
Koren Chap.5.1

Soo-Ik Chae

Spring 2009

Digital Computer Arithmetic

Part 5
Fast Addition

Koren Chap.5.2

Conditional Sum
Adders

Logarithmic
speed-up
of addition

- O(log n)

For given k operand bits - generate two outputs -
each with k sum bits and an outgoing carry - one for
incoming carry 0 and one for 1

When incoming carry known - select correct output
out of two - no waiting for carry to propagate

Should not apply this idea to all n bits at once

Koren Chap.5.3

Dividing into Groups

Divide n bits into smaller groups - apply above to each

Serial carry-propagation inside groups done in parallel

Groups can be further divided into subgroups

Outputs of subgroups combined to generate output of
groups

Natural division of n - two groups of n/2 bits each

Each can be divided into two groups of n/4, and so on

If n power of 2 - last subgroup is of size 1 and
log n steps are needed

Division not necessarily into equal-sized subgroups -
scheme can be applied even if n not a power of 2

2

Koren Chap.5.4

Example - Combining Single Bits into Pairs

si / si - sum bit at position i under the
assumption that incoming carry into currently
considered group is 0 /1

Similarly - outgoing carries (from group)
ci+1 / ci+1

Step 1 - each bit constitutes a separate group:

0 1

0 1

Koren Chap.5.5

Example - Step 2
Step 2 - two bit positions combined (using data

selectors) into one group of size 2

Carry-out from position 6 becomes internal (to
group) carry and appropriate set of outputs
for position 7 selected

Koren Chap.5.6

Example -
Addition of
Two 8-bit
Operands

Log 8=3 steps

Forced carry
(=0 here) available at start

Only one set of outputs generated
for rightmost group at each step

2

Koren Chap.5.7

Carry-Select Adder

Variation of conditional sum adder

n bits divided into groups - not necessarily equal

Each group generates two sets of sum bits and
an outgoing carry bit - incoming carry selects
one

Each group is not further divided into subgroups

Comparing Conditional-sum and Carry-look-ahead
 Both methods have same speed

 Design of conditional sum adder less modular (why?)

 Carry-look-ahead adder more popular

Koren Chap.5.8

Optimality of Algorithms and Their
Implementations

Numerous algorithms for fast addition proposed -
technology keeps changing making new algorithms
more suitable

Performance of algorithm affected by its unique
features and number system used to represent
operands and results

Many studies performed to compare performance
of different algorithms - preferably
independently of implementation technology

Some studies find the limit (bound) on the
performance of any algorithm in executing a given
arithmetic operation

Koren Chap.5.9

Optimal Addition Algorithms

Execution time reduced by avoiding (or limiting)
carry-propagation

Number systems such as the residue number
system and the SD number system have almost
carry-free addition - provide fast addition
algorithms

These number systems not frequently used -
conversions between number systems needed - may
be more complex than addition - not always
practical

Koren Chap.5.10

Lower Bound on Addition Speed

Theoretical model - derives a bound independent of
implementation technology

Assumptions:
 Circuit for addition realized using only one type of gate -

(f,r) gate - r is radix of number system used and f is
fan-in of gate (maximum number of inputs)

 All (f,r) gates are capable of computing any r-valued
function of f (or less) arguments in exactly the same time

 This fixed time period is the unit delay - computation time
of adder circuit measured in these units

(f,r) gate can compute any function of f arguments
- all we need to find out is how many such gates
are required and how many circuit levels are needed
in order to properly connect the gates

Koren Chap.5.11

Lower Bound - Cont.

A circuit for adding two radix-r operands with n digits
each - 2n inputs and n+1 outputs

Consider output requiring all 2n inputs - can be
reduced to a smaller number of arguments by using

such (f,r) gates operating in parallel

Number of intermediate arguments - - can be
further reduced by a second level of (f,r) gates

Number of levels in tree - at least

Lower bound - assumes that no argument is needed as
input to more than one (f,r) gate

Lower bound on addition time - measured in units of
(f,r) gate delay -

Koren Chap.5.12

Circuit Implemented with (f,r) Gates

Koren Chap.5.13

Limitations of Model

Only fan-in limitation considered - fan-out ignored

Fan-out of gate - ability of its output to drive a
number of inputs to similar gates in the next level

In practice fan-out is constrained

More important - model assumes that any r-valued
function of f arguments can be calculated by a
single (f,r) gate in one unit delay - not true in
practice – O(f)

Many functions require either a more complex gate
(longer delay) or are implemented using several
simple gates organized in two or more levels

Koren Chap.5.14

Improved Bound
Previous bound assumes at least one output digit

that depends on all 2n input digits

If not - a better (lower) value for the bound exists
- smaller trees (with fewer inputs) can be used

