Associates, 1996.

[25] P. G. Paulin, “Distributed object models for multi-processor SoC’s,
with application to low-power multimedia wireless systems,” in Proc.
Des. Autom. Test Eur. (DATE), 2006, pp. 482–487.

[26] W. Fornaciari, F. Salice, and D. Sciuto, “Power modeling of 32-bit mi-
croprocessors,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 21, no. 11, pp. 1306–1316, 2002.

[27] T. Omnès, Y. Bouchebaba, C. Kulkarni, and F. Coelho, , C. Piguet, Ed.,
“Recent advances in low power design and functional co-verification
automation from the earliest system—Level design stages,” in Low-
Power Electronics Design. Boca Raton, FL: CRC, 2004.

680 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006

Pierre G. Paulin (M’82) received the B.Sc. and
M.Sc. degrees in engineering physics and electrical
engineering from Laval University, Quebec City,
QC, Canada, in 1982 and 1984, respectively, and
the Ph.D. degree in electronics engineering from
Carleton University, Ottawa, ON, Canada, in 1988.

From 1988 to 1994, he was with Bell-Northern
Research, the R&D arm of Nortel Networks, Ottawa,
first working on high-level synthesis research and
then managing an embedded software tools group.
In 1994, he joined STMicroelectronics, Grenoble,

France, and led the Embedded Systems Technology and System-Level Design
teams. In 2000, he transferred to STMicroelectronics, Ottawa, and is currently
Director of the System-on-Chip Platform Automation group. His research
interests include design automation technologies for multiprocessor systems,
embedded systems, and system-level design.

Dr. Paulin won the Best Presentation Award at the Design Automation Con-
ference (DAC) in 1986, was nominated for Best Paper Awards at DAC in 1987
and 1989, and won the Best Paper Award at the International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ ISSS) in 2004.

Chuck Pilkington received the B.Sc. degree in
physics from the University of Waterloo, Waterloo,
ON, Canada, in 1983, and the M.Sc. degree in elec-
trical engineering from the University of Toronto,
Toronto, ON, Canada, in 1985.

From 1985 to 2001, he worked on a range of par-
allel processing R&D programs in academia and in-
dustry, in cooperation with the Canadian Defence Re-
search Establishment. In 2001, he joined STMicro-
electronics, Ottawa, ON, Canada, and is currently a
Senior Staff Engineer with the System-on-Chip Plat-

form Automation Group. His research interests include SoC platform modeling
and system software for high-performance parallel processing.

Michel Langevin received the B.Sc., M.Sc., and
Ph.D. degrees in computer science from the Univer-
sity of Montréal, Montréal, QC, Canada, in 1986,
1988, and 1993, respectively.

From 1993 to 1996, he was a Postdoctoral Fellow
with GMD, Bonn, Germany, before joining Nortel
Networks, Ottawa, ON, Canada, where he worked,
until 2002, first as a System Modeler and then as a
System ASIC Architect, in the specification, mod-
eling, RTL implementation and verification of a novel
Terabit/s switch architecture (U.S. patent 6307852).

In 2002, he joined STMicroelectronics, Ottawa, and is currently a Senior Staff
Engineer with the System-on-Chip Platform Automation Group. His research
interests include system specification, hardware/software implementation, and
verification.

Essaid Bensoudane received the B.Sc. degree in
electrical engineering from l’Institut Polytechnique
de Grenoble, Grenoble, France, in 1997, and the
M.Sc. degree in automation and systems engineering
from École Polytechnique, Montréal, QC, Canada,
in 1999.

He joined Opal-RT from 1999 to 2001, where he
worked in a range of projects related to parallel real-
time systems. In 2001, he joined STMicroelectronics,
Ottawa, ON, Canada, as a Research Engineer with the
System-On-Chip Platform Automation Group.

Damien Lyonnard received the B.Sc. and M.Sc. de-
grees from the University Joseph Fourier, Grenoble,
France, in 1998 and 1999, respectively, and the Ph.D.
degree from TIMA/INPG, Grenoble, France, in 2003,
all in physics.

He joined the System-on-Chip Platform Au-
tomation Group, STMicroelectronics, Ottawa, ON,
Canada, in 2003.

Olivier Benny received the B.Eng. degree in com-
puter engineering and M.Sc. degree in electrical engi-
neering from École Polytechnique of Montréal, Mon-
tréal, QC, Canada, in 2001 and 2004, respectively.

He was with Interstar Technologies Inc., Mon-
treal, from 2001 to 2002, where he was involved
with product development of a distributed fax server
software. In 2004, he joined STMicroelectronics,
Ottawa, ON, Canada, as a System-Level Engineer,
where he is currently working in the field of applica-
tion mapping to multiprocessor systems.

Bruno Lavigueur received the B.Eng. degree in
computer engineering and the M.Sc. degree in
electrical engineering from École Polytechnique of
Montréal, Montréal, QC, Canada, in 2001 and 2004,
respectively.

In 2004, he joined STMicroelectronics, Ottawa,
ON, Canada, and is currently a Research and Devel-
opment Engineer with the System-on-Chip Platform
Automation Group.

David Lo received the B.Sc. and M.Sc. degrees in
electrical engineering from University of Western
Ontario, London, ON, Canada, in 1991 and 1994,
respectively, and the Ph.D. degree in systems and
computer engineering from Carleton University,
Ottawa, ON, Canada, in 2005.

From 1994 to 1999, he was a Senior System De-
veloper for a medical equipment company. In 2004,
he joined the System-on-Chip Platform Automation
Group, STMicroelectronics, Ottawa, ON, Canada, as
an R&D Engineer.

Giovanni Beltrame received the M.Sc. degree in
electrical engineering and computer science from the
University of Illinois, Chicago, in 2001, the Laurea
degree in computer engineering from Politecnico
di Milano, Milan, Italy, in 2002, the M.Sc. degree
in information technology from CEFRIEL, Milan,
Italy, in 2002, and the Ph.D. degree in computer
engineering from Politecnico di Milano, in 2006.

During his Ph.D. studies, he worked on analysis and
optimization of multi-processor platforms. He is cur-
rently with STMicroelectonics, Ottawa, ON, Canada.

Vincent Gagné received the B.Sc. degree in com-
puter science and mathematics and the M.Sc. degree
in computer science from the University of Mon-
tréal, Montréal, QC, Canada, in 2004 and 2006,
respectively.

He was with STMicroelectronics, Ottawa, ON,
Canada, in 2004 as a research intern and joined the
System-on-Chip Platform Automation Group as a
Research Engineer in 2006.

Gabriela Nicolescu (M’03) received the degree
in engineering and the M.S. degree from the Poly-
technic University of Romania, Bucharest, Romania,
in 1998 and “Engineer Doctor” degree from the
University of Grenoble, Grenoble, France, in 2002.

She is currently an Assistant Professor with the
Ecole Polytechnique of Montreal, Montreal, QC,
Canada, where she teaches embedded systems design
and real-time systems. Her research work is in the
field of specification and validation of heterogeneous
systems and multiprocessor system-on-chip design.

