
Koren Chap.5.1

Soo-Ik Chae

Spring 2009

Digital Computer Arithmetic

Part 5
Fast Addition

Koren Chap.5.2

Conditional Sum
Adders

Logarithmic
speed-up
of addition

- O(log n)

For given k operand bits - generate two outputs -
each with k sum bits and an outgoing carry - one for
incoming carry 0 and one for 1

When incoming carry known - select correct output
out of two - no waiting for carry to propagate

Should not apply this idea to all n bits at once

Koren Chap.5.3

Dividing into Groups

Divide n bits into smaller groups - apply above to each

Serial carry-propagation inside groups done in parallel

Groups can be further divided into subgroups

Outputs of subgroups combined to generate output of
groups

Natural division of n - two groups of n/2 bits each

Each can be divided into two groups of n/4, and so on

If n power of 2 - last subgroup is of size 1 and
log n steps are needed

Division not necessarily into equal-sized subgroups -
scheme can be applied even if n not a power of 2

2

Koren Chap.5.4

Example - Combining Single Bits into Pairs

si / si - sum bit at position i under the
assumption that incoming carry into currently
considered group is 0 /1

Similarly - outgoing carries (from group)
ci+1 / ci+1

Step 1 - each bit constitutes a separate group:

0 1

0 1

Koren Chap.5.5

Example - Step 2
Step 2 - two bit positions combined (using data

selectors) into one group of size 2

Carry-out from position 6 becomes internal (to
group) carry and appropriate set of outputs
for position 7 selected

Koren Chap.5.6

Example -
Addition of
Two 8-bit
Operands

Log 8=3 steps

Forced carry
(=0 here) available at start

Only one set of outputs generated
for rightmost group at each step

2

Koren Chap.5.7

Carry-Select Adder

Variation of conditional sum adder

n bits divided into groups - not necessarily equal

Each group generates two sets of sum bits and
an outgoing carry bit - incoming carry selects
one

Each group is not further divided into subgroups

Comparing Conditional-sum and Carry-look-ahead
 Both methods have same speed

 Design of conditional sum adder less modular (why?)

 Carry-look-ahead adder more popular

Koren Chap.5.8

Optimality of Algorithms and Their
Implementations

Numerous algorithms for fast addition proposed -
technology keeps changing making new algorithms
more suitable

Performance of algorithm affected by its unique
features and number system used to represent
operands and results

Many studies performed to compare performance
of different algorithms - preferably
independently of implementation technology

Some studies find the limit (bound) on the
performance of any algorithm in executing a given
arithmetic operation

Koren Chap.5.9

Optimal Addition Algorithms

Execution time reduced by avoiding (or limiting)
carry-propagation

Number systems such as the residue number
system and the SD number system have almost
carry-free addition - provide fast addition
algorithms

These number systems not frequently used -
conversions between number systems needed - may
be more complex than addition - not always
practical

Koren Chap.5.10

Lower Bound on Addition Speed

Theoretical model - derives a bound independent of
implementation technology

Assumptions:
 Circuit for addition realized using only one type of gate -

(f,r) gate - r is radix of number system used and f is
fan-in of gate (maximum number of inputs)

 All (f,r) gates are capable of computing any r-valued
function of f (or less) arguments in exactly the same time

 This fixed time period is the unit delay - computation time
of adder circuit measured in these units

(f,r) gate can compute any function of f arguments
- all we need to find out is how many such gates
are required and how many circuit levels are needed
in order to properly connect the gates

Koren Chap.5.11

Lower Bound - Cont.

A circuit for adding two radix-r operands with n digits
each - 2n inputs and n+1 outputs

Consider output requiring all 2n inputs - can be
reduced to a smaller number of arguments by using

such (f,r) gates operating in parallel

Number of intermediate arguments - - can be
further reduced by a second level of (f,r) gates

Number of levels in tree - at least

Lower bound - assumes that no argument is needed as
input to more than one (f,r) gate

Lower bound on addition time - measured in units of
(f,r) gate delay -

Koren Chap.5.12

Circuit Implemented with (f,r) Gates

Koren Chap.5.13

Limitations of Model

Only fan-in limitation considered - fan-out ignored

Fan-out of gate - ability of its output to drive a
number of inputs to similar gates in the next level

In practice fan-out is constrained

More important - model assumes that any r-valued
function of f arguments can be calculated by a
single (f,r) gate in one unit delay - not true in
practice – O(f)

Many functions require either a more complex gate
(longer delay) or are implemented using several
simple gates organized in two or more levels

Koren Chap.5.14

Improved Bound
Previous bound assumes at least one output digit

that depends on all 2n input digits

If not - a better (lower) value for the bound exists
- smaller trees (with fewer inputs) can be used

