Goodness of fit test ( )

1. x° test

1) Definition of x? distribution

When each of random variables Zj....Zx follows a standard normal distribution
N(0,1), and they are independent of one another, the distribution of z:2 +.. +zlis
said to be x? distribution with a degree of freedom, k.
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Fig.1 x° distribution with a degree of freedom, r
Probability density function of x? distribution is as follow.
, < @)
x2 distribution is a kind of gamma distribution with m of r/2 and of 1/2.
B (3
where gamma function,
The mean and variance of gamma distribution are , respectively.

Therefore, the mean and variance of )(2 distribution are and , respectively.
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2) Background theory for goodness of fit test

Normal approximation to binomial distribution
The mean and variance of a binomial distribution with n times of trials, and p of
probability of success, are np and npqg (=np(1-p)), respectively. If p is not close to
O nor to 1 and n is so big that np and n(l-p) are greater than 5, the binomial
distribution B(n,p) approaches normal distribution, N(np, np(1-p)).

Fig.4 Binomial distribution according to the number of trials

When a random variable X following a binomial distribution satisfies above
conditions, we can say that:

(4)

Multinomial distribution
Let n times of multinomial trials be independently carried out where the probability

of the i event is  and the number of the i™ events is (i=1,..., k), then
and,
This means -~
When k=2 so that ~ , below is true.

(5)



Putting equation (1) to equation (5) makes following relation.

- (6)
Equation (6) can be generalized as follow.
= (7)
Substituting for and for makes
S — (8)

Equation (8) enables us to test whether an observed histogram ( ) has a

population ( ) identical to a theoretical distribution ( ). When the level of
significance ( : the max. probability that a null hypothesis is rejected (type 1
error)) is the rejection region of the null hypothesis is as follow.

> 9

of equation (8) is generally not available in practical problems. Lack of

knowledge of the population or its parameters enforces us to estimate the
population parameters ( ) from sample statistic ( ). In this case, the
degree of freedom of )(2 distribution reduces as much as the number of population
parameters under estimation. If the population is set a normal or lognormal
distribution its mean and variance should be estimated, which makes the degree of
freedom of )(2 distribution k-1-2 = k-3.

3) Example of goodness of fit test
The number of rainstorms for past 66 years is as below.

Rainstorms /
0 1 2 3 4
year
years 20 23 15 6 2

Test if the number of rainstorms follow Poisson distribution by using a chi-square

test with a level of significance of 5%.



Poisson distribution shows the probability that an event with an annual mean of m
happens x times in a year as follow.

Calculating the mean, m, from the table

— X X X X (times/year)

Calculation procedure is summarized in below table.

No. of storms Observed Theoretical .

at station frequency frequency (n; — &
per year n; e; (n; — e;)* e;

0 20 19.94 0.0036 0.0002

1 23 23.87 0.7569 0.0317

2 15 14.29 0.5041 0.,0353

>3 8 7.90 0.0100 0.0013

66 66.00 0.0685

Because the number of divisions (k) is 4 and parameter under estimation is only m,
the degree of chi-square distribution is 2. The chi-square value, 5.99 cannot reject
the null hypothesis with the level of significance of 0.05, which means it cannot be
said that the annual number of rainstorms does not follow the Poisson distribution.

Ex.1) The number of health insurance claims is known to follow Poisson
distribution. An insurance company randomly selected 200 people to investigate the
number of claims for past 4 years.

No. of
. 0 1 2 3 4 5 6 7 Total

claim

No. of
21 54 56 38 23 4 3 1 200

people

Test by using the data and the level of significance of 2.5% whether there is any
reason to say that the number of claims does not follow Poisson distribution.
2. Kolmogorv-Smirnof (K-S) test



1) Test procedure
- Arrange the data in order of magnitude so that it seems to be a cumulative
distribution.

- Compare the theoretical cumulative distribution (F(x)) with the sampling data and
get the maximum difference between the two in absolute value, that is = Max

- If is less than the null hypothesis cannot be rejected, which means both

distributions are not different each other for the level of significance,
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Fig.5. Comparison of theoretical and observed distributions for K-S test

2) Difference from )(2 test

For X2 test, each division of a sample histogram should have a frequency greater
than 5, while K-S test does not have this kind of restriction. Since the sample
distributions usually have small frequencies in tail, data in the tail should be bound
together to make its frequency higher than 5. This causes the K-S test to more

sensitively respond to the difference around a tail than x2 test.

Ex.2) Errors in 8 measurements are given below. Apply K-S test to testing whether
the measurement error follow a normal distribution of which mean and standard

deviation are 0 and 0.1, respectively.

0.07 0.12 -0.06 -0.04 -0.05 0.08 0.04 0.00



Table A.4. Critical Values of D,* in the Kolmogorov-Smirnov Test (After
Hoel, 1962)

\ 0.20 0.10 0.05 0.01
n

5 0.45 0.51 0.56 0.67
10 0.32 0.37 0.41 0.49
15 0.27 0.30 0.34 0.40
20 0.23 0.26 0.29 0.36
25 0.21 0.24 0.27 0.32
30 0.19 0.22 0.24 0.29
35 0.18 0.20 0.23 0.27
40 0.17 0.19 0.21 0.25
45 0.16 0.18 0.20 0.24
50 0.15 0.17 0.19 0.23
> 50 1.07/+/7 1.22//n 1.36//7 1.63//7%




Box 2.26 Worked examples: Kolmogorov—-Smirnov test for
normal distribution

1 The data are errors in eight observations and it is suspected that they
come from a normal distribution with mean equal to zero and standard
deviation equal to 0.1.

0.07 012 -006 -0.04 -0.05 008 0.04 0.00
The hypotheses are:

Hy: the distribution is normal with p = 0, o = 0.1
H,: the data come from some other distribution

The data are ordered and values of the sample cumulative relative
frequencies and theoretical values of F(x;), . . .., F(x,) are calculated, using
the table of the normal distribution. These values have been tabulated and
plotted (Fig. B2.26.1). Note that the cumulative relative frequency of the.
data is plotted as a step function.

Table B2.26
Cumulative .
Error frequency Ctin+1) z Pr(Z<7)
-0.06 1 0.11 -0.6 0.2743
—0.05 2 0.22 -05 0.3085
-0.04 3 0.33 -04 0.3446
0.00 4 0.44 0.0 0.5000
0.04 5 0.56 0.4 0.6554
0.07 6 0.67 0.7 0.7580
0.08 7 0.78 0.8 0.7881
0.12 8 0.89 1.2 0.8449
101
<&
Bost
©
X
-~
[
-0.05 0.00 0.05 0.1 0.15

Errors

Fig. B2.26.1

continued on p. 1%




