

Molecules of Structure

Version 1.4

Building Blocks for System Dynamics Models

Jim Hines

LeapTec

401-421-1616

JimHines@Interserv.Com

Copyright © 1996,1997 LeapTec and Ventana Systems

Many people have contributed to the molecules documented here. Contributors include �Jim Hines, Bob Eberlein, George Richardson, Dewey Johnson, Barry Richmond, James Melhuish

�

�
Contents� TOC \o "1-3" \f �

Level	� GOTOBUTTON _Toc380316165 � PAGEREF _Toc380316165 �7��

Cascaded Level	� GOTOBUTTON _Toc380316166 � PAGEREF _Toc380316166 �9��

Split Flow	� GOTOBUTTON _Toc380316167 � PAGEREF _Toc380316167 �11��

Goal Gap	� GOTOBUTTON _Toc380316168 � PAGEREF _Toc380316168 �13��

Smooth	� GOTOBUTTON _Toc380316169 � PAGEREF _Toc380316169 �14��

Decay	� GOTOBUTTON _Toc380316170 � PAGEREF _Toc380316170 �16��

Residence Time	� GOTOBUTTON _Toc380316171 � PAGEREF _Toc380316171 �17��

Material Delay	� GOTOBUTTON _Toc380316172 � PAGEREF _Toc380316172 �18��

Present value	� GOTOBUTTON _Toc380316173 � PAGEREF _Toc380316173 �19��

Aging Chain or Cascaded Delay	� GOTOBUTTON _Toc380316174 � PAGEREF _Toc380316174 �21��

Aging Chain with PDY	� GOTOBUTTON _Toc380316175 � PAGEREF _Toc380316175 �23��

Purchasing	� GOTOBUTTON _Toc380316176 � PAGEREF _Toc380316176 �25��

Inventory Ordering	� GOTOBUTTON _Toc380316177 � PAGEREF _Toc380316177 �27��

Capacity Ordering	� GOTOBUTTON _Toc380316178 � PAGEREF _Toc380316178 �29��

Conversion	� GOTOBUTTON _Toc380316179 � PAGEREF _Toc380316179 �31��

Soft if-then	� GOTOBUTTON _Toc380316180 � PAGEREF _Toc380316180 �32��

Resource Split	� GOTOBUTTON _Toc380316181 � PAGEREF _Toc380316181 �33��

Diffusion	� GOTOBUTTON _Toc380316182 � PAGEREF _Toc380316182 �34��

Coflow	� GOTOBUTTON _Toc380316183 � PAGEREF _Toc380316183 �36��

Hines Coflow and Traditional Coflow with Experience	� GOTOBUTTON _Toc380316184 � PAGEREF _Toc380316184 �39��

Cascaded Coflow	� GOTOBUTTON _Toc380316185 � PAGEREF _Toc380316185 �41��

Trend	� GOTOBUTTON _Toc380316186 � PAGEREF _Toc380316186 �44��

Extrapolation	� GOTOBUTTON _Toc380316187 � PAGEREF _Toc380316187 �45��

Dimensionless Input To Function	� GOTOBUTTON _Toc380316188 � PAGEREF _Toc380316188 �47��

Anchor and Adjustment	� GOTOBUTTON _Toc380316189 � PAGEREF _Toc380316189 �49��

Ceiling or SoftMin	� GOTOBUTTON _Toc380316190 � PAGEREF _Toc380316190 �50��

Floor or SoftMax	� GOTOBUTTON _Toc380316191 � PAGEREF _Toc380316191 �52��

Level Protected by Flow	� GOTOBUTTON _Toc380316192 � PAGEREF _Toc380316192 �53��

Level Protected by Level	� GOTOBUTTON _Toc380316193 � PAGEREF _Toc380316193 �55��

Inventory Backlog and Shipping Protected by Flow	� GOTOBUTTON _Toc380316194 � PAGEREF _Toc380316194 �57��

Inventory Backlog and Shipping Protected By Level	� GOTOBUTTON _Toc380316195 � PAGEREF _Toc380316195 �59��

Sea Anchor and Adjustment	� GOTOBUTTON _Toc380316196 � PAGEREF _Toc380316196 �61��

Protected Sea Anchoring and Adjustment	� GOTOBUTTON _Toc380316197 � PAGEREF _Toc380316197 �63��

Anchor Pricing	� GOTOBUTTON _Toc380316198 � PAGEREF _Toc380316198 �65��

Protected Sea Anchor Pricing	� GOTOBUTTON _Toc380316199 � PAGEREF _Toc380316199 �67��

Smooth Pricing	� GOTOBUTTON _Toc380316200 � PAGEREF _Toc380316200 �69��

Product Attractiveness	� GOTOBUTTON _Toc380316201 � PAGEREF _Toc380316201 �71��

Market Share	� GOTOBUTTON _Toc380316202 � PAGEREF _Toc380316202 �73��

Productivity (PDY)	� GOTOBUTTON _Toc380316203 � PAGEREF _Toc380316203 �74��

Work Accomplishment Structure	� GOTOBUTTON _Toc380316204 � PAGEREF _Toc380316204 �76��

Producing	� GOTOBUTTON _Toc380316205 � PAGEREF _Toc380316205 �78��

Desired Workforce	� GOTOBUTTON _Toc380316206 � PAGEREF _Toc380316206 �79��

Workforce	� GOTOBUTTON _Toc380316207 � PAGEREF _Toc380316207 �80��

Overtime	� GOTOBUTTON _Toc380316208 � PAGEREF _Toc380316208 �81��

Fatigue	� GOTOBUTTON _Toc380316209 � PAGEREF _Toc380316209 �82��

Estimated Completion Date	� GOTOBUTTON _Toc380316210 � PAGEREF _Toc380316210 �84��

Scheduled Completion Date	� GOTOBUTTON _Toc380316211 � PAGEREF _Toc380316211 �85��

��
��
Name: Level (Also known as “stock”, “state”, or “integration”)� TC "Level" \f C \l "1" �

�

Parents: None

Used by: Present value, Cascaded level, Goal-gap or smooth, Level protected by level, Work accomplishment structure

Category: Fundamental structures

Problems solved: How to change incrementally; how to accumulate or de-accumulate; how to remember; how to remove simultaneity from a feedback loop (see technical notes).

Equations:

Level = INTEG(IncreasingQuantity-DecreasingQuantity,)

	Units: widgets

IncreasingQuantity =

	Units: widgets/year

DecreasingQuantity =

	Units: widgets/year

Description: A level accumulates the difference between inflows and the outflows. A physical example is the level of water in a bathtub. The level of water is increased by the inflow from the tap and decreased by the outflow at the drain. In general a level can have any number of inflows and outflows.

Classic examples: Levels are fundamental in system dynamics. They occur in every model. A workforce might be represented as a stock whose inflow is hiring and whose outflows is attrition. A final-goods inventory is a stock whose inflow is arrivals of product and whose outflow is unit sales. Rental units in a city is a stock whose inflows are construction and conversion from owner-occupied to rental and whose outflows include demolition and the conversion to condominiums.

Caveats: Many levels should not take on negative values. To prevent negative values in a model, the outflow must be influenced directly by the level itself. This is termed “first order feedback” (i.e. a feedback loop is created that includes only one level). Molecules employing first-order feedback include smooths, decays, and protected levels.

Technical notes:

A level is simply an integration of inflows and outflows. System dynamics takes an integral view of calculus, which is reflected in the form that level equations take in all system dynamics languages (DYNAMO, Vensim, iThink, Powersim, etc.) The idea is expressed in the differential calculus as�		d/dt levelt = inflowt - outflowt

�

Every loop must have at least one level in it. Consider a feedback loop where having a lot of work to do prompts overtime which causes fatigue, causing errors and more work to do. Consider a case where all variables change instantaneously. In order to set the amount of work to do, “nature” needs to know how many errors there are. In order to know the errors, nature needs to know fatigue, hence, overtime, and hence, work to do. But, nature does not know the amount of work to do: That is the quantity that it was originally trying to calculate. The causality in the loop just won’t work, unless at least one quantity changes slowly (incrementally) instead of instantaneously (completely in an instant). In this loop work to do can be viewed as changing incrementally by the incremental addition of errors. Hence, work to do is a level. Fatigue, too, probably builds up slowly and might be represented as a level, in which case we would need to create rates of flow into and out of fatigue (these rates are not shown in the loop diagram above, but would be shown in a complete diagram). �

Note that people can solve simultaneous equations, essentially working out what would happen if the circular causality did operate instantaneously . In a limited set of cases, nature may, also operate loops instantly and simultaneously; but all dynamics are missing in these situations because dynamics take time.�

Things that change instantly cannot be observed. Only things that change incrementally can be observed. Consequently, stocks are the only things that should influence policies (decision rules governing rates) in system dynamics models. Stocks may influence the rates via a series of intermediary calculations captured in auxiliaries (termed “converters” in the iThink manuals).

�
Name: Cascaded Level (also known as “chain”)� TC "Cascaded Level" \f C \l "1" �

�

Parents: Level

Used by: Conversion, Cascaded Delays or Aging Chain

Category: Fundamental structures

Problem solved: How to represent something that accumulates at a number of points instead of just one.

Equations:

Level 1 = INTEG(flowing in-moving to level 2,)

	Units: material

flowing in =

	Units: material/Month

moving to level 2 =

	Units: material/Month

Level 2 = INTEG(moving to level 2-moving to level 3,)

	Units: material

moving to level 3 =

	Units: material/Month

Level 3 = INTEG(moving to level 3-flowing out,)

	Units: material

flowing out =

	Units: material/Month

Description: A cascade is a set of levels, where one level’s outflow is the inflow to a second level, and the second level’s outflow is the inflow to a third, etc. A cascade can be seen as a structure that divides up an accumulation into “sub-accumulations”. The number of levels in a cascade can be any number greater than two.

Classic examples:

Items being manufactured accumulate at many points in the system, perhaps in front of each machine in a production line as well as in finished inventory. Conceptually it is possible to have a chain with a level for each machine. Usually this is too detailed for a system dynamics model; instead we represent material accumulating in a smaller number of levels, perhaps three: manufacturing starts, work in process, and finished inventory.