This occurs if carry cannot propagate from least-
significant to most-significant position

Example - only xi,yi,xi-1,yi-1 needed to determine
sum digit si -

In the binary system - carry can propagate
through all n positions -

In the two addition algorithms - carry-look-ahead
and conditional sum - execution time proportional to
log n - previous bound approached

Koren Chap.5.15

Implementation Cost

Implementation cost must be considered in addition
to execution time

Implementation cost measure depends on technology

Example - discrete gates
 Number of gates measures implementation cost

 Number of gates along the critical (longest) path (number of
circuit levels) determines execution time

Example - full custom VLSI technology
 Number of gates - limited effect on implementation cost

 Regularity of design and length of interconnections more
important - affect both silicon area and design time

Trade-off between implementation cost and addition
speed exists

Koren Chap.5.16

Performance - Cost Trade-off

If performance more important - carry-look-ahead
adder preferable

Implementation cost can be reduced - determined
by regularity of design and size of required area

Taking advantage of the available degree of freedom
in design - the blocking factor - bounded by fan-in
constraint

Additional constraints exist - e.g., number of pins

Highest blocking factor - not necessarily best

Example - blocking factor of 2 results in a very

regular layout of binary trees with up to log2n
levels - total area approximately nlog2n

Koren Chap.5.17

Manchester Adder

If lower cost implementation

required, ripple-carry

method with speed-up

techniques is best

Manchester adder
uses switches that can
be realized using pass
transistors

 Pi=xi yi carry-propagate signal

 Gi=xi yi carry-generate signal

 Ki=xiyi carry-kill signal

Only one of the switches is closed at any time

- -

Koren Chap.5.18

Manchester Adder

 Pi=xi yi used instead of Pi=xi + yi

 If Gi=1 - an outgoing carry is generated always

 If Ki=1 - incoming carry not propagated

 If Pi=1 - incoming carry propagated

yi xi

Koren Chap.5.19

Manchester Adder
Switches in units 0 through n-1 set simultaneously -

propagating carry experiences only a single switch
delay per stage

Number of carry-propagate switches that can be
cascaded is limited to k, which depends on technology
ㅇdelay per group – O(k2)

n units partitioned into groups with separating devices
(buffers) between them

In theory - execution time is still linearly proportional
to O(n) although it is faster

In practice - ratio between execution time and that
of another adder (e.g., carry-look-ahead) depends on
particular technology

Implementation cost - measured in area and/or design
regularity - lower than carry-look-ahead adder

Koren Chap.5.20

Carry-Look-Ahead Addition Revisited

Generalizing equations for fast adders -
carry-look-ahead, carry-select and carry-skip

Notation:

 Pi:j -
group-propagated carry

 Gi:j - group-generated carry

for group of bit positions i,i-1,...,j (i j)

Pi:j=1 when incoming carry into least significant position
j, cj, is allowed to propagate through all i-j+1 positions

Gi:j=1 when carry is generated in at least one of
positions j to i and propagates to i+1, (ci+1 = 1)
 Generalization of previous equations

 Special case - single bit-position functions Pi and Gi

Koren Chap.5.21

Group-Carry Functions

Boolean equations

Pi:i Pi ; Gi:i Gi

Recursive equations can be generalized (i m j+1)

Proof - induction on m

Koren Chap.5.22

Fundamental Carry Operator
Boolean operator - fundamental carry operator -

Using the operator

(Pi:j,Gi:j)=(Pi:m,Gi:m) (Pm-1:j,Gm-1:j) (imj+1)
Operation is associative

Operation is idempotent

Therefore
(Pi:j,Gi:j)=(Pi:m,Gi:m) (Pv:j,Gv:j) im ; vj ;

vm-1

Koren Chap.5.23

Combining two subgroups

Group carries Pi:j and Gi:j calculated from two
subgroup carries - subgroups are of arbitrary size
and may even overlap

Group and subgroup carries used to calculate
individual bit carries ci+1, ci,…, cj+1, and sum outputs
si, si-1,…, sj

For the mth bit position, i m j

(Pi:j,Gi:j)=(Pi:m,Gi:m) (Pv:j,Gv:j) im ; vj ;

vm-1

v

Koren Chap.5.24

Individual Bit Carry & Sum

Must take into account “external” carry cj

For the mth bit position, i m j

rewritten as

If Pm = xm ym then sm = cm Pm

If Pm=xm+ym then sm=cm (xm ym)

Koren Chap.5.25

Various Adder Implementations
Equations can be used to derive various

implementations of adders - ripple-carry, carry-
look-ahead, carry-select, carry-skip, etc.