This occurs if carry cannot propagate from least-
significant to most-significant position

Example - only xi,yi,xi-1,yi-1 needed to determine
sum digit si -

In the binary system - carry can propagate
through all n positions -

In the two addition algorithms - carry-look-ahead
and conditional sum - execution time proportional to
log n - previous bound approached

Koren Chap.5.15

Implementation Cost

Implementation cost must be considered in addition
to execution time

Implementation cost measure depends on technology

Example - discrete gates
 Number of gates measures implementation cost

 Number of gates along the critical (longest) path (number of
circuit levels) determines execution time

Example - full custom VLSI technology
 Number of gates - limited effect on implementation cost

 Regularity of design and length of interconnections more
important - affect both silicon area and design time

Trade-off between implementation cost and addition
speed exists

Koren Chap.5.16

Performance - Cost Trade-off

If performance more important - carry-look-ahead
adder preferable

Implementation cost can be reduced - determined
by regularity of design and size of required area

Taking advantage of the available degree of freedom
in design - the blocking factor - bounded by fan-in
constraint

Additional constraints exist - e.g., number of pins

Highest blocking factor - not necessarily best

Example - blocking factor of 2 results in a very

regular layout of binary trees with up to log2n
levels - total area approximately nlog2n

Koren Chap.5.17

Manchester Adder

If lower cost implementation

required, ripple-carry

method with speed-up

techniques is best

Manchester adder
uses switches that can
be realized using pass
transistors

 Pi=xi  yi carry-propagate signal

 Gi=xi yi carry-generate signal

 Ki=xiyi carry-kill signal

Only one of the switches is closed at any time

- -

Koren Chap.5.18

Manchester Adder

 Pi=xi  yi used instead of Pi=xi + yi

 If Gi=1 - an outgoing carry is generated always

 If Ki=1 - incoming carry not propagated

 If Pi=1 - incoming carry propagated

yi xi

Koren Chap.5.19

Manchester Adder
Switches in units 0 through n-1 set simultaneously -

propagating carry experiences only a single switch
delay per stage

Number of carry-propagate switches that can be
cascaded is limited to k, which depends on technology
ㅇdelay per group – O(k2)

n units partitioned into groups with separating devices
(buffers) between them

In theory - execution time is still linearly proportional
to O(n) although it is faster

In practice - ratio between execution time and that
of another adder (e.g., carry-look-ahead) depends on
particular technology

Implementation cost - measured in area and/or design
regularity - lower than carry-look-ahead adder

Koren Chap.5.20

Carry-Look-Ahead Addition Revisited

Generalizing equations for fast adders -
carry-look-ahead, carry-select and carry-skip

Notation:

 Pi:j -
group-propagated carry

 Gi:j - group-generated carry

for group of bit positions i,i-1,...,j (i  j)

Pi:j=1 when incoming carry into least significant position
j, cj, is allowed to propagate through all i-j+1 positions

Gi:j=1 when carry is generated in at least one of
positions j to i and propagates to i+1, (ci+1 = 1)
 Generalization of previous equations

 Special case - single bit-position functions Pi and Gi

Koren Chap.5.21

Group-Carry Functions

Boolean equations

Pi:i  Pi ; Gi:i  Gi

Recursive equations can be generalized (i  m  j+1)

Proof - induction on m

Koren Chap.5.22

Fundamental Carry Operator
Boolean operator - fundamental carry operator - 

Using the operator 

(Pi:j,Gi:j)=(Pi:m,Gi:m)  (Pm-1:j,Gm-1:j) (imj+1)
Operation is associative

Operation is idempotent

Therefore
(Pi:j,Gi:j)=(Pi:m,Gi:m)  (Pv:j,Gv:j) im ; vj ;

vm-1

Koren Chap.5.23

Combining two subgroups

Group carries Pi:j and Gi:j calculated from two
subgroup carries - subgroups are of arbitrary size
and may even overlap

Group and subgroup carries used to calculate
individual bit carries ci+1, ci,…, cj+1, and sum outputs
si, si-1,…, sj

For the mth bit position, i  m  j

(Pi:j,Gi:j)=(Pi:m,Gi:m)  (Pv:j,Gv:j) im ; vj ;

vm-1

v

Koren Chap.5.24

Individual Bit Carry & Sum

Must take into account “external” carry cj

For the mth bit position, i  m  j



rewritten as



If Pm = xm  ym then sm = cm  Pm

If Pm=xm+ym then sm=cm  (xm  ym)

Koren Chap.5.25

Various Adder Implementations
Equations can be used to derive various

implementations of adders - ripple-carry, carry-
look-ahead, carry-select, carry-skip, etc.