A measles epidemic model might represent people in three stages (levels): susceptible, infected, and recovered. (See Aging Chain molecule)

A workforce might be composed of three stocks: Rookies, Experienced, and Pros. As they are hired, people flow into the rookies level from which they flow in the level of experienced employees. Experienced employees flow into the stock of pros, which is depleted by people retiring. (See Aging Chain molecule).

Caveats: Often the levels represent physical accumulations which should not go negative. See caveats under Level.

Technical notes: In nature, there are phenomena which combine the characteristics of both flows and stocks. A river, for example, is both a rate of flow and has volume. In system dynamics modeling we represent the world as consisting of pure flows having no volume; and pure levels having no flow. We view a river as being composed of a chain of “lakes”, each having a volume, connected by flows each being a pure rate: The water accumulates only in the “lakes” not in the flows. A river might be represented as a cascade of two levels: an upstream stock and a downstream stock. This “lumped parameter” view of the world permits the use of integral equations. To represent flows that have volume would require the more complicated mathematics of partial integral (partial differential) equations. Such a view of the world is more difficult to model and more time consuming to simulate.

�
Name: Split Flow � TC "Split Flow" \f C \l "1" �

�

Parents: Level

Used by: Work Accomplishment Structure

Category: Fundamental structures

Problem solved: How to disaggregate an outflow into sub-flows

Equations:

Source Stock = INTEG(-Aggregate Outflow,1000)

	Units: Widgets

Aggregate Outflow = 10

Units: Widgets/Month

First Subflow = Aggregate Outflow*Fractional Split to First Subflow

Units: Widgets/Month

Fractional Split to First Subflow = 0.2

Units: fraction

First Destination Stock = INTEG(First Subflow,0)

Units: Widgets

Second Subflow = Aggregate Outflow*(1-Fractional Split to First Subflow)

Units: Widgets/Month

Second Destination Stock = INTEG(Second Subflow,0)

Units: Widgets

Description: This structure splits an outflow into two (or more) subflows into other levels (or into sinks)..

Behavior: Not relevant

Classic examples: Work Accomplishment Structure

Caveats: None

Technical notes: Traditionally the split outflow is represented with the aggregate flow going into a sink (cloud) and the two sub-flows coming out of sources (clouds). Although not standard, it is possible to draw the pipe splitting in two in Vensim. The equations remain the same.

�
Name: Goal Gap� TC "Goal Gap" \f C \l "1" �

Parents: None

Used by: Smooth; Inventory, backlog, shipping protected by flow, Inventory, backlog, shipping protected by level

Category: Fundamental structures

Problem solved: How to generate a flow or action to close a gap between a quantity and its desired value

Equations:

�

ActionToCloseGap = Gap/TimeToCloseGap

	Units: widgets/Month

Gap = Goal - Current Value

	Units: widgets

Goal =

	Units: widgets

Current Value =

	Units: widgets

TimeToCloseGap =

	Units: months

Description: The action, if it stayed constant, would close the gap in the TimeToCloseGap. Because, the gap will usually be closing via the action (this feedback is not contained in the structure), the gap will not stay constant. If the goal is zero; this structure becomes the action to eliminate the current value (see the Decay).

Behavior: No levels, so no endogenous dynamics

Classic examples: Backlog Inventory and Ordering molecule

Caveats: None

Technical notes: The smooth molecule and the decay molecule provides simple feedback of the action to the goal.

�
Name: Smooth� TC "Smooth" \f C \l "1" �

�

Parents: GoalGap, Level

Used by: Decay, Purchasing, Hines coflow, Traditional coflow, Trend, Fatigue, Workforce, Scheduled completion date, Anchoring and Adjustment

Category: Fundamental structures

Problem solved: How to have a quantity gradually and smoothly move toward a goal. How to delay information. How to represent a perceived quantity. How to smooth information. How to represent an expectation.

Equations:

smoothed quantity = INTEG(updating smoothed quantity, quantity)

	Units: stuff

updating smoothed quantity = Gap / smoothing time

	Units: stuff/Year

smoothing time =

	Units: Year

Gap = quantity - smoothed quantity

	Units: stuff

	

quantity =

	Units: stuff

Description: A smooth is a level with a specific inflow/outflow formulation. The inflow is formulated as a net rate (i.e. negative values of the “inflow” decrease the level). The rate of change is intended to “close the gap”. The gap is the difference between some goal and the smooth itself.

�

Behavior: The stock adjusts toward the goal exponentially. As illustrated at the right for a step increase in the goal.

The gap between the stock and the goal is closed according to the constant (the smoothing time). Intuitively, the magnitude of the gap would decline to zero over the smoothing time if the net inflow were held constant. In fact, the net inflow changes continuously as the level changes. The rule of thumb is that the gap is almost completely eliminated within three time constants.�� If the goal is oscillating the smooth will also oscillate with a lag and with a reduced amplitude. The lag gives rise to the use of a smooth a delay. The reduced amplitude gives rise to using the smooth as means of “smoothing out” random ups and downs in the goal.

Classic examples: The smooth is used in virtually every system dynamics model. A classic example is a cooling cup of coffee. The temperature of the coffee can be represented as the stock; the goal is the temperature of the air surrounding around the cup. The temperature of the coffee gradually adjusts to equal the air temperature. The time constant is determined by the volume of coffee and the insulating properties of the cup. Adaptive expectations are modeled with a smooth. Say one is forming a judgment of how many projects a consultant can sell in a month. If sales have been roughly half a project per month, but in September sales jump to two; we perhaps adjust our expectations upward a bit, but not to two sales per month. If sales stay at around two per month, though we gradually will come to expect that number of sales. A smooth is the structure to capture this.

Caveats: When using Euler integration, a large DT (Time Step) can give rise to integration error which will show up as very rapid oscillations of the stock. As a rule of thumb DT should be no larger than 1/4 to 1/10 of the time constant.

Technical notes: If the goal is held constant, the smooth can be expressed mathematically as

SmoothedQuantityt = �	Goal - (Goal - SmoothedQuantity0)e-t/smoothingTime

The “three time constants to close the gap” comes from the above equation. For any number n of time constants the original gap is multiplied by a e-n. In particular in three time constants, the gap is reduced to e-3 (5% of its original size.

�
Name: Decay� TC "Decay" \f C \l "1" �

�

Parents: Goal/Gap or Smooth

Used by: Present value, Material Delay, Level Protected By Flow

Category: Fundamental Structures

Problem solved: How to empty or drain a stock.

Equations:

Material = INTEG(-Material draining,)

	Units: stuff

Material draining = Material / time to drain

	Units: stuff/Year

time to drain =

	Units: Year

Description: The stock in the decay structure, drains gradually over a period of time determined by the time to drain. The decay can be viewed as a smooth with a goal of zero. As a rule of thumb the stock is emptied in three time constants. The time for the stock to decline by half is termed the half life and is approximately equal to 70% of the time to drain.

�

Behavior: The decay declines exponentially toward zero. Because the outflow is simply a fraction of the stock, the outflow also declines exponentially toward zero.

Classic examples: A bathtub draining. Radioactive decay.

Caveats: Sometimes a decay process is better represented more explicitly. For example, one could represent the draining of a finished-goods inventory as a decay. But, the real process involves people purchasing the merchandise. The purpose of the model will determine whether the decay representation is “good enough” or whether a more accurate representation is called for.

Technical notes: The equation for a decay is�	Materialt = Material0 * e-t/smoothingTime

The half life can be determined from this equation to be: ln(0.5)*timeToDrain. ln(0.5) is approximately 0.7. The outflow from the decay is distributed exponentially. The average residence time of material in the level is equal to the timeToDrain.�
Name: Residence Time� TC "Residence Time" \f C \l "1" �

Parents: Decay

Used by: None

Category: Fundamental Structures

�

Problem solved: How to determine the average residence time of items flowing through a stock.

Equations:

AverageResidenceTime = Material/Material draining

	Units: Year

Material = INTEG(-Material draining,)

	Units: items

Material draining =

	Units: items/Year

Description: This is based on the same understanding as that behind the decay; however the inputs and outputs are switched. Here, we know the rate at which material is draining (as well as the stock) and we calculate the average time to drain (i.e. the average residence time).

Behavior: No endogenous dynamic behavior

Classic examples: None

Caveats: None

Technical notes: This is based on Little’s Law. The calculation for the average residence time is correct at the instant of calculation, no matter what process is actually draining the level.

�
Name: Material Delay� TC "Material Delay" \f C \l "1" �

�

Parents: Decay

Used by: purchasing, cascaded delay or aging chain

Category: Fundamental structures

Problem solved: How to delay a flow of material.

Equations:

Material flowing out = Material / Time to flow out

	Units: stuff/Year

Time to flow out =

	Units: Year

Material = INTEG(Material flowing in-Material flowing out,

					Material flowing in*Time to flow out)

	Units: stuff

Material flowing in =

	Units: stuff/Year

Description: The material delay creates a delayed version of a flow by accumulating the flow into a level and then draining the level over some time constant (timeToFlowOut). The outflow from the level is a delayed version of the inflow. The average time by which material is delayed is equal to the time constant.

Classic examples: A flow of material is shipped and received after a delay. The stock in this case is the material in transit.

Caveats: None.

Technical notes: The actual delay times for the items that comprise the flow are distributed exponentially with a mean of the time constant. Instead of dividing by a time constant, one can multiply by a fractional decay rate. For example, a 10 year time constant would correspond to a decay rate of 0.10 (10%) per year.

�
Name: Present value� TC "Present value" \f C \l "1" �

Parents: Level, decay

Used by: None

Category: General business structures

�

Problem solved: How to calculated the present value of a cash stream.

Equations:

PresentValueOfProfits = INTEG(IncreasingPresentValue, 0)

	Units: $

IncreasingPresentValue = Profits * DiscountingFactor

	Units: $/Year

Profits =

	Units: $/Year

DiscountingFactor = INTEG(- ReducingDiscountingFactor, 1)

	Units: fraction

DiscountRate =

	Units: fraction / Year

ReducingDiscountingFactor = DiscountRate * DiscountingFactor

	Units: fraction / Year

Description: The present value of a cash stream (e.g. profits) is simply the accumulation of profits, weighted at each instant by a discounting factor. The discounting factor decays at a rate determined by the discounting factor.