5-bit ripple-carry adder: All subgroups consist of a
single bit position ; computation starts at position 0,
proceeds to position 1 and so on

16-bit carry-look-ahead adder: 4 groups of size
4; ripple-carry among groups

Koren Chap.5.26

Brent-Kung Adder
Variant of carry-look-ahead adder - blocking factor

of 2 very regular layout tree with log2n levels -

total area n log2n

Consider c16 - incoming carry at stage 16 in a 17-
bit (or more) adder and suppose G0=x0 y0+P0 c0

The part that generates (P7:0,G7:0) corresponds to

Each line, except c0, represents two signals - either
xm,ym or Pv:m,Gv:m

Koren Chap.5.27

Tree Structure for Calculating C16

Fundamental carry operator -

Koren Chap.5.28

Carry Calculation

Circuits in levels 2 to
5 implement
fundamental carry op

c16=G15:0 ; Pm=xmym

sum: s16=c16 P16

Tree structure also generates carries c2, c4 and c8

Carry bits for remaining positions can be calculated
through extra subtrees that can be added

Once all carries are known - corresponding sum bits
can be computed

Above - blocking factor = 2
 Different factors for different levels may lead to more

efficient use of space and/or shorter interconnections

Koren Chap.5.29

Prefix Adders

The BK adder is a parallel prefix circuit -
a combinational circuit with 2n inputs (P1, G1),

(P2, G2),...,(Pn, Gn)

producing outputs (P1, G1), (P2, G2)(P1, G1),...,

(Pn, Gn)(Pn-1, Gn-1) ...(P1, G1), where is an
associative binary operation

(before the parallel prefix circuit) First stage of
adder generates individual Pi and Gi from xi and yi

Remaining stages constitute the parallel prefix circuit
with fundamental carry operation serving as the
associative binary operation

This part of tree can be designed in different ways

Koren Chap.5.30

Parallel prefix graph of
the 16-bit Brent-Kung Adder

O : p & g generator : fundamental carry operation : sum generator

Koren Chap.5.31

Brent-Kung Parallel Prefix Graph

Bullets implement the fundamental carry operation -
empty circles generate individual Pi and Gi

Number of stages and total delay - can be reduced by
modifying structure of parallel prefix graph

Minimum # of stages = log2n
4 for n=16

For BK parallel
prefix graph =

2log2n - 1

Koren Chap.5.32

Prefix Diagram Notation

i:j

i:j

i:k k-1:0

i:0

i:k k-1:j

i:j

Gi:k

Pk-1:j

Gk-1:j

Gi:j

Pi:j

Pi:k

Gi:k

Gk-1:0

Gi:0 Gi:j

Pi:j

Gi:j

Pi:j

Pi:k

Black cell Gray cell Buffer

PiPi

group generate/propagate group generate

PiPi

PiPi

Koren Chap.5.33

Tree Adder Taxonomy
Ideal N-bit tree adder would have

 L = log N logic levels

 Fanout never exceeding 2

 No more than one wiring track between levels

Describe adder with 3-D taxonomy (l, f, t)
 Logic levels: L + l

 Fanout: 2f + 1

 Wiring tracks: 2t

Known tree adders sit on plane defined by

l + f + t = L-1

Koren Chap.5.34

Tree Adder Taxonomy

f (Fanout)

t (Wire Tracks)

l (Logic Levels)

0 (2)

1 (3)

2 (5)

3 (9)

0 (4)

1 (5)

2 (6)

3 (8)

2 (4)

1 (2)

0 (1)

3 (7)

Koren Chap.5.35

Tree Adder Taxonomy

Koren Chap.5.36

Brent-Kung Adder

1:03:25:47:69:811:1013:1215:14

3:07:411:815:12

7:015:8

11:0

5:09:013:0

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(3,0,0)

of levels = 7; max fanout = 2; max #of tracks = 1

Koren Chap.5.37

Sklansky Adder

As a special case of Ladner-Fisher adder

Implementing a 4-stage parallel prefix graph

Unlike BK, LF adder employs fundamental carry
operators with a fan-out 2 - blocking factor varies
from 2 to n/2

Fan-out n/2 requiring buffers : adding to overall
delay

Koren Chap.5.38

Sklansky Adder

1:0

2:03:0

3:25:47:69:811:1013:1215:14

6:47:410:811:814:1215:12

12:813:814:815:8

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(0,3,0)

of levels = 4; fanout (8,4,2,1); max # of tracks = 1

Koren Chap.5.39

Ladner-Fischer

1:03:25:47:69:811:1013:12

3:07:411:815:12

5:07:013:815:8

15:14

15:8 13:0 11:0 9:0

0123456789101112131415

15:014:013:012:011:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(1,2,0)

