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Conditional Sum 
Adders

Logarithmic                                             
speed-up                                                 
of addition

- O(log n)

For given k operand bits - generate two outputs -
each with k sum bits and an outgoing carry - one for                                              
incoming carry 0 and one for 1

When incoming carry known - select correct output 
out of two  - no waiting for carry to propagate  

Should not apply this idea to all n bits at once
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Dividing into Groups

Divide n bits into smaller groups - apply above to each  

Serial carry-propagation inside groups done in parallel  

Groups can be further divided into subgroups

Outputs of subgroups combined to generate output of 
groups

Natural division of n - two groups of n/2 bits each 

Each can be divided into two groups of n/4, and so on 

If n power of 2 - last subgroup is of size 1 and    
log  n steps are needed  

Division not necessarily into equal-sized subgroups -
scheme can be applied even if n not a power of 2

2
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Example - Combining Single Bits into Pairs

si /  si  - sum bit at position i under the                                                      
assumption that incoming carry into currently 
considered group is 0 /1

Similarly - outgoing carries (from group)             
ci+1 / ci+1

Step 1 - each bit constitutes a separate group:

0 1

0 1
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Example - Step 2
Step 2 - two bit positions combined (using data                                                  

selectors) into one group of size 2

Carry-out from position 6 becomes internal (to 
group) carry and appropriate set of outputs                            
for position 7 selected
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Example -
Addition of                                               
Two 8-bit 
Operands

Log  8=3 steps

Forced carry                                              
(=0 here) available at start

Only one set of outputs generated                    
for rightmost group at each step

2
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Carry-Select Adder

Variation of conditional sum adder

n bits divided into groups - not necessarily equal

Each group generates two sets of sum bits and 
an outgoing carry bit - incoming carry selects 
one 

Each group is not further divided into subgroups

Comparing Conditional-sum and Carry-look-ahead
 Both methods have same speed

 Design of conditional sum adder less modular (why?) 

 Carry-look-ahead adder more popular
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Optimality of Algorithms and Their 
Implementations

Numerous algorithms for fast addition proposed -
technology keeps changing making new algorithms 
more suitable

Performance of algorithm affected by its unique 
features and number system used to represent 
operands and results

Many studies performed to compare performance 
of different algorithms - preferably 
independently of implementation technology  

Some studies find the limit (bound) on the 
performance of any algorithm in executing a given 
arithmetic operation
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Optimal Addition Algorithms

Execution time reduced by avoiding (or limiting)  
carry-propagation

Number systems such as the residue number 
system and the SD number system have almost 
carry-free addition - provide fast addition 
algorithms 

These number systems not frequently used -
conversions between number systems needed - may 
be more complex than addition - not always 
practical
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Lower Bound on Addition Speed

Theoretical model - derives a bound independent of 
implementation technology 

Assumptions:
 Circuit for addition realized using only one type of gate -

(f,r) gate - r is radix of number system used and f is  
fan-in of gate (maximum number of inputs) 

 All (f,r) gates are capable of computing any r-valued 
function of f (or less) arguments in exactly the same time

 This fixed time period is the unit delay - computation time 
of adder circuit measured in these units

(f,r) gate can compute any function of f arguments 
- all we need to find out is how many such gates 
are required and how many circuit levels are needed 
in order to properly connect the gates
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Lower Bound - Cont.

A circuit for adding two radix-r operands with n digits 
each - 2n inputs and n+1 outputs 

Consider output requiring all 2n inputs - can be 
reduced to a smaller number of arguments by using                            

such (f,r) gates operating in parallel

Number of intermediate arguments - - can be 
further reduced by a second level of (f,r) gates

Number of levels in tree - at least  

Lower bound - assumes that no argument is needed as 
input to more than one (f,r) gate

Lower bound on addition time - measured in units of 
(f,r) gate delay -
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Circuit Implemented with (f,r) Gates
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Limitations of Model

Only fan-in limitation considered - fan-out ignored

Fan-out of gate - ability of its output to drive a 
number of inputs to similar gates in the next level

In practice fan-out is constrained

More important - model assumes that any r-valued 
function of f arguments can be calculated by a 
single (f,r) gate in one unit delay - not true in 
practice – O(f)

Many functions require either a more complex gate 
(longer delay) or are implemented using several 
simple gates organized in two or more levels
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Improved Bound
Previous bound assumes at least one output digit 

that depends on all 2n input digits

If not - a better (lower) value for the bound exists 
- smaller trees (with fewer inputs) can be used

This occurs if carry cannot propagate from least-
significant to most-significant position