5-bit ripple-carry adder: All subgroups consist of a
single bit position ; computation starts at position 0,
proceeds to position 1 and so on

16-bit carry-look-ahead adder: 4 groups of size
4; ripple-carry among groups

Koren Chap.5.26

Brent-Kung Adder
Variant of carry-look-ahead adder - blocking factor

of 2  very regular layout tree with log2n levels -

total area  n log2n

Consider c16 - incoming carry at stage 16 in a 17-
bit (or more) adder and suppose G0=x0 y0+P0 c0

The part that generates (P7:0,G7:0) corresponds to

Each line, except c0, represents two signals - either
xm,ym or Pv:m,Gv:m

Koren Chap.5.27

Tree Structure for Calculating C16

Fundamental carry operator - 

Koren Chap.5.28

Carry Calculation

Circuits in levels 2 to
5 implement
fundamental carry op

c16=G15:0 ; Pm=xmym

sum: s16=c16  P16

Tree structure also generates carries c2, c4 and c8

Carry bits for remaining positions can be calculated
through extra subtrees that can be added

Once all carries are known - corresponding sum bits
can be computed

Above - blocking factor = 2
 Different factors for different levels may lead to more

efficient use of space and/or shorter interconnections

Koren Chap.5.29

Prefix Adders

The BK adder is a parallel prefix circuit -
a combinational circuit with 2n inputs (P1, G1),

(P2, G2),...,(Pn, Gn)

producing outputs (P1, G1), (P2, G2)(P1, G1),...,

(Pn, Gn)(Pn-1, Gn-1) ...(P1, G1), where  is an
associative binary operation

(before the parallel prefix circuit) First stage of
adder generates individual Pi and Gi from xi and yi

Remaining stages constitute the parallel prefix circuit
with fundamental carry operation serving as the 
associative binary operation

This part of tree can be designed in different ways

Koren Chap.5.30

Parallel prefix graph of
the 16-bit Brent-Kung Adder

O : p & g generator : fundamental carry operation : sum generator

Koren Chap.5.31

Brent-Kung Parallel Prefix Graph

Bullets implement the fundamental carry operation -
empty circles generate individual Pi and Gi

Number of stages and total delay - can be reduced by
modifying structure of parallel prefix graph

Minimum # of stages = log2n
4 for n=16

For BK parallel
prefix graph =

2log2n - 1

Koren Chap.5.32

Prefix Diagram Notation

i:j

i:j

i:k k-1:0

i:0

i:k k-1:j

i:j

Gi:k

Pk-1:j

Gk-1:j

Gi:j

Pi:j

Pi:k

Gi:k

Gk-1:0

Gi:0 Gi:j

Pi:j

Gi:j

Pi:j

Pi:k

Black cell Gray cell Buffer

PiPi

group generate/propagate group generate

PiPi

PiPi

Koren Chap.5.33

Tree Adder Taxonomy
Ideal N-bit tree adder would have

 L = log N logic levels

 Fanout never exceeding 2

 No more than one wiring track between levels

Describe adder with 3-D taxonomy (l, f, t)
 Logic levels: L + l

 Fanout: 2f + 1

 Wiring tracks: 2t

Known tree adders sit on plane defined by

l + f + t = L-1

Koren Chap.5.34

Tree Adder Taxonomy

f (Fanout)

t (Wire Tracks)

l (Logic Levels)

0 (2)

1 (3)

2 (5)

3 (9)

0 (4)

1 (5)

2 (6)

3 (8)

2 (4)

1 (2)

0 (1)

3 (7)

Koren Chap.5.35

Tree Adder Taxonomy

Koren Chap.5.36

Brent-Kung Adder

1:03:25:47:69:811:1013:1215:14

3:07:411:815:12

7:015:8

11:0

5:09:013:0

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(3,0,0)

of levels = 7; max fanout = 2; max #of tracks = 1

Koren Chap.5.37

Sklansky Adder

As a special case of Ladner-Fisher adder

Implementing a 4-stage parallel prefix graph

Unlike BK, LF adder employs fundamental carry
operators with a fan-out  2 - blocking factor varies
from 2 to n/2

Fan-out  n/2 requiring buffers : adding to overall
delay

Koren Chap.5.38

Sklansky Adder

1:0

2:03:0

3:25:47:69:811:1013:1215:14

6:47:410:811:814:1215:12

12:813:814:815:8

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(0,3,0)

of levels = 4; fanout (8,4,2,1); max # of tracks = 1

Koren Chap.5.39

Ladner-Fischer

1:03:25:47:69:811:1013:12

3:07:411:815:12

5:07:013:815:8

15:14

15:8 13:0 11:0 9:0

0123456789101112131415

15:014:013:012:011:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(1,2,0)