Koren Chap.5.40

Kogge-Stone Adder

log2n stages - but lower fan-out

More lateral wires with long span than BK - requires
buffering causing additional delay

Koren Chap.5.41

Kogge-Stone

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(0,0,3)

fanout (1,1,1,1)

Koren Chap.5.42

Han-Carlson Adder
Other variants - small delay in exchange for high

overall area and/or power
 Compromises between wiring simplicity and overall delay

A hybrid design combining stages from BK and KS
 5 stages - middle 3 resembling KS - wires with shorter span

than KS

Koren Chap.5.43

Han-Carlson
(l,f,t)=(1,0,2)

1:03:25:47:69:811:1013:1215:14

3:05:27:49:611:813:1015:12

5:07:09:211:413:615:8

0123456789101112131415

15:014:013:012:011:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

Koren Chap.5.44

Carry-Select Adders

n bits divided into non-overlapping groups of possibly
different lengths - similar to conditional-sum adder

Each group generates two sets of sum and carry;
one assumes incoming carry into group is 0,
the other 1

the lth group consists of k bit positions starting
with j and ending with i=j+k-1

Koren Chap.5.45

Carry-Select Adders

Koren Chap.5.46

Carry-Select Adder - Equations

Outputs of group: sum bits si, si-1, … , sj

and group outgoing carry ci+1

Same notation as for conditional-sum adder

Two sets of outputs can be calculated in a
ripple-carry manner

Koren Chap.5.47

Detailed Expressions

For bit m - calculate carries from Gm-1:j ; Gm-1:j

Pm-1:j has no superscript - independent of incoming
carry

Once individual carries are calculated - corresponding
sum bits are

Since ci+1 implies ci+1,

Group sizes can be either different

0 1

0 1

and Ci+1 Ci+1

Koren Chap.5.48

Different Group Sizes
Notations:

 Size of group l - kl

 L - number of groups

G - delay of a single gate

kl chosen so that delay of ripple-carry within group is
equal to delay of carry-select chain from group 1 to l

Actual delays depend on technology and implementation

Koren Chap.5.49

Different Group Sizes

Example: Two-level gate implementation of MUX
 Delay of carry-select chain through preceding l-1 groups -

(l-1)2G

 Delay of ripple-carry in lth group - kl 2G

Equalizing the two - kl = l-1 with kl 1 ; l=1,2,…,L

Koren Chap.5.50

Different Group Sizes - Cont.

Resulting group sizes - 1, 1, 2, 3, ...

Sum of group sizes n

1+L(L-1)/2 n L(L-1) 2(n-1)

Size of largest group and execution time of carry-
select adder are of the order of n

Example: n=32, 9 groups required - one possible
choice for sizes: 1, 1, 2, 3, 4, 5, 6, 7 & 3

Total carry propagation time is 18G, instead of
62G for ripple-carry adder

Koren Chap.5.51

Different Group Sizes - Cont.

If sizes of L groups are equal, carry-select chain
(i.e., generating Group Carry-Out from Group Carry-
In) not necessarily ripple-carry type

Single or multiple-level carry-look-ahead can be used

Koren Chap.5.52

Carry-Skip Adders
Reduces time needed to propagate carry by skipping

over groups of consecutive adder stages

Generalizes idea behind Manchester Adder

Illustrates dependence of “optimal” algorithm for
addition on available technology
 Known for many years, only recently became popular

In VLSI - speed comparable to carry look-ahead (for
commonly used word lengths - not asymptotically)

Requires less chip area and consumes less power

Based on following observation:

Carry propagation process can skip any adder stage
for which xm ym (or, Pm = xm ym = 1)

Several consecutive stages can be skipped if all
satisfy xm ym

Koren Chap.5.53

Carry-Skip Adder - Structure
n stages divided into groups of consecutive stages

with simple ripple-carry used in each group

Group generates a group-carry-propagate signal
that equals 1 if for all internal stages Pm=1

Signal allows an incoming carry into group to “skip”
all stages within group and generate a group-
carry-out

Group l consists of k bit positions j,j+1,…,j+k-
1(=i)

Koren Chap.5.54

Carry Skip Adder - Structure

Group_l_Carry-out = Gi:j + Pi:j Group_l_Carry-in

Gi:j = 1 when a carry is generated internal to
group and allowed to propagate through all
remaining bit positions including i

Pi:j = 1 when k=i-j+1 bit positions allow incoming
carry cj to propagate to next position i+1

Buffers realize the OR operation

Koren Chap.5.55

Example - 15-bit carry-skip adder

Consisting of 3 groups of size 5 each

Pi:j for all groups can be generated
simultaneously allowing a fast skip of groups
which satisfy Pi:j=1

Koren Chap.5.56

Determining Optimal Group Size k

Assumption: Groups have equal size k - n/k integer

k selected to minimize time for longest carry-
propagation chain

Notations:
 tr - carry-ripple time through a single stage

 ts(k) - time to skip a group of size k (for most
implementations - independent of k)

 tb - delay of buffer (implements OR) between two groups

 Tcarry - overall carry-propagation time - occurs when a
carry is generated in stage 0 and propagates to stage n-1

Carry will ripple through stages 1,2, … ,k-1 within
group 1, skip groups 2,3, … , (n/k-1), then ripple
through group n/k

Koren Chap.5.57

Determining Optimal k - Cont.