Classic examples: Discounted profits.

Caveats: None.

Technical notes: A discount rate of 0.10 (10%) is equivalent to a time constant of 10 years on the decay structure that represents the discounting factor. (See note on decay molecule).

�

Name: Aging Chain or Cascaded Delay� TC "Aging Chain or Cascaded Delay" \f C \l "1" �

Parents: Material Delay, Cascaded Level or Chain

Used by: Capacity Ordering, Aging Chain with PDY, Hines Cascaded Coflow, Traditional Cascaded Coflow

Category: Fundamental Structures

Problem solved: How to drain a stock so that the outflow is hump shaped, that is more “normally” distributed. How to drain a chain of stocks.

Equations:

New material = INTEG(Material flowing in-Material maturing,

				Material flowing in*Time to mature)

	Units: stuff

Material flowing in =

	Units: stuff/Year

Material maturing = New material / Time to mature

	Units: stuff/Year

Time to mature =

	Units: Year

Mature material = INTEG(Material maturing-Material aging,

			Material maturing*Time to age)

	Units: stuff

Material aging = Mature material/Time to age

	Units: stuff/Year

Time to age =

	Units: Year

Old material = INTEG(Material aging-Material flowing out,

			Material aging*Time to flow out)

	Units: stuff

Material flowing out = Old material/Time to flow out

	Units: stuff/Year

Time to flow out =

	Units: years

Description: An aging chain is a cascade of material delays. Aging chains can have any number of stocks. A rule of thumb is that three is sufficient from a dynamic perspective (i.e. more levels in an aging chain will not materially affect the behavior of the system of which the aging chain is a component). Sometimes only the time it takes to transit the entire chain is known and the time constants associated with each individual flow are not known. In this case, simply set each time constant equal to the overall transit time divided by the number of stocks in the chain.

�

Behavior: A pulse input into an aging chain will come out with a hump distribution. The more levels in the chain, the more the outflow will be concentrated in the peak and the more central the peak will come.

Classic examples: A production process from production starts to production finishes is often represented as an aging chain. A workforce gaining experience is often represented as an aging chain.

Caveats: None

Technical notes: None

�
�

Name: Aging Chain with PDY� TC "Aging Chain with PDY" \f C \l "1" �

Parents: Aging Chain or Cascaded Delay, Decay, Producing

Used by: None

Category: Manufacturing

Problem solved: How to represent a workforce where people gain experience they become more productive.

Equations:

AverageProductivity = production / Workforce

	Units: lbs/(person*Year)

Workforce = Rookies + Experienced + GrayHairs

	Units: people

production = Rookies * RookieProductivity + Experienced * ExperiencedProductivity +

				GrayHairs * GrayHairProductivity

	Units: lbs/Year

RookieProductivity =

	Units: lbs/(person*Year)

ExperiencedProductivity =

	Units: lbs/(person*Year)

GrayHairProductivity =

	Units: lbs/(person*Year)

Rookies = INTEG(Hiring - Maturing ,

		Hiring * TimeForRookieToMature)

	Units: people

�
Hiring =

	Units: people/Year

Maturing = Rookies / TimeForRookieToMature

	Units: people/Year

TimeForRookieToMature =

	Units: years

Experienced = INTEG(Maturing - GainingWisdom ,

 Maturing * TimeForExperiencedToGainWisdom)

	Units: people

GainingWisdom = Experienced / TimeForExperiencedToGainWisdom

	Units: people/Year

TimeForExperiencedToGainWisdom =

	Units: years

GrayHairs = INTEG(GainingWisdom - Retiring ,

 GainingWisdom * TimeForGrayHairToRetire)

	Units: people

Retiring = GrayHairs / TimeForGrayHairToRetire

	Units: people/Year

TimeForGrayHairToRetire =

	Units: Year

Description: This is an aging chain of people, where each level also has an (optional) added decay structure to represent attrition. Each category of people has a different productivity. Total production is simply the sum of each category working at its own productivity.

Behavior: See notes for decay and for Cascaded delay or aging chain

Classic examples: A common structure for representing difficulties encountered when a company must grow -- and, hence, expand employment - quickly.

Caveats: Gaining of experience is purely a function of time, rather than a function of doing the work. The latter would be more accurate in most situations, but the structure as formulated is simpler and often good enough. The rule of thumb for DT (see Caveats under Smooth) must be amended because each level has two outflows -- DT should be one fourth to one half of the effective time constant which may be quite short (see technical note).

Technical notes: The outflow from any one level is

Outflow = Level/(+ Level * (

	where (is the time it takes on average to move to the next category and

		(is the fractional attrition rate for people in the category

Or,

Outflow = Level / ((/(1 + (())

So DT needs to be shorter than 1/4 to 1/10 of the effective time constant: ((/(1 + (()�

�

Name: Purchasing� TC "Purchasing" \f C \l "1" �

Parents: Material Delay, Goal-Gap or Smooth

Used by: Capacity Ordering

Category: Diffusion

Problem solved: How to purchase in order to maintain a stock at a desired level

Equations:

Purchasing = PurchasingToChangeInventory+ReplacementPurchasing

	Units: widgets/Year

PurchasingToChangeInventory = (DesiredInventory-Inventory)/PurchasingTime

	Units: widgets/Year

DesiredInventory =

	Uits: widgets

PurchasingTime =

	Units: years

AverageProductLife =

	Units: years

ReplacementPurchasing = Shipping

	Units: widgets/Year

Shipping =

	Units: widgets/Year

Inventory = INTEG(Purchasing-Shipping,DesiredInventory)

	Units: widgets

Description: The purchasing decision can be thought of as having two parts. First, one purchases what ever is being used up. This portion of the decision will keep inventories at their current levels. Second, the company may need to adjust its inventories to the desired level, if desired is different from current. This decision is done in a “goal-gap” way.

Behavior: This structure will smoothly move the actual inventory to the desired level.

Classic examples: A very common structure.

Caveats: This structure assumes that purchases can be made with no delay (i.e. they are made off the shelf). If there is a delay (e.g. the things being ordered need to be custom-made), then its important to consider the supply pipeline. For this see the Capacity Ordering molecule.

In many situations the formulation for shipping will be demand multiplied by an effect of stockouts (see Level Protected By Level). In this case Desired Inventory should respond to demand (rather than shipping) in order to avoid getting trapped in a too-low inventory situation.

Technical notes: None

�
Name: Inventory Ordering� TC "Inventory Ordering" \f C \l "1" �

�

Parents: Purchasing

Used by: None

Category: Manufacturing, General Business

Problem solved: How to order for inventory when it takes time to receive the order.

Equations:

Ordering = max(0, InventoryAndPipelineOrdering + ReplacementOrdering)

	Units: cases/quarter

ReplacementOrdering = Shipping

	Units: cases/quarter

Shipping =

	Units: cases / quarter

InventoryAndPipelineOrdering = InventoryAndPipelineGap /

		TimeToOrderForInventoryAndPipeline

	Units: cases / quarter

TimeToOrderForInventoryAndPipeline =

	Units: quarter

InventoryAndPipelineGap = (DesiredInventory - Inventory) +

	 (RequiredOrdersInPipeline - Orders Not Received) * PipelineRecognitionFactor

	Units: cases

PipelineRecognitionFactor =

	Units: fraction

DesiredInventory =

	Units: cases

Inventory = INTEG(Receiving Product-Shipping,DesiredInventory)

	Units: cases

Receiving Product =

	Units: cases/quarter

RequiredOrdersInPipeline =PerceivedDemand*ExpectedTimeToReceiveOrders

	Units: cases

PerceivedDemand =

	Units: cases/quarter

ExpectedTimeToReceiveOrders =

	Units: quarters

Orders Not Received = INTEG(Ordering - Orders being fulfilled,

 Shipping * ExpectedTimeToReceiveOrders)

	Units: cases

Orders being fulfilled = Receiving Product

	Units: cases/quarter

Description: As in the Purchasing molecule, ordering has two components: replacing whatever is (expected to be) sold, and adjusting inventory. This formulation recognizes a hidden component of inventory: Inventory that is on the way, but not yet received. In steady state, this inventory-on-the-way will be non-zero. In fact, if the ordering rate is constant, this inventory-on-the-way will be equal to the ordering rate multiplied by the time it takes to receive orders. In other words, the inventory on the way will be the entire stream of orders that have been placed, but not received.

This structure represents a great deal of what is present at each stage of the beer game. The mistake that most beer-game players make is that they do not keep track of orders not received - they do not take account of the pipeline. In this structure this is represented by setting the Pipeline Recognition Factor to a small number. The result will be over-ordering, as the “same” order is placed more than once.

Behavior: No relevant behavior because the process of incoming orders (and shipping) is not specified in this molecule.

Classic examples: This molecule is commonly used.

Caveats: None

Technical notes: The ExpectedTimeToReceiveInventory might either be a constant; or it could be a smooth of a ResidenceTime molecule. This molecule does not specify how an order is “processed” by a supplier. The closely related Capacity Ordering molecule contains a more detailed and specific view of the physical supply.