Koren Chap.5.40

Kogge-Stone Adder

log2n stages - but lower fan-out

More lateral wires with long span than BK - requires
buffering causing additional delay

Koren Chap.5.41

Kogge-Stone

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(0,0,3)

fanout (1,1,1,1)

Koren Chap.5.42

Han-Carlson Adder
Other variants - small delay in exchange for high

overall area and/or power
 Compromises between wiring simplicity and overall delay

A hybrid design combining stages from BK and KS
 5 stages - middle 3 resembling KS - wires with shorter span

than KS

Koren Chap.5.43

Han-Carlson
(l,f,t)=(1,0,2)

1:03:25:47:69:811:1013:1215:14

3:05:27:49:611:813:1015:12

5:07:09:211:413:615:8

0123456789101112131415

15:014:013:012:011:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

Koren Chap.5.44

Carry-Select Adders

n bits divided into non-overlapping groups of possibly
different lengths - similar to conditional-sum adder

Each group generates two sets of sum and carry;
one assumes incoming carry into group is 0,
the other 1

the lth group consists of k bit positions starting
with j and ending with i=j+k-1

Koren Chap.5.45

Carry-Select Adders

Koren Chap.5.46

Carry-Select Adder - Equations

Outputs of group: sum bits si, si-1, … , sj

and group outgoing carry ci+1

Same notation as for conditional-sum adder

Two sets of outputs can be calculated in a
ripple-carry manner

Koren Chap.5.47

Detailed Expressions

For bit m - calculate carries from Gm-1:j ; Gm-1:j

Pm-1:j has no superscript - independent of incoming
carry

Once individual carries are calculated - corresponding
sum bits are

Since ci+1 implies ci+1,

Group sizes can be either different

0 1

0 1

and Ci+1  Ci+1

Koren Chap.5.48

Different Group Sizes
Notations:

 Size of group l - kl

 L - number of groups

G - delay of a single gate

kl chosen so that delay of ripple-carry within group is
equal to delay of carry-select chain from group 1 to l

Actual delays depend on technology and implementation

Koren Chap.5.49

Different Group Sizes

Example: Two-level gate implementation of MUX
 Delay of carry-select chain through preceding l-1 groups -

(l-1)2G

 Delay of ripple-carry in lth group - kl 2G

Equalizing the two - kl = l-1 with kl  1 ; l=1,2,…,L

Koren Chap.5.50

Different Group Sizes - Cont.

Resulting group sizes - 1, 1, 2, 3, ...

Sum of group sizes  n

1+L(L-1)/2  n  L(L-1)  2(n-1)

Size of largest group and execution time of carry-
select adder are of the order of n

Example: n=32, 9 groups required - one possible
choice for sizes: 1, 1, 2, 3, 4, 5, 6, 7 & 3

Total carry propagation time is 18G, instead of
62G for ripple-carry adder

Koren Chap.5.51

Different Group Sizes - Cont.

If sizes of L groups are equal, carry-select chain
(i.e., generating Group Carry-Out from Group Carry-
In) not necessarily ripple-carry type

Single or multiple-level carry-look-ahead can be used

Koren Chap.5.52

Carry-Skip Adders
Reduces time needed to propagate carry by skipping

over groups of consecutive adder stages

Generalizes idea behind Manchester Adder

Illustrates dependence of “optimal” algorithm for
addition on available technology
 Known for many years, only recently became popular

In VLSI - speed comparable to carry look-ahead (for
commonly used word lengths - not asymptotically)

Requires less chip area and consumes less power

Based on following observation:

Carry propagation process can skip any adder stage
for which xm  ym (or, Pm = xm  ym = 1)

Several consecutive stages can be skipped if all
satisfy xm  ym

Koren Chap.5.53

Carry-Skip Adder - Structure
n stages divided into groups of consecutive stages

with simple ripple-carry used in each group

Group generates a group-carry-propagate signal
that equals 1 if for all internal stages Pm=1

Signal allows an incoming carry into group to “skip”
all stages within group and generate a group-
carry-out

Group l consists of k bit positions j,j+1,…,j+k-
1(=i)

Koren Chap.5.54

Carry Skip Adder - Structure

Group_l_Carry-out = Gi:j + Pi:j Group_l_Carry-in

Gi:j = 1 when a carry is generated internal to
group and allowed to propagate through all
remaining bit positions including i

Pi:j = 1 when k=i-j+1 bit positions allow incoming
carry cj to propagate to next position i+1

Buffers realize the OR operation

Koren Chap.5.55

Example - 15-bit carry-skip adder

Consisting of 3 groups of size 5 each

Pi:j for all groups can be generated
simultaneously allowing a fast skip of groups
which satisfy Pi:j=1

Koren Chap.5.56

Determining Optimal Group Size k

Assumption: Groups have equal size k - n/k integer

k selected to minimize time for longest carry-
propagation chain

Notations:
 tr - carry-ripple time through a single stage

 ts(k) - time to skip a group of size k (for most
implementations - independent of k)

 tb - delay of buffer (implements OR) between two groups

 Tcarry - overall carry-propagation time - occurs when a
carry is generated in stage 0 and propagates to stage n-1

Carry will ripple through stages 1,2, … ,k-1 within
group 1, skip groups 2,3, … , (n/k-1), then ripple
through group n/k

Koren Chap.5.57

Determining Optimal k - Cont.