Tcarry=(k-1)tr+tb+(n/k-2)(ts+tb)+(k-1)tr

Example - two-level gate implementation used for
ripple-carry and carry-skip circuits

 tr = ts+tb=2G

 Tcarry=(4k+2n/k-7) G

Differentiating Tcarry with
respect to k and equating to 0 -

 kopt = n/2
Group size and carry propagation time proportional

to n - same as for carry-select adder

Example: n=32, 8 groups of size kopt = 4 is best

Topt=25G instead of 62G for ripple-carry adder

Koren Chap.5.58

Further Speedup

Size of first and last groups smaller than fixed size
k ripple-carry delay through these is reduced

Size of center groups increased - since skip time is
usually independent of group size

Another approach: add second level to allow skipping
two or more groups in one step (more levels possible)

Algorithms exist for deriving optimal group sizes for
different technologies and implementations (i.e.,
different values of ratio (ts+tb)/tr)

Koren Chap.5.59

Variable-Size Groups

Unlike equal-sized group case - cannot restrict to
analysis of worst case for carry propagation

This may lead to trivial conclusion: first and last
groups consisting of a single stage - remaining n-2
stages constituting a single center group

Carry generated at the beginning of center group
may ripple through all other n-3 stages - becoming
the worst case

Must consider all possible carry chains starting at
arbitrary bit position a (with xa=ya) and stopping
at b (xb=yb) where a new carry chain (independent
of previous) may start

Koren Chap.5.60

Optimizing Different Size Groups

k1, k2, … , kL - sizes of L groups -

General case: Chain starts within group u, ends
within group v, skips groups u+1, u+2, … ,v-1

Worst case - carry generated in first position
within u and stops in last position within v

Overall carry-propagation time is

Number of groups L and sizes k1, k2, …, kL

selected so that longest carry-propagation
chain is minimized -

Solution algorithms developed - geometrical
interpretations or dynamic programming

Koren Chap.5.61

Optimization - Example

32-bit adder with single level carry-skip

ts+tb=tr

Optimal organization: L=10 groups with sizes
k1,k2,…,k10 = 1,2,3,4,5,6,5,3,2,1

Resulting in Tcarry 9 tr

If tr=2 G - Tcarry 18 G instead of 25 G

in equal-size group case

Exercise: Show that any two bit positions in any
two groups u and v (1 u v 10) satisfy
Tcarry(u,v) 9 tr

...
1,2,3,5,6,5,4,3,2,1

Koren Chap.5.62

Carry-skip vs. Carry-select Adder

Strategies behind two schemes sound different

Equations relating group-carry-out with group-
carry-in are variations of same basic equation

Both have execution time proportional to n

Only details of implementation vary, in particular
calculation of sum bits

Even this difference is reduced when the
multiplexing circuitry is merged into summation
logic

Koren Chap.5.63

Hybrid Adders

Combination of two or more addition methods
Common approach: one method for carry,

another for sum
Two hybrid adders combining variation of

 a carry-select for sum
 modified Manchester carry for carry

Both divide operands into equal groups - 8 bits each
 First - uses carry-select for sum for each group of 8 bits

separately
 Second - uses a variant of conditional-sum

Group carry-in signal into 8-bit groups, which selects
one out of two sets of sum bits, is generated by a
carry-look-ahead tree

64-bit adder - carries are c8,c16,c24,c32,c40,c48,c56

Koren Chap.5.64

Blocking Factor in Carry Tree

Structure of carry-look-ahead tree for generating
carries similar to those seen before

Differences - variations in blocking factor at each
level and exact implementation of fundamental
carry operator

Restricting to a fixed blocking factor - natural
choices include 2, 4 or 8
 2 - largest number of levels in tree, vs.