�

 Name: Capacity Ordering� TC "Capacity Ordering" \f C \l "1" �

Parents: Aging chain, Purchasing

Used by: None

Category: Manufacturing

Problem solved: How to order items taking account of what is in the pipeline

Equations:

StartingConstruction = max(0, AdjustingCapacity + ReplacingCapacity)

	Units: square feet/Year

ReplacingCapacity = RetiringCapacity

	Units: square feet/Year

AdjustingCapacity = CapacityGap / TimeToStartConstruction

	Units: square feet / Year

TimeToStartConstruction =

	Units: Year

CapacityGap = (DesiredCapacity - Capacity) + (TargetConstructionInProcess -

	ConstructionInProcess) * KnowledgeOfInProcessConstruction

	Units: square feet

KnowledgeOfInProcessConstruction = 1

	Units: fraction

DesiredCapacity =

	Units: square feet

TargetConstructionInProcess = AnticipatedRetiringCapacity * ConstructionTime

	Units: square feet

AnticipatedRetiringCapacity =

Smooth(RetiringCapacity,TimeToAnticipateRetiringCapacity)

Units: square feet / Year

TimeToAnticipateRetiringCapacity =

	Units: years

Capacity = INTEG(FinishingConstruction-RetiringCapacity,DesiredCapacity)

	Units: square feet

RetiringCapacity =

	Units: square feet / Year

FinishingConstruction = ConstructionInProcess / ConstructionTime

	Units: square feet/Year

ConstructionTime =

ConstructionInProcess = INTEG(StartingConstruction - FinishingConstruction,

 RetiringCapacity * ConstructionTime)

	Units: square feet

Description: This adds a pipeline to the purchasing molecule. The structure shown refers to construction of capacity, but simply by changing names, the same structure suffices for ordering material or parts. As in the purchasing molecule a company needs to replace what is being used (or sold) and it adjusts the stock toward a desired level. But here there is also a pipeline of incoming material. The company must take account of both what its capacity (or inventory) needs are, but also what it needs to have in the “pipe line” (construction in process). Put differently, the company needs to keep track of what it has ordered or started but hasn’t yet received. ��The structure also works for an industry. However, in this case knowledge of what has been started industry-wide, but not received may not be known by decision makers at individual firms. As a result, the industry as a whole may over-order.

�

Behavior: Failing to keep track of what is in process, means that companies will over order -- they will keep ordering the same item until it is received; rather than realizing the order has been placed even though it hasn’t shown up yet. This is the main mistake that people make in playing the Beer Game. The figure at the right compares two runs: In Pipe Aware KnowledgeOfInProcessConstruction is set to 1; meaning that decision take full account of the pipe line. In Pipe Unaware, the constant is set to 0, indicating that decision makers ignore the pipeline.

Classic examples: Structures like this are found in Forester’s Industrial Dynamics model and in The System Dynamics National Model.

Caveats: The process of moving material from in-process to the final stage only takes time. It does not take productivity or people. In some instances this is relatively accurate. In many instances, such as manufacturing, this is not accurate. However, the structure is still used in many such situations by the best modelers in the field, because it is simple and good enough in the sense that the dynamics of interest are not obscured.

In cases where “capacity” represents final inventory, desired inventory (i.e. “desired capacity” in the diagram) should respond to demand. If it doesn’t, the structure is at the mercy of a positive loop involving the effect of stockouts on shipments (not shown), shipments (i.e. “retiring capacity”) and ordering (i.e. “replacing capacity” and “adjusting capacity”).

Technical notes: This molecule provides a more detailed (and more specific) representation of the pipeline of the closely related Inventory Ordering molecule.

�

Name: Conversion� TC "Conversion" \f C \l "1" �

Parents: Cascaded level

Used by: Diffusion

Category: Diffusion models

Problem solved: How to represent people changing their status. E.g. from non-believer to believer, from non-customer to customer, from non-infected to infected

Equations:

Source of converts = INTEG(-converting,)

	Units: people

converting =

	Units: people/Year

Converts = INTEG(converting,)

	Units: people

Description: People flow from one category to the other

Behavior: Obvious

Classic examples: Used in diffusion models

Caveats: None

Technical notes: None�
Name: Soft if-then� TC "Soft if-then" \f C \l "1" �

�

Parents: None

Used by: Activity split

Category: Fundamental structures

Problem solved: How to represent a blend of two “pure” choices.

Equations:

Resulting quantity = Weight on A*Option A + (1-Weight on A)*Option B

	Units: thenUnit

Option A =

	Units: thenUnit

Option B =

	Units: thenUnit

Weight on A = weight on A f(Ratio of X to Y)

	Units: dmnl

weight on A f = [a table function]

	Units: dmnl

Ratio of X to Y = X/Y

	Units: dmnl

X =

	Units: ifUnit

Y =

	Units: ifUnit

Description: As X increases relative to Y, the blend favors A relative to B.

Behavior: No internal dynamics because no levels.

Classic examples: None

Caveats: None

Technical notes: The structure is a generalization of the common if-then logic in computer programming. For example the statement �	IF X < Y THEN A ELSE B

� EMBED Word.Picture.6 ���

is represented by a one weighting function. In particular, the “weight on A function” for this example would be

{

		 1 when X/Y<1�	f(X/Y) = ���0 when X/Y (1

�

Name: Resource Split� TC "Resource Split" \f C \l "1" �

Parents: Soft if-then

Used by: Diffusion

Category: Fundamental Structures

Problem solved: How to allocate a resource (or anything) between different groups.

Equations:

Resources for B = Resources - resources for A

	Units: resource units

Resources =

	Units: resource units

resources for A = Resources*Fraction of actors of typeA

	Units: resource units

Fraction of actors of typeA = TypeA actors/TotalActors

	Units: fraction

TotalActors = TypeA actors+TypeB actors

	Units: actors

TypeA actors =

	Units: actors

TypeB actors =

	Units: actors

Description: This structure allocates a resource or activity between two categories based on the proportion of people in each of the categories. More generally, it allocates a resource based on any common characteristic between two options. Here it is number of people. However, the common characteristic could be, and often is, the “desired resource” (e.g. allocating a limited quantity of water based on how much water is demanded by two different municipalities). Other common characteristics are also possible.

Behavior: No internal dynamics because no integrations.

Classic examples: None

Caveats: This is a very simple resource allocation scheme.

Technical notes: This is a soft if then molecule where the weighting function takes the ratio (X/Y) and maps it to X/(X+Y). That is, f = input/(1 + input)�
Name: Diffusion� TC "Diffusion" \f C \l "1" �

�

Parents: Resource Split and Conversion

Used by: None

Category: Diffusion models

Problem solved: How to represent growth by work of mouth

Equations:

customers = INTEG(converting,)

	Units: people

converting = wom Conversions

	Units: people/Year

wom Conversions = contacts of noncust with cust*fruitfulness

	Units: people/Year

fruitfulness =

	Units: people/contact

contacts of noncust with cust = contacts with customers*PotCust concentration

	Units: contacts/Year

contacts with customers = customers*sociability

	Units: contacts/Year

sociability =

	Units: contacts/person/Year

PotCust concentration = potential customers/total market

	Units: dmnl

total market = customers+potential customers

	Units: people

potential customers = INTEG(-converting,)

	Units: people

	Units: years

Description: Non Customers become customers through a process that involves customers having contacts with people, some fraction of which are non-customers. Some proportion of contacts that customers have with non-customers results in conversion of non-customers to customers.

�

Behavior: Produces S-shaped growth in customers.

Classic examples: This is the structure that underlies B&B Enterprises.

Caveats: If customers are initialized to zero this structure will not move because there will be no customers to have contacts.

Technical notes: The conversion molecule is easy to see. The resource-split molecule is used to determine what fractions of all contacts involve a non-customer. The “resource” is contacts. This structure produces logistic growth.

�
Name: Coflow� TC "Coflow" \f C \l "1" �

There are two equivalent ways of representing a coflow

�

�

Parents: Smooth

Used by: Cascaded Coflow, Coflow with Experience

Category: Fundamental Structures

Problem solved: How to keep track of a characteristic of a stock.

Equations: There are two equivalent ways of formulating the coflow

Hines Coflow

Avg characteristic = INTEG(Change in characteristic,characteristic of new stuff)

	Units: characteristic units/widget

Change in characteristic = (characteristic of new stuff-Avg characteristic)/dilution time

	Units: characteristic units/widget/Year

characteristic of new stuff =

	Units: characteristic units/widget

dilution time = Fundamental quantity/inflow of fundamental quantity

	Units: Year

Fundamental quantity =

		INTEG(inflow of fundamental quantity-outflow of fundamental quantity,)

	Units: widgets

inflow of fundamental quantity =

	Units: widgets/Year

outflow of fundamental quantity =

	Units: widgets/Year

Traditional Coflow

avg characteristic =Characteristic/ Fundamental quantity

	Units: characteristic units/widget

Fundamental quantity =

	 INTEG(inflow of fundamental quantity-outflow of fundamental quantity,)

	Units: widgets

inflow of fundamental quantity =

	Units: widgets/Year

outflow of fundamental quantity =

	Units: widgets/Year

Characteristic = INTEG(addl characteristic-decrease of characteristic,

		Fundamental quantity*characteristic of new stuff)

	Units: characteristic units

addl characteristic = inflow of fundamental quantity*characteristic of new stuff

	Units: characteristic units/Year

characteristic of new stuff =

	Units: characteristic units/widget

decrease of characteristic = outflow of fundamental quantity*avg characteristic

	Units: characteristic units/Year

Description: The Hines coflow makes clearer the relationship of coflow to smooth or Goal-Gap formulations. The traditional coflow makes clearer why it is called a “coflow”. The Hines Coflow makes clear that the characteristic is a smooth with a variable time “constant”. The dilution time determines how quickly the current characteristic will change to or be diluted by the new characteristic. The traditional coflow shows that the flows of the characteristic are linked to the flows of the fundamental quantity.

Behavior: To anticipate the behavior think of how the smooth operates.

Classic examples: A firm continually borrows money at different interest rates. The amount borrowed is the fundamental quantity. The average interest rate is the average quantity. A business continually hires people with different skill levels. The number of people is the fundamental quantity. Average amount of skill is the average characteristic.

Caveats: The outflow of the fundamental quantity has the average characteristic. In some situations this is accurate. In many situations it is accurate enough. For situations where it is not good enough, see the cascaded coflow. Be careful of having the dilution time be too small relative to DT. This can happen if the fundamental quantity is (close to) zero.

Technical notes: None

�
Name: Hines Coflow and Traditional Coflow with Experience� TC "Hines Coflow and Traditional Coflow with Experience" \f C \l "1" �

There are two equivalent versions.