Tcarry=(k-1)tr+tb+(n/k-2)(ts+tb)+(k-1)tr

Example - two-level gate implementation used for
ripple-carry and carry-skip circuits

 tr = ts+tb=2G

 Tcarry=(4k+2n/k-7) G

Differentiating Tcarry with
respect to k and equating to 0 -

 kopt = n/2
Group size and carry propagation time proportional

to n - same as for carry-select adder

Example: n=32, 8 groups of size kopt = 4 is best

Topt=25G instead of 62G for ripple-carry adder

Koren Chap.5.58

Further Speedup

Size of first and last groups smaller than fixed size
k  ripple-carry delay through these is reduced

Size of center groups increased - since skip time is
usually independent of group size

Another approach: add second level to allow skipping
two or more groups in one step (more levels possible)

Algorithms exist for deriving optimal group sizes for
different technologies and implementations (i.e.,
different values of ratio (ts+tb)/tr)

Koren Chap.5.59

Variable-Size Groups

Unlike equal-sized group case - cannot restrict to
analysis of worst case for carry propagation

This may lead to trivial conclusion: first and last
groups consisting of a single stage - remaining n-2
stages constituting a single center group

Carry generated at the beginning of center group
may ripple through all other n-3 stages - becoming
the worst case

Must consider all possible carry chains starting at
arbitrary bit position a (with xa=ya) and stopping
at b (xb=yb) where a new carry chain (independent
of previous) may start

Koren Chap.5.60

Optimizing Different Size Groups

k1, k2, … , kL - sizes of L groups -

General case: Chain starts within group u, ends
within group v, skips groups u+1, u+2, … ,v-1

Worst case - carry generated in first position
within u and stops in last position within v

Overall carry-propagation time is

Number of groups L and sizes k1, k2, …, kL

selected so that longest carry-propagation
chain is minimized -



Solution algorithms developed - geometrical
interpretations or dynamic programming

Koren Chap.5.61

Optimization - Example

32-bit adder with single level carry-skip

ts+tb=tr

Optimal organization: L=10 groups with sizes
k1,k2,…,k10 = 1,2,3,4,5,6,5,3,2,1

Resulting in Tcarry  9 tr

If tr=2 G - Tcarry  18 G instead of 25 G

in equal-size group case

Exercise: Show that any two bit positions in any
two groups u and v (1  u  v  10) satisfy
Tcarry(u,v)  9 tr

...
1,2,3,5,6,5,4,3,2,1

Koren Chap.5.62

Carry-skip vs. Carry-select Adder

Strategies behind two schemes sound different

Equations relating group-carry-out with group-
carry-in are variations of same basic equation

Both have execution time proportional to n

Only details of implementation vary, in particular
calculation of sum bits

Even this difference is reduced when the
multiplexing circuitry is merged into summation
logic

Koren Chap.5.63

Hybrid Adders

Combination of two or more addition methods
Common approach: one method for carry,

another for sum
Two hybrid adders combining variation of

 a carry-select for sum
 modified Manchester carry for carry

Both divide operands into equal groups - 8 bits each
 First - uses carry-select for sum for each group of 8 bits

separately
 Second - uses a variant of conditional-sum

Group carry-in signal into 8-bit groups, which selects
one out of two sets of sum bits, is generated by a
carry-look-ahead tree

64-bit adder - carries are c8,c16,c24,c32,c40,c48,c56

Koren Chap.5.64

Blocking Factor in Carry Tree

Structure of carry-look-ahead tree for generating
carries similar to those seen before

Differences - variations in blocking factor at each
level and exact implementation of fundamental
carry operator

Restricting to a fixed blocking factor - natural
choices include 2, 4 or 8
 2 - largest number of levels in tree, vs.