 8 - complex modules for fundamental carry operator with
high delay

Factor of 4 - a reasonable compromise

A Manchester carry chain (MCC), which generates
both carry generate/propagate bits, with a blocking
factor of 4

0 0 0

Koren Chap.5.65

Manchester Carry Module

MCC
G0, P0

G1, P1

G2, P2

G3, P3

G1:0, P1:0

G2:0, P2:0

G3:0, P3:0

Koren Chap.5.66

64-bit
Hybrid
Adder

55:48 – 55:0 C56
47:32 – 47:0 C48
31:16 – 31:0
15:0 - x

38:32 – 39:0 C40
31:16 – 31:0 C32
23:16 – 23:0 C24
15:0 - x

15:12 - 15:0 C16
11:8 – 11:0
7:4 – 7:0 C8
3:0 – x

*
*

Koren Chap.5.67

MCC - General Case

MCC accepts 4 pairs of inputs:

(Pi1:i0,Gi1:i0),(Pj1:j0,Gj1:j0),(Pk1:k0,Gk1:k0),(Pl1:l0,Gl1:l0)

where i1 i0, j1 j0, k1 k0, l1 l0

Produces 3 pairs of outputs:

(Pj1:i0,Gj1:i0),(Pk1:i0,Gk1:i0),(Pl1:i0,Gl1:i0)

where i1 j0-1, j1 k0-1, k1 l0-1

Allows overlap among input subgroups

Koren Chap.5.68

Carry Tree

First level - 14 MCCs calculating
(P3:0,G3:0),…,(P55:52,G55:52)
 only outputs P3:0 and G3:0 are utilized

Second level: each MCC generates
2 pairs (P3:0, G3:0),(P1:0, G1:0)

Providing
(P7:0,G7:0),(P15:0,G15:0),
(P23:16,G23:16),(P31:16,G31:16),
(P39:32,G39:32),(P47:32,G47:32),
(P55:48,G55:48)

Generates c8 & c16 - G7:0 & G15:0

c0 is incorporated into MCC*

for (P3:0, G3:0) *

Koren Chap.5.69

A Schematic Diagram of a 32-bit
Hybrid Adder

Conditional sum adders

Carry select adder

Koren Chap.5.70

Grouping of Bits in a 64-bit Adder

64 bits divided into two sets of 32 bits, each set
further divided into 4 groups of 8 bits

For every group of 8 bits - 2 sets of conditional
sum outputs generated separately

Two most significant groups combined into group
of size 16

Further combined with next group of 8 to form
group of 24 bits and so on
 principle of conditional-sum addition

 However, the way input carries for basic 8-bit groups
are generated is differently with MCC

MCC generates Pm, Gm and Km and cout ,cout for
assumed incoming carries of 0 and 1

Conditional carry-out signals control multiplexers

0 1

Koren Chap.5.71

Dual and Regular Multiplexer

Two sets of dual multiplexers (of size 8 and 16)

Single regular multiplexer of size 24

Koren Chap.5.72

High-Order Half of 64-bit Adder

Similar structure but incoming carry c32

calculated by separate carry-look-ahead circuit

Inputs are conditional carry-out signals
generated by 4 MCCs

Allows operation of high-order half to overlap
operation of low-order half

Summary: combines variants of 3 different
techniques for fast addition: Manchester carry
generation, carry-select, conditional-sum

Other designs of hybrid adders exist - e.g.,
groups with unequal number of bits

“Optimality” of hybrid adders depends on
technology and delay parameters

Koren Chap.5.73

Carry-Save Adders (CSAs)

3 or more operands added simultaneously (e.g., in
multiplication) using 2-operand adders

Time-consuming carry-propagation must be repeated
several times: k operands - k-1 propagations

Techniques for lowering this penalty exist - most
commonly used - carry-save addition

Carry propagates only in last step - other steps
generate partial sum and sequence of carries

Basic CSA accepts 3 n-bit operands; generates 2
n-bit results: n-bit partial sum, n-bit carry

Second CSA accepts the 2 sequences and another
input operand, generates new partial sum and carry

CSA reduces number of operands to be added from
3 to 2 without carry propagation

Koren Chap.5.74

Implementing Carry Save Adders

Simplest implementation - full adder (FA) with 3
inputs x,y,z

x+y+z=2c+s (s,c - sum and carry outputs)

Outputs - weighted binary representation of number
of 1's in inputs

FA called a (3,2) counter

n-bit CSA: n (3,2)
counters in parallel
with no carry links

Koren Chap.5.75

Carry-Save Adder for four 4-bit Operands

 Upper 2 levels - 4-bit CSAs

 3rd level - 4-bit carry-propagating adder (CPA)

 Ripple-carry adder - can be replaced by a carry-look-
ahead adder or any other fast CPA

 Partial sum bits and carry bits interconnected to
guarantee that only bits having same weight are added
by any (3,2) counter

Koren Chap.5.76

Adding k Operands

(k-2) CSAs + one CPA

If CSAs arranged in
cascade - time to add
k operands is (k-2)TCSA + TCPA

TCPA ; TCSA - operation time of CPA ; CSA

G ; FA delay of a single gate ; full adder

TCSA = FA 2 G

Sum of k operands of size n bits each can be
as large as k(2 -1)