Example - only xi,yi,xi-1,yi-1 needed to determine 
sum digit si -

In the binary system - carry can propagate 
through all n positions -

In the two addition algorithms - carry-look-ahead 
and conditional sum - execution time proportional to 
log n - previous bound approached
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Implementation Cost

Implementation cost must be considered in addition 
to execution time 

Implementation cost measure depends on technology  

Example - discrete gates
 Number of gates measures implementation cost  

 Number of gates along the critical (longest) path (number of 
circuit levels) determines execution time  

Example - full custom VLSI technology
 Number of gates - limited effect on implementation cost 

 Regularity of design and length of interconnections more 
important - affect both silicon area and design time

Trade-off between implementation cost and addition 
speed exists
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Performance - Cost Trade-off

If performance more important - carry-look-ahead 
adder preferable

Implementation cost can be reduced - determined  
by regularity of design and size of required area  

Taking advantage of the available degree of freedom 
in design - the blocking factor - bounded by fan-in 
constraint

Additional constraints exist - e.g., number of pins 

Highest blocking factor - not necessarily best 

Example - blocking factor of 2 results in a very 

regular layout of binary trees with up to log2n
levels - total area approximately  nlog2n
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Manchester Adder

If lower cost implementation 

required, ripple-carry 

method with speed-up 

techniques is best 

Manchester adder
uses switches that can                                          
be realized using pass                              
transistors

 Pi=xi  yi carry-propagate signal

 Gi=xi yi carry-generate signal 

 Ki=xiyi carry-kill signal

Only one of the switches is closed at any time 

- -
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Manchester Adder

 Pi=xi  yi used instead of Pi=xi + yi

 If Gi=1 - an outgoing carry is generated always 

 If Ki=1 - incoming carry not propagated

 If Pi=1 - incoming carry propagated

yi xi
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Manchester Adder
Switches in units 0 through n-1 set simultaneously -

propagating carry experiences only a single switch 
delay per stage 

Number of carry-propagate switches that can be 
cascaded is limited to k, which depends on technology
ㅇdelay per group – O(k2)

n units partitioned into groups with separating devices 
(buffers) between them

In theory - execution time is still linearly proportional 
to O(n) although it is faster

In practice - ratio between execution time and that 
of another adder (e.g., carry-look-ahead) depends on 
particular technology

Implementation cost - measured in area and/or design 
regularity - lower than carry-look-ahead adder
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Carry-Look-Ahead Addition Revisited

Generalizing equations for fast adders -
carry-look-ahead, carry-select and carry-skip

Notation: 

 Pi:j -
group-propagated carry 

 Gi:j - group-generated carry                                                               

for group of bit positions i,i-1,...,j (i  j)

Pi:j=1 when incoming carry into least significant position 
j, cj, is allowed to propagate through all i-j+1 positions

Gi:j=1 when carry is generated in at least one of  
positions j to i and propagates to i+1,  (ci+1 = 1)
 Generalization of previous equations

 Special case - single bit-position functions Pi and Gi
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Group-Carry Functions

Boolean equations

Pi:i  Pi ; Gi:i  Gi

Recursive equations can be generalized (i  m  j+1)

Proof - induction on m
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Fundamental Carry Operator
Boolean operator - fundamental carry operator - 

Using the operator 

(Pi:j,Gi:j)=(Pi:m,Gi:m)  (Pm-1:j,Gm-1:j) (imj+1)
Operation is associative

Operation is idempotent 

Therefore                                    
(Pi:j,Gi:j)=(Pi:m,Gi:m)  (Pv:j,Gv:j)     im ; vj ;                         

vm-1
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Combining two subgroups

Group carries Pi:j and Gi:j calculated from two 
subgroup carries - subgroups are of arbitrary size 
and may even overlap

Group and subgroup carries used to calculate 
individual bit carries ci+1, ci,…, cj+1, and sum outputs 
si, si-1,…, sj

For the mth bit position, i  m  j

(Pi:j,Gi:j)=(Pi:m,Gi:m)  (Pv:j,Gv:j)     im ; vj ;                         

vm-1

v
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Individual Bit Carry & Sum

Must take into account “external” carry cj

For the mth bit position, i  m  j



rewritten as



If  Pm = xm  ym then   sm = cm  Pm

If  Pm=xm+ym then  sm=cm  (xm  ym)
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Various Adder Implementations
Equations can be used to derive various 

implementations of adders - ripple-carry, carry-
look-ahead, carry-select, carry-skip, etc. 