�

�

Parents: Hines coflow, Traditional coflow

Used by: None

Category: Manufacturing

Problem solved: How to represent a workforce in which new people have less experience, and where everyone gains experience with time

Equations: Hines Coflow

Average experience = INTEG(Change in average experience + rate of experience gain,

		average experience on new hire + Workforce / attrition)

	Units: Years

rate of experience gain = 1

	Units: Years/Year

Change in average experience =

	 (average experience on new hire - Average experience) / experience dilution time

	Units: fraction

average experience on new hire =

	Units: Years

experience dilution time = Workforce/hiring

	Units: Year

Workforce = INTEG(hiring-attrition,)

	Units: People

hiring =

	Units: People/Year

attrition = Workforce/TimeToQuitOrRetire

	Units: People/Year

TimeToQuitOrRetire =

	Units: Year

Traditional Coflow -- see molecules software

Description: This formulation modifies the regular coflow by adding a steady accumulation of experience as time goes by. Experience can be used as an input to an effect on productivity or quality.

Behavior: Left to the reader.

Classic examples: None

Caveats: None

Technical notes: None

�
Name: Cascaded Coflow� TC "Cascaded Coflow" \f C \l "1" �

Hines Cascaded Coflow

�

Traditional Cascaded Coflow

�

Parents: Coflow, Aging Chain

Used by: None

Category: Fundamental structures

Problem solved: How to associate a coflow with a fundamental quantity that is represented as an again chain.

Equations:

Hines Coflow Equations

Avg characteristic new material = INTEG(Change in characteristic of new material,

		characteristic of new stuff)

	Units: characteristic units/widget

Change in characteristic of new material = (characteristic of new stuff -

		Avg characteristic new material)/dilution time of new Material

	Units: characteristic units/widget/Year

characteristic of new stuff =

	Units: characteristic units/widget

dilution time of new Material = New material/Material flowing in

	Units: Year

Avg characteristic of Mature material =

	INTEG(Change in characteristic of mature material,

		Avg characteristic new material)

	Units: characteristic units/widget

Change in characteristic of mature material = (Avg characteristic new material

		-Avg characteristic of Mature material)/Mature material dilution time

	Units: characteristic units/widget/Year

Mature material dilution time = Mature material/Material maturing

	Units: Year

Avg Characteristic of Old Material = INTEG(Change in characteristic of old material,

		Avg characteristic of Mature material)

	Units: characteristic units/widget

Change in characteristic of old material = (Avg characteristic of Mature material -

		Avg Characteristic of Old Material)/Old Material Dilution Time

	Units: characteristic units/widget/Year

Old Material Dilution Time = Old material/Material aging

	Units: Year

New material = INTEG(Material flowing in-Material maturing,

		Material flowing in*Time to mature)

	Units: stuff

Material flowing in =

	Units: stuff/Year

Material maturing = New material / Time to mature

	Units: stuff/Year

Time to mature =

	Units: Year

Mature material =	INTEG(Material maturing-Material aging,

		Material maturing*Time to age)

	Units: stuff

Material aging = Mature material/Time to age

	Units: stuff/Year

Time to age =

	Units: Year

Old material = INTEG(Material aging-Material flowing out,

		Material aging*Time to flow out)

	Units: stuff

Material flowing out = Old material/Time to flow out

	Units: stuff/Year

Time to flow out =

	Units: years

Description: In the Hines coflow, each average characteristic is a “coflow-smooth” whose goal is the prior “coflow-smooth”. In the traditional coflow, the outflow of one coflow-level flows into the next. The two formulations are mathematically the same.

Behavior: Obvious.

Classic examples: None

Caveats: None

Technical notes: None

�

Name: Trend� TC "Trend" \f C \l "1" �

Parents: Smooth

Used by: Extrapolation

Category: Fundamental Structures

Problem solved: How to calculate the growth rate of some quantity

Equations:

FractionalTrend = (PerceivedQuantity - HistoricalQuantity) /

 (HistoricalQuantity * DurationOverWhichToCalculateTrend)

	Units: fraction/year

PerceivedQuantity = SMOOTH(ActualQuantity, TimeToPerceiveQuantity)

	Units: Quantity units

ActualQuantity =

	Units: Quantity units

TimeToPerceiveQuantity =

	Units: year

HistoricalQuantity = INTEG(ChangeInHistoricalQuantity, PerceivedQuantity)

	Units: Quantity units

ChangeInHistoricalQuantity = (PerceivedQuantity - HistoricalQuantity) /

 DurationOverWhichToCalculateTrend

	Units: Quantity units / year

DurationOverWhichToCalculateTrend =

	Units: years

Description: The basic idea is very intuitive if one regards the historical quantity as an observation made at a point in the past and the perceived quantity as the current observation. The difference between the two is the absolute growth or decline. Dividing this quantity by the past observation gives the fractional growth or decline over the period separating the two observations. Dividing by the time between the two observations give growth fraction per time unit. The perceived quantity is a smooth of the actual quantity and the historical quantity is a further smooth of the perceived quantity; the time between these two smooths is the time constant on the historical quantity.

Behavior: The structure will eventually converge to the actual fractional growth rate of an exponentially growing quantity.

Classic examples: Often used to calculate the rate at which sales or demand is increasing.

Caveats: None

Technical notes: The perception lag on the perceived quantity is often conceptually necessary. On a technical level, however, smoothing actual conditions prevents the fractional trend from changing abruptly.

�
Name: Extrapolation� TC "Extrapolation" \f C \l "1" �

�

Parents: Trend

Used by: None

Category: Fundamental Structure

Problem solved: How to represent an expectation that is an extrapolation of current conditions.

Equations:

ExtrapolatedQuantity = PerceivedQuantity *

 (1 + FractionalTrend * (TimeToPerceiveQuantity + ForecastHorizon))

	Units: Quantity units

ForecastHorizon =

	Units: year

FractionalTrend = (PerceivedQuantity - HistoricalQuantity) /

 (HistoricalQuantity * DurationOverWhichToCalculateTrend)

	Units: fraction/year

PerceivedQuantity = SMOOTH(ActualQuantity, TimeToPerceiveQuantity)

	Units: Quantity units

ActualQuantity =

	Units: Quantity units

TimeToPerceiveQuantity =

	Units: year

HistoricalQuantity = INTEG(ChangeInHistoricalQuantity, PerceivedQuantity)

	Units: Quantity units

ChangeInHistoricalQuantity = (PerceivedQuantity - HistoricalQuantity) /

 DurationOverWhichToCalculateTrend

	Units: Quantity units / year

DurationOverWhichToCalculateTrend =

	Units: years

Description: The extrapolation works on the fractional trend which is the output of a Trend Molecule. The extrapolation is simply the current observation (the perceived quantity) multiplied by a factor representing how much it will grow by the end of the forecast horizon. This factor is the fractional trend multiplied by the forecast horizon and by the time it takes to perceive current conditions. Using the time to perceive current conditions extrapolates from the observation, which is necessarily lagged, to the current time. Then, using the forecast horizon extrapolates from the current time to the time of the forecast horizon.

Behavior: The extrapolated forecast will be accurate for an exponentially growing quantity.

Classic examples: Extrapolations are often used to decide how much to order (or to begin construction of) in order to have the proper number of orders arriving (amount of construction coming on line) at the point in the future when we can expect our order to be filled..

Caveats: Extrapolation within an otherwise oscillatory system often will make the system more oscillatory. Note: this may be realistic.

Technical notes: What is used in the molecule is a linear extrapolation. It is roughly correct. The precise forecast would use linear extrapolation to bring the perception lag “forward” and then use continuous compounding up to the forecast horizon.�
Name: Dimensionless Input To Function� TC "Dimensionless Input To Function" \f C \l "1" �

�

Parents: None

Used by: Level Protected by Level, Anchoring and Adjustments

Category: Fundamental Structures

Problem solved: How to create a function that is easy to parameterize

Equations:

functionOfInput = functionOfInput f(Relative Input)

	Units: output units

functionOfInput f ()

	Units: output units

Relative Input = Input/Reference Input

	Units: dimensionless

Input =

	Units: Input units

Reference Input =

	Units: Input units

Description: The key here is that the input to the table function is measured relative to a reference. It is usually easier for people to judge what value the function should produce for an input that is some factor of a reference, than to judge the value of the function for a raw input. The most important exception is a domain-expert who may find it easier to parameterize the function in terms of raw inputs.

The reference input is often, but not always, a constant.

Behavior: No stocks, so no endogenous behavior.

Classic examples: Effect of inventory on sales.

Caveats: Although this molecule makes it easier for a modular who is not intimately familiar with the substantive area being modeled; this molecule can make it more difficult for the client who is extremely familiar with the subject. People with tremendous experience in a subject area may find it easier to parameter a function when the input is a raw, dimensioned quantity.

Technical notes: An added benefit of this structure is that it can be reparameterized for tuning or sensitivity testing by changing the value of the reference input (if the reference input is a constant). If the function takes raw values, the only way to reparameterize is to change (i.e. “redraw”) the function.

�

Name: Anchor and Adjustment� TC "Anchor and Adjustment" \f C \l "1" �

Parents: Dimensionless Input To Function

Used by: Ceiling, Floor, Pricing, Product Attractiveness, PDY

Category: Fundamental Structures

Problem solved: How to represent something that is a function of many things.

Equations:

value = NormalValue * Effect1OnValue * Effect2OnValue *

 Effect3OnValue * EffectNOnValue

	Units: value units

NormalValue =

	Units: value units

Effect1OnValue = {usually a function}

	Units: dmnl

Effect2OnValue = {usually a function}

	Units: dmnl

Effect3OnValue = {usually a function}

	Units: dmnl

EffectNOnValue = {usually a function}

	Units: dmnl

Description: Anchoring and Adjustment is a common judgmental strategy (Hogarth). Rather than finding a new quantity by solving a problem from scratch, people often will simply take a known quantity (the anchor) and adjust it to account for new factors. For example to judge the distance from London to Hamburg, I might start with the distance from London to Berlin, which I happen to know, and then “adjust” that value downward by about 20%. The structure above represents this process: A normal (or maximum or minimum) value – the “anchor” -- is multiplied (“adjusted”) by a series of factors representing the effects of various other quantities. The effects have neutral values of 1.

Behavior: None.

Classic examples: Product Attractiveness and PDY (productivity). (See molecules)

Caveats: People often over-estimate the strengths of the effects during initial parameterization.