Final addition result may reach a length of
n+log 2 k bits

n

Koren Chap.5.77

Six-operand Wallace Tree

Better organization for CSAs - faster operation time

Koren Chap.5.78

Number of Levels in Wallace Tree
Number of operands reduced by a factor of 2/3 at

each level - (l - number of levels)

Consequently, l =

Only an estimate of l - number of operands at each
level must be an integer

Ni - number of operands at level i

Ni+1 - at most 3/2 Ni (x - largest integer
smaller than or equal to x)

Bottom level (0) has 2 - maximum at level 1 is 3 -
maximum at level 2 is 9/2 =4

Resulting sequence: 2,3,4,6,9,13,19,28,…

For 5 operands - still 3 levels

Koren Chap.5.79

Number of Levels in a CSA Tree
for k operands

Example: k=12 - 5 levels - delay of 5TCSA instead
of 10TCSA in a linear cascade of 10 CSAs

Koren Chap.5.80

Most Economical Implementation (Fewer CSAs)

Achieved when number of operands is element of
3,4,6,9,13,19,28,…

If given number of operands, k, not in sequence -
use only enough CSAs to reduce k to closest
(smaller than k) element

Example: k=27, use 8 CSAs (24 inputs) rather
than 9, in top level - number of operands in next
level is 82+3=19

Remaining part of tree
will follow the series

Koren Chap.5.81

(7,3) and Other Counters

(7,3) counter: 3 outputs - represent number of 1's
in 7 inputs

Another example: (15,4)
counter

In general: (k,m) counter -
k and m satisfy
2 -1 k or
m log 2 (k+1)

(7,3) counter using (3,2)
counters:

Requires 4 (3,2)’s in
3 levels - no speed-up

m

Koren Chap.5.82

(7,3) Counters

(7,3) can be implemented as a multilevel circuit -
may have smaller delay

Number of interconnections affects silicon area -
(7,3) preferrable to (3,2)
 (7,3) has 10 connections and removes 4 bits

 (3,2) has 5 connections and removes only 1 bit

Another implementation of (7,3) - ROM of size
2 x 3= 128 x 3 bits

Access time of ROM unlikely to be small enough

Speed-up may be achieved for ROM implementation
of (k,m) counter with higher values of k

7

Koren Chap.5.83

Avoiding Second Level of Counters

Several (7,3) counters (in parallel) are used to add
7 operands - 3 results obtained

Second level of (3,2) counters needed to reduce
the 3 to 2 results (sum and carry) added by a CPA

Similarly - when (15,4) or more complex counters
are used - more than two results generated

In some cases - additional level of counters can
be combined with first level - more convenient
implementation

When combining a (7,3) counter with a (3,2)
counter - combined counter called a (7;2)
compressor

Koren Chap.5.84

(k;m) Compressor

Variant of a counter with k primary inputs, all of
weight 2 , and m primary outputs of weights
2 ,2 ,...,2

Compressor has several incoming carries of weight
2 from previous compressors, and several
outgoing carries of weights 2 and up

Trivial example of a (6;2) compressor:

All outgoing carries have weight 2

Number of outgoing carries =
number of incoming carries =
k-3 (in general)

i

i+1i

i+1

i+1

i

i+m-1

Koren Chap.5.85

Implementation of a
(7;2) Compressor

 7 primary inputs
of weight 2 and 2 carry inputs from columns i-1 and i-2

 2 primary outputs, S2 and S2 , and 2 outgoing carries
C2 , C2 , to columns i+1 and i+2

 Input carries do not participate in generation of output carries -
avoids slow carry-propagation

 Not a (9,4) counter - 2 outputs with same weight

 Above implementation does not offer any speedup

 Multilevel implementation may yield smaller delay as long as
outgoing carries remain independent of incoming carries

 Bottom right (3,2)
- additional (3,2),
while remaining four
- ordinary (7,3)
counter

i

i

i+1

i+1 i+2

Koren Chap.5.86

multiple-column counters

Generalized parallel counter: add l input columns
and produce m-bit output - (kl-1,kl-2,...,k0,m)

ki - number of input bits in i-th column with
weight 2

(k,m) counter - a special case

Number of outputs m must satisfy

If all l columns have same height k -
(k0=k1= ... =kl-1=k) -

2 - 1 k(2 - 1)

i

m l

Koren Chap.5.87

Example - (5,5,4) Counter
k=5,l=2,m=4

2 -1=k(2 -1) -
all 16 combinations
of output bits are useful

(5,5,4) counters can be used to reduce 5
operands (of any length) to 2 results that can
then be added with one CPA