 8 - complex modules for fundamental carry operator with
high delay

Factor of 4 - a reasonable compromise

A Manchester carry chain (MCC), which generates
both carry generate/propagate bits, with a blocking
factor of 4

0 0 0

Koren Chap.5.65

Manchester Carry Module

MCC
G0, P0

G1, P1

G2, P2

G3, P3

G1:0, P1:0

G2:0, P2:0

G3:0, P3:0

Koren Chap.5.66

64-bit
Hybrid
Adder

55:48 – 55:0  C56
47:32 – 47:0  C48
31:16 – 31:0
15:0 - x

38:32 – 39:0  C40
31:16 – 31:0  C32
23:16 – 23:0  C24
15:0 - x

15:12 - 15:0  C16
11:8 – 11:0
7:4 – 7:0  C8
3:0 – x

*
*

Koren Chap.5.67

MCC - General Case

MCC accepts 4 pairs of inputs:

(Pi1:i0,Gi1:i0),(Pj1:j0,Gj1:j0),(Pk1:k0,Gk1:k0),(Pl1:l0,Gl1:l0)

where i1  i0, j1 j0, k1  k0, l1  l0

Produces 3 pairs of outputs:

(Pj1:i0,Gj1:i0),(Pk1:i0,Gk1:i0),(Pl1:i0,Gl1:i0)

where i1  j0-1, j1  k0-1, k1  l0-1

Allows overlap among input subgroups

Koren Chap.5.68

Carry Tree

First level - 14 MCCs calculating
(P3:0,G3:0),…,(P55:52,G55:52)
 only outputs P3:0 and G3:0 are utilized

Second level: each MCC generates
2 pairs (P3:0, G3:0),(P1:0, G1:0)

Providing
(P7:0,G7:0),(P15:0,G15:0),
(P23:16,G23:16),(P31:16,G31:16),
(P39:32,G39:32),(P47:32,G47:32),
(P55:48,G55:48)

Generates c8 & c16 - G7:0 & G15:0

c0 is incorporated into MCC*

for (P3:0, G3:0) *

Koren Chap.5.69

A Schematic Diagram of a 32-bit
Hybrid Adder

Conditional sum adders

Carry select adder

Koren Chap.5.70

Grouping of Bits in a 64-bit Adder

64 bits divided into two sets of 32 bits, each set
further divided into 4 groups of 8 bits

For every group of 8 bits - 2 sets of conditional
sum outputs generated separately

Two most significant groups combined into group
of size 16

Further combined with next group of 8 to form
group of 24 bits and so on
 principle of conditional-sum addition

 However, the way input carries for basic 8-bit groups
are generated is differently with MCC

MCC generates Pm, Gm and Km and cout ,cout for
assumed incoming carries of 0 and 1

Conditional carry-out signals control multiplexers

0 1

Koren Chap.5.71

Dual and Regular Multiplexer

Two sets of dual multiplexers (of size 8 and 16)

Single regular multiplexer of size 24

Koren Chap.5.72

High-Order Half of 64-bit Adder

Similar structure but incoming carry c32

calculated by separate carry-look-ahead circuit

Inputs are conditional carry-out signals
generated by 4 MCCs

Allows operation of high-order half to overlap
operation of low-order half

Summary: combines variants of 3 different
techniques for fast addition: Manchester carry
generation, carry-select, conditional-sum

Other designs of hybrid adders exist - e.g.,
groups with unequal number of bits

“Optimality” of hybrid adders depends on
technology and delay parameters

Koren Chap.5.73

Carry-Save Adders (CSAs)

3 or more operands added simultaneously (e.g., in
multiplication) using 2-operand adders

Time-consuming carry-propagation must be repeated
several times: k operands - k-1 propagations

Techniques for lowering this penalty exist - most
commonly used - carry-save addition

Carry propagates only in last step - other steps
generate partial sum and sequence of carries

Basic CSA accepts 3 n-bit operands; generates 2
n-bit results: n-bit partial sum, n-bit carry

Second CSA accepts the 2 sequences and another
input operand, generates new partial sum and carry

CSA reduces number of operands to be added from
3 to 2 without carry propagation

Koren Chap.5.74

Implementing Carry Save Adders

Simplest implementation - full adder (FA) with 3
inputs x,y,z

x+y+z=2c+s (s,c - sum and carry outputs)

Outputs - weighted binary representation of number
of 1's in inputs

FA called a (3,2) counter

n-bit CSA: n (3,2)
counters in parallel
with no carry links

Koren Chap.5.75

Carry-Save Adder for four 4-bit Operands

 Upper 2 levels - 4-bit CSAs

 3rd level - 4-bit carry-propagating adder (CPA)

 Ripple-carry adder - can be replaced by a carry-look-
ahead adder or any other fast CPA

 Partial sum bits and carry bits interconnected to
guarantee that only bits having same weight are added
by any (3,2) counter

Koren Chap.5.76

Adding k Operands

(k-2) CSAs + one CPA

If CSAs arranged in
cascade - time to add
k operands is (k-2)TCSA + TCPA

TCPA ; TCSA - operation time of CPA ; CSA

G ; FA delay of a single gate ; full adder

TCSA = FA  2 G

Sum of k operands of size n bits each can be
as large as k(2 -1)