Technical notes: None�
Name: Ceiling or SoftMin� TC "Ceiling or SoftMin" \f C \l "1" �

�

Parents: Anchoring and Adjustments

Used by: Inventory Backlog Shipping Protected By Level

Category: Fundamental Structures

Problem solved: How to represent a situation where a quantity can approach, but can exceed, a ceiling value

Equations:

Quantity = Ceiling*Fraction of Ceiling

	Units: Output units

Ceiling =

	Units: Output units

Fraction of Ceiling = Fraction of Ceiling f(Indicated Fraction of Ceiling)

	Units: dmnl

Fraction of Ceiling f ()

	Units: dmnl

Indicated Fraction of Ceiling = Indicated Quantity/Ceiling

	Units: dmnl

Indicated Quantity =

	Units: Output units

Description: The ceiling represents some limit. As the indicated quantity moves nearer to the limit, it represents a larger and larger indicated fraction of the ceiling. However the maximum actual fraction of the ceiling is one (100%). Usually, the ceiling is not reached at the point where the indicated quantity equals the ceiling. Rather, the indicated quantity must exert considerable pressure (represented by being greater than the ceiling) before the ceiling is reached. Another way of saying this is that the constraint of the ceiling begins to be felt before the indicated quantity reaches the ceiling. This formulation takes the minimum of the ceiling and the indicated quantity.

Behavior: No levels so no endogenous behavior.

Classic examples: Say we have a labor force which can produce an indicated quantity. We also have a fixed amount of machinery. The output that the machinery can potentially produce is the ceiling. As we add more labor, indicated output increases; until it is constrained by machinery (the ceiling). The constraint is not suddenly felt the instant IndicatedOutputFromLabor = CeilingOutputFromMachinery, instead the machinery constraint begins to be felt before the ceiling is reached. Why? There are many kinds of machines. As indicated output approaches the ceiling, there is an increasing likelihood that the particular machine that some person needs to operate is already taken, even though there are still other machines (not the right ones, though) that are idle

Caveats: None

Technical notes: None

�
Name: Floor or SoftMax� TC "Floor or SoftMax" \f C \l "1" �

�

Parents: Anchoring and Adjustment

Used by: None

Category: Fundamental Structures

Problem solved: How to represent a quantity that can approach, but cannot fall below, a floor.

Equations:

Quantity = Floor*Floor Multiple

	Units: Output units

Floor =

	Units: Output units

Floor Multiple = Floor Multiple f(Indicated Floor Multiple)

	Units: dmnl

Floor Multiple f ()

	Units: dmnl

Indicated Floor Multiple = Indicated Quantity/Floor

	Units: dimensionless

Indicated Quantity =

	Units: Output units

Description: The floor represents a constraint. As the indicated quantity gets nearer to the floor, the constraint is increasingly felt.

Behavior: No levels so no endogenous behavior.

Classic examples: None

Caveats: None

Technical notes: None

�
Name: Level Protected by Flow� TC "Level Protected by Flow" \f C \l "1" �

�

Parents: Decay, Ceiling

 Used by: InventoryBacklogAndShipping Protected By Flow

Category: Fundamental Structures

Problem solved: How to ensure that a stock does not go negative

Equations:

draining = Desired draining*Effect Of Maximum Outflow on draining

	Units: Widgets/Month

Desired draining =

	Units: Widgets/Month

Effect Of Maximum Outflow on draining =

	 Effect Of maximum outflow on draining f (Max relative to desired)

	Units: dmnl

Effect Of maximum outflow on draining f ()

	Units: dmnl

Max relative to desired = Maximum outflow/Desired draining

	Units: dmnl

Maximum outflow = Level to drain / Fastest draining time

	Units: Widgets/Month

Fastest draining time =

	Units: Month

Level to drain = INTEG(-draining,)

	Units: Widgets

Description: The actual outflow is the minimum of desired draining and the maximum possible outflow rate. This formulation is considered much more desirable than an IF-THEN-ELSE statement both because it is less subject to integration error and, even more importantly, because it is appropriate for a stock that represents an aggregation of non-identical items - like a finished goods inventory containing many different models or products.

Behavior: The level will not go below zero.

Classic examples: Shipping out of an inventory. The inventory must not go negative.

Caveats: none

Technical notes: An alternative is the closely related Level Protected By Level molecule.

�
Name: Level Protected by Level� TC "Level Protected by Level" \f C \l "1" �

�

Parents: Level, Anchoring and Adjustment

Used by: InventoryBacklogAndShipping Protected By Level

Category: Fundamental Structures

Problem solved: How to ensure that a stock does not go negative

Equations:

Level to drain = INTEG(-draining,Desired Level)

	Units: Widgets

draining = Desired draining * Effect of level on draining

	Units: Widgets/Month

Desired draining =

	Units: Widgets/Month

Effect of level on draining = Effect of level on draining f(Relative Level)

	Units: dmnl

Effect of level on draining f {positively sloped function that goes through the points (0,0) and (1,1)}

	Units: dmnl

Relative Level = Level to drain / Desired Level

	Units: dmnl

Desired Level =

	Units: Widgets

Description: The actual outflow is the product of the desired draining and a function that shuts off the outflow as the level approaches zero. This formulation is considered much more desirable than an IF-THEN-ELSE statement both because it is less subject to integration error and, even more importantly, because it is appropriate for a stock that aggregates many items which are not identical (e.g. a finished goods inventory containing many different products and models)..

Behavior: The level will not go below zero.

Classic examples: Shipping out of an inventory. The inventory must not go negative.

Caveats: Watch out for functions that drop suddenly to zero, which may introduce an integration error that lets the level go slightly negative before it shuts off.

Technical notes: A closely related alternative is the Level Protected By Flow molecule

�
Name: Inventory Backlog and Shipping Protected by Flow� TC "Inventory Backlog and Shipping Protected by Flow" \f C \l "1" �

�

Parents: GoalGap and LevelProtectedByFlow

Used by: None

Category: Manufacturing

Problem solved: How to coordinate the shipping of product with the filling of backlogged orders, taking into account that product cannot be shipped without an order and an order cannot be filled if there is no inventory

Equations:

Shipping = Maximum shipping rate * EffectOfIndicatedShippingRate

	Units: Widgets/Month

Maximum shipping rate = Inventory / minimum time to ship

	Units: Widgets/Month

minimum time to ship =

	Units: Month

Inventory = INTEG(Producing - Shipping ,)

	Units: Widgets

Producing =

	Units: Widgets/Month

EffectOfIndicatedShippingRate =

EffectOfIndicatedShippingRate f (Relative indicated shipping from backlog)

	Units: dmnl

EffectOfIndicatedShippingRate f ()

	Units: dmnl

Relative indicated shipping from backlog =

Indicated shipping from backlog / Maximum shipping rate

	Units: fraction

Indicated shipping from backlog = Backlog / TimeToProcessAndShipOrder

	Units: Widgets/Month

TimeToProcessAndShipOrder =

	Units: Month

Backlog = INTEG(Orders - Fulfilling orders , Orders * TimeToProcessAndShipOrder)

	Units: Widgets

Orders =

	Units: Widgets/Month

Fulfilling orders = Shipping

	Units: Widgets/Month

Description: In this formulation, desired shipping is intended to drain inventory formulated as a protected level. Actual shipping is minimum of desired and the maximum shipping rate. The backlog is depleted by actual shipping.

Behavior: Obvious

Classic examples: This formulation (or one like it) is common in manufacturing models

Caveats: The minimum time to ship is usually a small number. Make sure that dt is set appropriately.

Technical notes: A closely related alternative to this formulation is the Inventory Backlog Shipping Protected by Level molecule

�
Name: Inventory Backlog and Shipping Protected By Level� TC "Inventory Backlog and Shipping Protected By Level" \f C \l "1" � �

Parents: GoalGap and LevelProtectedByLevel

Used by: None

Category: Manufacturing

Problem solved: How to coordinate the shipping of product with the filling of backlogged orders, taking into account that product cannot be shipped without an order and an order cannot be filled if there is no inventory

Equations:

Shipping = Desired shipping * Inventory effect on shipping

	Units: Widgets/Month

Desired shipping = Backlog / Desired shipping time

	Units: Widgets/Month

Desired shipping time =

	Units: Month

Inventory effect on shipping = Inventory effect on shipping f(Relative inventory)

	Units: dmnl

Inventory effect on shipping f ()

	Units: dmnl

Relative inventory = Inventory / Desired inventory

	Units: dmnl

Desired inventory =

	Units: Widgets

Inventory = INTEG(Producing-Shipping,Desired inventory)

	Units: Widgets

Producing =

	Units: Widgets/Month

Backlog = INTEG(Orders - Fulfilling orders, Orders * Desired shipping time)

	Units: Widgets

Orders =

	Units: Widgets/Month

Fulfilling orders = Shipping

	Units: Widgets/Month

Description: In this formulation, desired shipping is intended to drain inventory formulated as a protected level. Actual shipping however also obeys the physical law that we can’t ship what we don’t have. The backlog is depleted by actual shipping.

Behavior: Obvious

Classic examples: This formulation is common in manufacturing models

Caveats: None

Technical notes: The Inventory Effect on Shipping represents the impact of stockouts as the inventory gets lower and lower. A closely related alternative to this formulation is the Inventory Backlog and Shipping Protected by Flow molecule

�
Name: Sea Anchor and Adjustment� TC "Sea Anchor and Adjustment" \f C \l "1" �

�

Parents: Smooth, Anchoring and Adjustment

Used by: Protected Anchoring and Adjustment, Anchor Pricing, Smooth Pricing

Category: Fundamental Structures

Problem solved: How to represent a process by which people will “grope” toward a proper quantity. How to form the anchor in an Anchoring and Adjustment process.