Length of operands determines number of (5,5,4)
counters in parallel

Reasonable implementation - using ROMs

For (5,5,4) - 2 x4 (=1024x4) ROM

m l

5+5

Koren Chap.5.88

Number of Results of General Counters

String of (k,k,…,k,m) counters may generate more
than 2 intermediate results
 requiring additional reduction before CPA

Number of intermediate results:

A set of (k,k,…,k,m) counters, with l columns
each, produces m-bit outputs at intervals of l bits

Any column has at most m/l output bits

k operands can be reduced to s= m/l operands

 If s=2 - a single CPA can generate final sum

 Otherwise, reduction from s to 2 needed

Koren Chap.5.89

Example

Number of bits per column in a 2-column
counter (k,k,m) is increased beyond 5 -
m 5 and s= m/2 > 2

For k=7, 2 -1 7 x 3 = 21 m=5

(7,7,5) counters generate s=3 operands -
another set of (3,2) counters is needed to
reduce number of operands to 2

m

Koren Chap.5.90

Reducing Hardware Complexity of CSA Tree
Design a smaller carry-save tree - use it iteratively

n operands divided into n/j groups
of j operands - design a tree for
j+2 operands and a CPA

Feedback paths - must complete first pass through
CSA tree before second set of j operands is applied

Execution slowed down - pipelining not possible

Koren Chap.5.91

Pipelining of Arithmetic Operations

Pipelining - well known technique for accelerating
execution of successive identical operations

Circuit partitioned into several subcircuits that can
operate independently on consecutive sets of operands

Executions of several successive operations overlap -
results produced at higher rate

Algorithm divided into several steps - a suitable
circuit designed for each step

Pipeline stages operate independently on different
sets of operands

Storage elements - latches - added between adjacent
stages - when a stage works on one set of operands,
preceding stage can work on next set of operands

Koren Chap.5.92

Pipelining - Example

Addition of 2 operands X,Y performed in 3 steps

Latches between stages 1 and 2 store
intermediate results of step 1

Used by stage 2 to execute step 2 of algorithm

Stage 1 starts executing step 1 on next set of
operands X,Y

Koren Chap.5.93

Pipelining Timing Diagram

4 successive additions with operands X1 & Y1,
X2 & Y2, X3 & Y3, X4 & Y4 producing results
Z1, Z2, Z3, Z4

Koren Chap.5.94

Pipeline Rate

i - execution time of stage i

l - time needed to store new data into latch

Delays of different stages not identical - faster stages
wait for slowest before switching to next task

 - time interval between two successive results being
produced by pipeline:

k - number of stages

 - pipeline period ; 1/ - pipeline rate or bandwidth

Clock period

After latency of 3, new results produced at rate 1/

Koren Chap.5.95

Design Decisions
Partitioning of given algorithm into steps to be

executed by separate stages
 Steps should have similar execution times - pipeline rate

determined by slowest step

Number of steps
 As this number increases, pipeline period decreases, but

number of latches (implementation cost) and latency go up

Latency - time elapsed until first result produced
 Especially important when only a single pass through pipeline

required

Tradeoff between latency and implementation cost
on one hand and pipeline rate on the other hand

Extra delay due to latches, l , can be lowered by
using special circuits like Earl latch

Koren Chap.5.96

Pipelining of Two-Operand Adders

Two-operand adders - usually not pipelined

Pipelining justified with many successive additions

Conditional-sum adder - easily pipelined

log2n stages corresponding to log2n steps -
execution of up to log2n additions can be overlapped

Required number of latches may be excessive

Combining several steps to one stage reduces
latches' overhead and latency

Carry-look-ahead adder cannot be pipelined - some
carry signals must propagate backward

Different designs can be pipelined - final carries and
carry-propagate signals (implemented as Pi=xiyi)
used to calculate sum bits - no need for feedback
connections

Koren Chap.5.97

Pipelining in Multiple-Operand Adders

Pipelining more beneficial in multiple-operand
adders like carry-save adders

Modifying implementation of CSA trees to form a
pipeline is straightforward - requires only
addition of latches

Can be added at each level of tree if maximum
bandwidth is desired

Or - two (or more) levels of tree can be
combined to form a single stage, reducing overall
number of latches and pipeline latency

Koren Chap.5.98

Partial Tree
Reduced hardware complexity of

CSA tree - partial tree

Two feedback connections prevent pipelining

Modification - intermediate
results of CSA tree connected
to bottom level of tree

Smaller tree with j inputs,
2 separate CSAs, and
a set of latches at the bottom

CSAs and latches form
a pipeline stage

Top CSA tree for j operands can be
pipelined too - overall time reduced