Final addition result may reach a length of
n+log 2 k bits

n

Koren Chap.5.77

Six-operand Wallace Tree

Better organization for CSAs - faster operation time

Koren Chap.5.78

Number of Levels in Wallace Tree
Number of operands reduced by a factor of 2/3 at

each level - (l - number of levels)

Consequently, l =

Only an estimate of l - number of operands at each
level must be an integer

Ni - number of operands at level i

Ni+1 - at most 3/2 Ni (x - largest integer
smaller than or equal to x)

Bottom level (0) has 2 - maximum at level 1 is 3 -
maximum at level 2 is 9/2 =4

Resulting sequence: 2,3,4,6,9,13,19,28,…

For 5 operands - still 3 levels

Koren Chap.5.79

Number of Levels in a CSA Tree
for k operands

Example: k=12 - 5 levels - delay of 5TCSA instead
of 10TCSA in a linear cascade of 10 CSAs

Koren Chap.5.80

Most Economical Implementation (Fewer CSAs)

Achieved when number of operands is element of
3,4,6,9,13,19,28,…

If given number of operands, k, not in sequence -
use only enough CSAs to reduce k to closest
(smaller than k) element

Example: k=27, use 8 CSAs (24 inputs) rather
than 9, in top level - number of operands in next
level is 82+3=19

Remaining part of tree
will follow the series

Koren Chap.5.81

(7,3) and Other Counters

(7,3) counter: 3 outputs - represent number of 1's
in 7 inputs

Another example: (15,4)
counter

In general: (k,m) counter -
k and m satisfy
2 -1  k or
m  log 2 (k+1)

(7,3) counter using (3,2)
counters:

Requires 4 (3,2)’s in
3 levels - no speed-up

m

Koren Chap.5.82

(7,3) Counters

(7,3) can be implemented as a multilevel circuit -
may have smaller delay

Number of interconnections affects silicon area -
(7,3) preferrable to (3,2)
 (7,3) has 10 connections and removes 4 bits

 (3,2) has 5 connections and removes only 1 bit

Another implementation of (7,3) - ROM of size
2 x 3= 128 x 3 bits

Access time of ROM unlikely to be small enough

Speed-up may be achieved for ROM implementation
of (k,m) counter with higher values of k

7

Koren Chap.5.83

Avoiding Second Level of Counters

Several (7,3) counters (in parallel) are used to add
7 operands - 3 results obtained

Second level of (3,2) counters needed to reduce
the 3 to 2 results (sum and carry) added by a CPA

Similarly - when (15,4) or more complex counters
are used - more than two results generated

In some cases - additional level of counters can
be combined with first level - more convenient
implementation

When combining a (7,3) counter with a (3,2)
counter - combined counter called a (7;2)
compressor

Koren Chap.5.84

(k;m) Compressor

Variant of a counter with k primary inputs, all of
weight 2 , and m primary outputs of weights
2 ,2 ,...,2

Compressor has several incoming carries of weight
2 from previous compressors, and several
outgoing carries of weights 2 and up

Trivial example of a (6;2) compressor:

All outgoing carries have weight 2

Number of outgoing carries =
number of incoming carries =
k-3 (in general)

i

i+1i

i+1

i+1

i

i+m-1

Koren Chap.5.85

Implementation of a
(7;2) Compressor

 7 primary inputs
of weight 2 and 2 carry inputs from columns i-1 and i-2

 2 primary outputs, S2 and S2 , and 2 outgoing carries
C2 , C2 , to columns i+1 and i+2

 Input carries do not participate in generation of output carries -
avoids slow carry-propagation

 Not a (9,4) counter - 2 outputs with same weight

 Above implementation does not offer any speedup

 Multilevel implementation may yield smaller delay as long as
outgoing carries remain independent of incoming carries

 Bottom right (3,2)
- additional (3,2),
while remaining four
- ordinary (7,3)
counter

i

i

i+1

i+1 i+2

Koren Chap.5.86

multiple-column counters

Generalized parallel counter: add l input columns
and produce m-bit output - (kl-1,kl-2,...,k0,m)

ki - number of input bits in i-th column with
weight 2

(k,m) counter - a special case

Number of outputs m must satisfy

If all l columns have same height k -
(k0=k1= ... =kl-1=k) -

2 - 1  k(2 - 1)

i

m l

Koren Chap.5.87

Example - (5,5,4) Counter
k=5,l=2,m=4

2 -1=k(2 -1) -
all 16 combinations
of output bits are useful

(5,5,4) counters can be used to reduce 5
operands (of any length) to 2 results that can
then be added with one CPA