Equations:

Quantity = Anchor * PressureToAdjust

	Units: cases

PressureToAdjust =

	Units: dmnl

Anchor = INTEG(ChangeInAnchor,InitialAnchor)

	Units: cases

InitialAnchor =

	Units: cases

�

ChangeInAnchor = (Quantity - Anchor) /Time to change anchor

	Units: cases/Month

Time to change anchor =

	Units: Month

Description: This is an elaboration on the judgmental strategy known as anchoring and adjustment. In anchoring and adjustment a judgment is made (or a quantity) by taking an underlying quantity (an anchor) and adjusting it on the basis of current information or pressures. This formulation contains the added idea that the anchor is formed on the bases of the past judgments.

Behavior: A positive pressure will cause the quantity to immediately jump above the anchor. In the pressure persists, the quantity will begin to rise as the anchor does. If the pressure drops, the quantity will again respond immediately.

Classic examples: Anchor Pricing.

Caveats: This structure will get stuck at zero if the anchor becomes zero. To solve this use the protected anchoring and adjustment molecule.

Technical notes: Note there are two “parameters” to set: the adjustment time and the pressure function (s).

�
Name: Protected Sea Anchoring and Adjustment� TC "Protected Sea Anchoring and Adjustment" \f C \l "1" �

�

Parents: Sea Anchor and Adjustment

Used by: Protected Anchor Pricing

Category: Fundamental Structures

Problem solved: Represent a judgmental strategy that will grope toward a solution, and which will not get “stuck” at zero.

Equations:

Quantity = Anchor * PressureToAdjust

	Units: cases

PressureToAdjust =

	Units: dmnl

Anchor = INTEG(ChangeInAnchor,InitialAnchor)

	Units: cases

InitialAnchor =

	Units: cases

ChangeInAnchor = (Target Anchor - Anchor) /Time to change anchor

	Units: cases/Month

Target Anchor = MAX(Quantity,minimum anchor)

	Units: cases

minimum anchor =

	Units: cases

Time to change anchor =

	Units: Month

Description: This molecule adds to its parent, Anchoring and Adjustment, a Target Anchor. The Target Anchor is the maximum of either the quantity itself or the smallest value that the anchor should take on.

Behavior: Similar to Anchoring and Adjustment, except it will not get stuck at zero (as long as the minimum anchor is greater than zero.

Classic examples: Protected Anchor Pricing

Caveats: None

Technical notes: The minimum anchor should be set above zero to ensure that this formulation will not get stuck at zero.

�
Name: Sea Anchor Pricing� TC "Anchor Pricing" \f C \l "1" �

�

Parents: Sea Anchor and Adjustment

Used by: Protected Sea Anchor Pricing

Category: General Business

Problem solved: How to formulate price setting

Equations:

The Price form

Price = UnderlyingPrice * PressureToChangePrice

	Units: $/widget

PressureToChangePrice =

	Units: dmnl

UnderlyingPrice = INTEG(ChangeInUnderlyingPrice,)

	Units: $/widget

ChangeInUnderlyingPrice = (Price - UnderlyingPrice) /Time to change underlying price

	Units: $/widget/year

Time to change underlying price =

	Units: year

Description: Usually the pressure to change price will be a function (often of relative inventory) or the product of several functions. Price setters have a sense for a fair or underlying price. Pressures that they face cause them to bump the price above or below the underlying price. After bumping price, the price setter waits. If the response is inadequate, she bumps again. Alternatively, one can view this as a process in which the price setter bumps the price, and then -- if pressures cause her to keep the price high -- begins to incorporate the new price into her conception of a fair or underlying price.

�

Behavior: If pressure is constant above 1, price and underlying price will rise exponentially. If Pressure then returns to neutral value of one, price will drop to the underlying price.

Classic examples: The System Dynamics National Model uses such a formulation to represent interest rates (the price of money).

Caveats: The modeler will need to tune both the time constant and the effects representing pressure. Very aggressive policies can lead price explosions.

Note: If underlying price gets to zero; there will be no further change -- underlying price and price will be stuck at zero. This danger does not arise suddenly, rather in the underlying price is almost zero; the structure will be “almost” stuck. To avoid this, one needs to use a strategy such as that in the Protected Anchor Pricing Molecule.

Technical notes: To represent an aggressive policy use a short time constant and a steep effect.

�
Name: Protected Sea Anchor Pricing� TC "Protected Sea Anchor Pricing" \f C \l "1" �

�

Parents: Protected Sea Anchoring and Adjustment and Sea Anchor Pricing

Used by: None

Category: General Business

Problem solved: How to represent pricing when the price can take on a value of (or close to) zero.

Equations:

Price = UnderlyingPrice * PressureToChangePrice

	Units: $/widget

PressureToChangePrice =

	Units: dmnl

UnderlyingPrice = INTEG(ChangeInUnderlyingPrice, InitialUnderlyingPrice)

	Units: $/widget

InitialUnderlyingPrice =

	Units: $/widget

ChangeInUnderlyingPrice =

	 (IndicatedUnderlyingPrice - UnderlyingPrice) /Time to change underlying price

	Units: $/widget/year

Time to change underlying price =

	Units: year

IndicatedUnderlyingPrice = MAX(Price,MinimumUnderlyingPrice)

	Units: $/widget

MinimumUnderlyingPrice =

	Units: $/widget

Description: This molecule adds to the Anchor Pricing Molecule the idea of a minimum underlying price. The minimum underlying price represents what pricers regard as the lowest fair or sustainable price. This might be the cost of the product.

Behavior: Same as Anchor Pricing, but the underlying price will not go below the minimum.

Classic examples: National Model uses this formulation for the interest rate, the price of money

Caveats: See Anchor Pricing

Technical notes: See Anchor Pricing

�
Name: Smooth Pricing� TC "Smooth Pricing" \f C \l "1" �

�

Parents: Sea Anchor and Adjustment

Used by: None

Category: General Business

Problem solved: How to represent price setting behavior

Equations:

Price = INTEG(PriceChange,Initial Price)

	Units: $/widget

Initial Price =

	Units: $/widget

PriceChange = (IndicatedPrice - Price) /Time to change price

	Units: ($/widget)/Month

Time to change price =

	Units: Month

IndicatedPrice = Price * PressureToAdjust

	Units: $/widget

�

�

PressureToAdjust =

	Units: dmnl

Description: In this version of price setting, the anchor is price itself which smooths to the indicated price.

Behavior: Price rises exponentially as long as the pressure to adjust is greater than one. It stops adjusting when pressure returns to 1. Note that price is “sluggish” in that it cannot react immediately to changes in pressure, unlike the case for the otherwise similar Anchor Pricing Molecule.

Classic examples: None

Caveats: At a price of zero, the structure gets “stuck”. Further at a price of almost zero, the structure will almost be stuck.

Technical notes: The speed with which price changes depends on both the function and on the adjustment time.

�
Name: Product Attractiveness� TC "Product Attractiveness" \f C \l "1" �

�

Parents: Anchoring and Adjustment

Used by: Market Share

Category: General Business

Problem solved: How to represent the attractiveness of a product

Equations:

ProductAttractiveness =

MaximumAttractiveness * EffectOfDeliveryDelayOnAttractiveness

 * EffectOfPriceOnAttractiveness * EffectOfQualityOnAttractiveness

	Units: dmnl

MaximumAttractiveness =

	Units: dmnl

EffectOfDeliveryDelayOnAttractiveness = EffectOfDeliveryDelayOnAttractiveness f

 (RelativeDeliveryDelay)

	Units: dmnl

EffectOfDeliveryDelayOnAttractiveness f ()

	Units: dmnl

RelativeDeliveryDelay = DeliveryDelay / AcceptableDeliveryDelay

	Units: dmnl

AcceptableDeliveryDelay =

	Units: Month

DeliveryDelay =

	Units: Month

EffectOfPriceOnAttractiveness = EffectOfPriceOnAttractiveness f ()

	Units: dmnl

EffectOfPriceOnAttractiveness f ()

	Units: dmnl

RelativePrice = Price / AcceptablePrice

	Units: fraction

AcceptablePrice =

	Units: $/widget

Price =

	Units: $/widget

EffectOfQualityOnAttractiveness = EffectOfQualityOnAttractiveness f (quality)

	Units: dmnl

EffectOfQualityOnAttractiveness f ()

	Units: dmnl

quality =

	Units: fraction

Description: Attractiveness is formulated as a maximum attractiveness (or perhaps a normal attractiveness) multiplied by a series of effects. The Effects shown in the diagram and the equations are illustrative only. A key aspect of this formulation is that attractiveness is in absolute terms, not relative to a competitor: Each of the relative quantities has a constant in the denominator. The attractiveness of competitors enters only in the Market Share Molecule.

Behavior: No integrations so no endogenous dynamics.

Classic examples: This formulation appears in many models of competitive dynamics.

Caveats: None

Technical notes: None

�

Name: Market Share� TC "Market Share" \f C \l "1" �

Parents: Product Attractiveness

Used by: None

Category: General Business

Problem solved: How to calculate market shares based on product attractiveness

Equations:

MarketShareForProduct 1 = AttractivenessOfProduct 1 / TotalAttractiveness

	Units: fraction

AttractivenessOfProduct 1 =

	Units: dmnl

TotalAttractiveness = AttractivenessOfProduct 1 + AttractivenessOfProduct 2 +

		AttractivenessOfProduct N

	Units: dmnl

MarketShareForProduct 2 = AttractivenessOfProduct 2 / TotalAttractiveness

	Units: fraction

AttractivenessOfProduct 2 =

	Units: dmnl

MarketShareForProduct N = AttractivenessOfProduct N / TotalAttractiveness

	Units: fraction

AttractivenessOfProduct N =

	Units: dmnl

Description: Market share for each product is attractiveness relative to the “total” amount of attractiveness in the market.

Behavior: No levels, so no endogenous dynamics.

Classic examples: This formulation is very common in models of competitive dynamics

Caveats: The quantity TotalAttractiveness has no obvious real-world counterpart.

Technical notes: None

�

Name: Productivity (PDY)� TC "Productivity (PDY)" \f C \l "1" �

Parents: Anchoring and Adjustment

Used by: None

Category: Project models

Problem solved: How to determine productivity

Equations:

Productivity = NormalProductivity * EffectOfFatigueOnProductivity *

	 EffectOfSchedulePressureOnProductivity *EffectWorkAdequacyOnProductivity

	Units: widget/person/Month

NormalProductivity =

	Units: widgets/person/Month

EffectOfFatigueOnProductivity = EffectOfFatigueOnProductivity f(Fatigue)

	Units: dmnl

EffectOfFatigueOnProductivity f ()

	Units: dmnl

Fatigue =

	Units: fraction

EffectOfSchedulePressureOnProductivity =

 EffectOfSchedulePressureOnProductivity f(SchedulePressure)

	Units: dmnl

EffectOfSchedulePressureOnProductivity f ()

	Units: dmnl

SchedulePressure =

	Units: fraction

EffectWorkAdequacyOnProductivity =

		EffectWorkAdequacyOnProductivity f(WorkAdequacy)

	Units: dmnl

EffectWorkAdequacyOnProductivity f ()

	Units: dmnl

WorkAdequacy =

	Units: fraction

Description: Productivity a Anchoring and Adjustment formulation. The particular effects shown above are illustrative. The same structure can be used to formulate quality.

Behavior: No levels, so no endogenous dynamics

Classic examples: Project models

Caveats: None

Technical notes: The same structure can be used to represent quality. Often in project models things that affect productivity also effect quality (though through different functions).�
Name: Work Accomplishment Structure� TC "Work Accomplishment Structure" \f C \l "1" �

�

Parents: Level

Used by: None

Category: Project models

Problem solved: How to represent a project that has rework

Equations:

WorkToDo = INTEG(DiscoveringRework - AccomplishingWork , 100000)

	Units: SquareFeet

DiscoveringRework =

	Units: SquareFeet/Week

AccomplishingWork =

	Units: SquareFeet/Week

CorrectWork = INTEG(AccomplishingCorrectly , 0)

	Units: SquareFeet

AccomplishingCorrectly = AccomplishingWork * Quality

	Units: SquareFeet/Week

Quality =

	Units: fraction

UndiscoveredRework = INTEG(AccomplishingIncorrectly - DiscoveringRework ,

 0)

	Units: SquareFeet

AccomplishingIncorrectly = AccomplishingWork * (1 - Quality)

	Units: SquareFeet/Week

Description: We begin with some work to do and begin to accomplish it by some process (perhaps by the producing molecule). Some of the work is done correctly, but some is not. Quality is the fractional split. Quality here has a very narrow definition: the fraction of work that is being done correctly. The work that is not done correctly flows into undiscovered rework, where it sits until it is discovered (again by a process not shown). When it is discovered it flows into work to be (re) done.

Note that the stock of undiscovered rework is not knowable by decision makers “inside” the model. The stock is really there, but no-one, except the modeler and god, know how much it holds.

Behavior: Work can make many cycles.

Classic examples: This is the classic project structure. It was originally developed by Pugh-Roberts, which continues to use and develop the structure. The structure is at the heart of Terek Abdel-Hamid’s work on software project management. Today it is used by a number of consultants and consulting firms.

Caveats: none

Technical notes: The structure, as shown does not contain the definition of accomplishing work or discovering rework. Typically these flows are formulated using the producing molecule. Quality is usually formulated as an anchoring and adjustment molecule. Often the discovered rework flows into a level that keeps it separate from the original work to do -- this permits one to model a productivity and a quality on rework that are potentially different from productivity and quality on original work.�
Name: Producing� TC "Producing" \f C \l "1" �

Parents: None

Used by: Work Accomplishment Structure, Estimated Completion Date, Desired Workers

�

Category: General Business

Problem solved: How to produce or accomplish work

Equations:

producing = workers*productivity

	Units: drawings/Month

productivity =

	Units: drawings/person/Month

workers =

	Units: people

Description: Workers times their productivity yields what they accomplish or produce.

Behavior: No levels, so no endogenous behavior

Classic examples: Project models, workforce inventory oscillator

Caveats: None

Technical notes: None

�

�

Name: Desired Workforce� TC "Desired Workforce" \f C \l "1" �

Parents: Producing

Used by: Workforce

Category: Project models

Problem solved: How to determine the number of workers we need

Equations:

DesiredPeople =

	 DesiredAccomplishingRate / productivity

	Units: people

productivity =

	Units: SquareFeet/person/Week

DesiredAccomplishingRate = WorkToDo / RemainingDuration

	Units: SquareFeet/Week

WorkToDo =

	Units: SquareFeet

RemainingDuration =

	 max(minimumCompletionDuration, ScheduledCompletionDate - Time)

	Units: Week

minimumCompletionDuration =

	Units: Week

ScheduledCompletionDate =

	Units: Week

Description: The key here is the rate at which we need to accomplish work in order to finish on time. Once we know this, we can figure out how many people it takes to produce such a work flow.

Behavior: No levels so no endogenous behavior.

Classic examples: Most project models make use of a formulation like this one.

Caveats: None

Technical notes: This formulation uses the same understanding as that used in the Producing molecule. Outputs and inputs, though are different. Here we know the (desired) production rate and we calculate the (desired) workforce. In the Producing molecule we know the workforce and calculate the production rate. In this formulation, we could use a perceived productivity. The max on remaining duration prevents remaining duration from getting so small that the desired workforce gets huge. This we could use a SoftMax in this formulation.

�

Name: Workforce� TC "Workforce" \f C \l "1" �

Parents: Desired Workforce, Smooth

Used by: Overtime

Category: Project models

Problem solved: How to represent the number of people working on a project

Equations:

Workforce = INTEG(Hiring and Firing , DesiredPeople)

	Units: people

Hiring and Firing = Worker Shortage / time to hire or fire

	Units: people/Year

time to hire or fire =

	Units: Year

Worker Shortage = DesiredPeople - Workforce

	Units: people

DesiredPeople =

	Units: people

Description: The workforce is just a smooth of the desired workforce. This means that people will be hired or fired to (gradually) move the actual workforce to the desired level.

Behavior: Obvious

Classic examples: This is often used in models of projects

Caveats: None

Technical notes: Time to hire or fire aggregates a number of lags including: the time for someone to realize that the workforce is not at the correct level, the time to communicate this realization, the time to get authorization for a new workforce level, the time to advertise for workers, the time to interview them, the time to actually bring them on board, and the time to bring them up to speed as fully productive workers.

�

Name: Overtime� TC "Overtime" \f C \l "1" �

Parents: Workforce and Desired workforce

Used by: Fatigue

Category: Project models

Problem solved: How to represent the amount of overtime.

Equations:

Overtime = Overtime f(IndicatedOvertime)

	Units: Fraction

Overtime f ()

	Units: Fraction

IndicatedOvertime = DesiredWorkers/Workers

	Units: Fraction

Workers =

	Units: people

DesriedWorkers =

	Units: people

Description: Overtime is measured as a fraction of a normal day. If possible overtime would simply be the number of workers we wished we had divided by the number of workers we actually have. In practice, of course, the amount of overtime is limited by the number of hours in a day, by management policy, and by what workers are willing to do. The overtime function represents this practical limitation.

Behavior: No levels so no endogenous behavior.

Classic examples: Formulation like this are used in many project models.

Caveats: If the workforce can be zero, the modeler needs to protect against a divide by zero error in the calculation of IndicatedOvertime.

Technical notes: None

�
Name: Fatigue� TC "Fatigue" \f C \l "1" �

�

Parents: Overtime, Smooth

Used by: None

Category: Project models

Problem solved: How to represent fatigue

Equations:

Effect of fatigue on PDY = Effect of fatigue on PDY f(Fatigue)

	Units: dmnl

Effect of fatigue on PDY f ()

	Units: dmnl

Fatigue = INTEG(GettingFatigued,1)

	Units: Fraction

GettingFatigued = (Overtime - Fatigue) / TimeToGetFatigued

	Units: Fraction / Month

Overtime =

	Units: Fraction

TimeToGetFatigued =

	Units: Month

Description: This structure can also be used to represent the effect of fatigue on quality. Fatigue is a smooth of overtime. The time to get fatigued is the lag between beginning to work at some overtime level and feeling its full effect on productivity (or quality). A nice feature of this formulation is that that fatigue is measured in the same units a overtime. Consequently, in parameterizing the function one asks what the impact on productivity would be of working at each level of overtime for a very long time.

Behavior: Obvious

Classic examples: Used in project models

Caveats: None

Technical notes: None

�
Name: Estimated Completion Date� TC "Estimated Completion Date" \f C \l "1" �

�

Parents: Producing

Used by: Scheduled completion date

Category: Project models

Problem solved: How to represent the estimate of a completion

Equations:

EstimatedCompletionDate =

		DurationTillComplete + Time

	Units: week

DurationTillComplete = WorkToDo / AnticipatedRateOfAccomplishingWork

	Units: week

WorkToDo =

	Units: square feet

AnticipatedRateOfAccomplishingWork = Workforce * Productivity

	Units: square feet / week

Workforce =

	Units: people

Productivity =

	Units: square feet / person / week

Description: The estimated duration to completion is simply the amount of work left divided by the rate at which we can do the work..

Behavior: No levels, so no endogenous behavior.

Classic examples: Used in project models

Caveats: If people or productivity can be zero, you will need to protect against a divide by zero error in the equation for durationTillComplete.

Technical notes: None

�

Name: Scheduled Completion Date� TC "Scheduled Completion Date" \f C \l "1" �

Parents: Estimated Completion Date

Used by: None

Category: Project models

Problem solved: How to represent the process by which the scheduled completion date is set.

Equations:

Scheduled completion date = INTEG(ScheduleUpdating,EstimatedCompletionDate)

	Units: week

ScheduleUpdating = (EstimatedCompletionDate - Scheduled completion date)/

		Time to change schedule

	Units: week/week

EstimatedCompletionDate =

	Units: week

Time to change schedule =

	Units: week

Description: The scheduled completion date adjusts toward the estimated completion date. The scheduled completion date is simply a smooth of the estimated.

Behavior: Obvious

Classic examples: Used in project models

Caveats: None

Technical notes: None�
Name:

Parents:

Used by:

Category:

Problem solved:

Equations:

Description:

Behavior:

Classic examples:

Caveats:

Technical notes:

	Page � PAGE �16�

Version 1.3 © 1996,1997 LeapTec and Ventana Systems