Length of operands determines number of (5,5,4)
counters in parallel

Reasonable implementation - using ROMs

For (5,5,4) - 2 x4 (=1024x4) ROM

m l

5+5

Koren Chap.5.88

Number of Results of General Counters

String of (k,k,…,k,m) counters may generate more
than 2 intermediate results
 requiring additional reduction before CPA

Number of intermediate results:

A set of (k,k,…,k,m) counters, with l columns
each, produces m-bit outputs at intervals of l bits

Any column has at most m/l output bits

k operands can be reduced to s= m/l operands

 If s=2 - a single CPA can generate final sum

 Otherwise, reduction from s to 2 needed

Koren Chap.5.89

Example

Number of bits per column in a 2-column
counter (k,k,m) is increased beyond 5 -
m  5 and s= m/2 > 2

For k=7, 2 -1  7 x 3 = 21  m=5

(7,7,5) counters generate s=3 operands -
another set of (3,2) counters is needed to
reduce number of operands to 2

m

Koren Chap.5.90

Reducing Hardware Complexity of CSA Tree
Design a smaller carry-save tree - use it iteratively

n operands divided into n/j groups
of j operands - design a tree for
j+2 operands and a CPA

Feedback paths - must complete first pass through
CSA tree before second set of j operands is applied

Execution slowed down - pipelining not possible

Koren Chap.5.91

Pipelining of Arithmetic Operations

Pipelining - well known technique for accelerating
execution of successive identical operations

Circuit partitioned into several subcircuits that can
operate independently on consecutive sets of operands

Executions of several successive operations overlap -
results produced at higher rate

Algorithm divided into several steps - a suitable
circuit designed for each step

Pipeline stages operate independently on different
sets of operands

Storage elements - latches - added between adjacent
stages - when a stage works on one set of operands,
preceding stage can work on next set of operands

Koren Chap.5.92

Pipelining - Example

Addition of 2 operands X,Y performed in 3 steps

Latches between stages 1 and 2 store
intermediate results of step 1

Used by stage 2 to execute step 2 of algorithm

Stage 1 starts executing step 1 on next set of
operands X,Y

Koren Chap.5.93

Pipelining Timing Diagram

4 successive additions with operands X1 & Y1,
X2 & Y2, X3 & Y3, X4 & Y4 producing results
Z1, Z2, Z3, Z4

Koren Chap.5.94

Pipeline Rate

i - execution time of stage i

l - time needed to store new data into latch

Delays of different stages not identical - faster stages
wait for slowest before switching to next task

 - time interval between two successive results being
produced by pipeline:

k - number of stages

 - pipeline period ; 1/ - pipeline rate or bandwidth

Clock period  

After latency of 3, new results produced at rate 1/

Koren Chap.5.95

Design Decisions
Partitioning of given algorithm into steps to be

executed by separate stages
 Steps should have similar execution times - pipeline rate

determined by slowest step

Number of steps
 As this number increases, pipeline period decreases, but

number of latches (implementation cost) and latency go up

Latency - time elapsed until first result produced
 Especially important when only a single pass through pipeline

required

Tradeoff between latency and implementation cost
on one hand and pipeline rate on the other hand

Extra delay due to latches, l , can be lowered by
using special circuits like Earl latch

Koren Chap.5.96

Pipelining of Two-Operand Adders

Two-operand adders - usually not pipelined

Pipelining justified with many successive additions

Conditional-sum adder - easily pipelined

log2n stages corresponding to log2n steps -
execution of up to log2n additions can be overlapped

Required number of latches may be excessive

Combining several steps to one stage reduces
latches' overhead and latency

Carry-look-ahead adder cannot be pipelined - some
carry signals must propagate backward

Different designs can be pipelined - final carries and
carry-propagate signals (implemented as Pi=xiyi)
used to calculate sum bits - no need for feedback
connections

Koren Chap.5.97

Pipelining in Multiple-Operand Adders

Pipelining more beneficial in multiple-operand
adders like carry-save adders

Modifying implementation of CSA trees to form a
pipeline is straightforward - requires only
addition of latches

Can be added at each level of tree if maximum
bandwidth is desired

Or - two (or more) levels of tree can be
combined to form a single stage, reducing overall
number of latches and pipeline latency

Koren Chap.5.98

Partial Tree
Reduced hardware complexity of

CSA tree - partial tree

Two feedback connections prevent pipelining

Modification - intermediate
results of CSA tree connected
to bottom level of tree

Smaller tree with j inputs,
2 separate CSAs, and
a set of latches at the bottom

CSAs and latches form
a pipeline stage

Top CSA tree for j operands can be
pipelined too - overall time reduced