5-bit ripple-carry adder: All subgroups consist of a 
single bit position ; computation starts at position 0, 
proceeds to position 1 and so on

16-bit carry-look-ahead adder: 4 groups of size 
4; ripple-carry among groups
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Brent-Kung Adder
Variant of carry-look-ahead adder - blocking factor 

of 2  very regular layout tree with log2n levels -

total area  n log2n

Consider c16 - incoming carry at stage 16 in a 17-
bit (or more) adder and suppose G0=x0 y0+P0 c0

The part that generates (P7:0,G7:0) corresponds to

Each line, except c0, represents two signals - either 
xm,ym or Pv:m,Gv:m
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Tree Structure for Calculating C16

Fundamental carry operator - 
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Carry Calculation

Circuits in levels 2 to                                   
5 implement                                 
fundamental carry op

c16=G15:0 ; Pm=xmym

sum: s16=c16  P16

Tree structure also generates carries c2, c4 and c8

Carry bits for remaining positions can be calculated 
through extra subtrees that can be added

Once all carries are known - corresponding sum bits 
can be computed

Above - blocking factor = 2
 Different factors for different levels may lead to more 

efficient use of space and/or shorter interconnections 
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Prefix Adders

The BK adder is a parallel prefix circuit -
a combinational circuit with 2n inputs (P1, G1), 

(P2, G2),...,(Pn, Gn)

producing outputs (P1, G1), (P2, G2)(P1, G1),...,

(Pn, Gn)(Pn-1, Gn-1) ...(P1, G1), where  is an 
associative binary operation 

(before the parallel prefix circuit) First stage of 
adder generates individual Pi and Gi from xi and yi

Remaining stages constitute the parallel prefix circuit 
with fundamental carry operation serving as the 
associative binary operation  

This part of tree can be designed in different ways
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Parallel prefix graph of 
the 16-bit Brent-Kung Adder 

O : p & g generator : fundamental carry operation : sum generator
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Brent-Kung Parallel Prefix Graph

Bullets implement the fundamental carry operation -
empty circles generate individual Pi and Gi

Number of stages and total delay - can be reduced by 
modifying structure of parallel prefix graph

Minimum # of stages = log2n
4 for n=16

For BK parallel                                          
prefix graph =

2log2n - 1
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Prefix Diagram Notation

i:j

i:j

i:k k-1:0

i:0

i:k k-1:j

i:j

Gi:k

Pk-1:j

Gk-1:j

Gi:j

Pi:j

Pi:k

Gi:k

Gk-1:0

Gi:0 Gi:j

Pi:j

Gi:j

Pi:j

Pi:k

Black cell Gray cell Buffer

PiPi

group generate/propagate group generate

PiPi

PiPi
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Tree Adder Taxonomy
Ideal N-bit tree adder would have

 L = log N   logic levels

 Fanout never exceeding 2

 No more than one wiring track between levels

Describe adder with 3-D taxonomy (l, f, t)
 Logic levels: L + l

 Fanout: 2f + 1

 Wiring tracks: 2t

Known tree adders sit on plane defined by

l + f + t = L-1
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Tree Adder Taxonomy

f (Fanout)

t (Wire Tracks)

l (Logic Levels)

0 (2)

1 (3)

2 (5)

3 (9)

0 (4)

1 (5)

2 (6)

3 (8)

2 (4)

1 (2)

0 (1)

3 (7)



Koren Chap.5.35

Tree Adder Taxonomy
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Brent-Kung Adder

1:03:25:47:69:811:1013:1215:14

3:07:411:815:12

7:015:8

11:0

5:09:013:0

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(3,0,0)

# of levels = 7; max fanout = 2; max #of tracks = 1
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Sklansky Adder

As a special case of Ladner-Fisher adder

Implementing a 4-stage parallel prefix graph

Unlike BK, LF adder employs fundamental carry 
operators with a fan-out  2 - blocking factor varies 
from 2 to n/2

Fan-out  n/2 requiring buffers : adding to overall 
delay
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Sklansky Adder

1:0

2:03:0

3:25:47:69:811:1013:1215:14

6:47:410:811:814:1215:12

12:813:814:815:8

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(0,3,0)

# of levels = 4; fanout (8,4,2,1); max # of tracks = 1
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Ladner-Fischer

1:03:25:47:69:811:1013:12

3:07:411:815:12

5:07:013:815:8

15:14

15:8 13:0 11:0 9:0

0123456789101112131415

15:014:013:012:011:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(1,2,0)
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Kogge-Stone Adder

log2n stages - but lower fan-out

More lateral wires with long span than BK - requires 
buffering causing additional delay
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Kogge-Stone

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(0,0,3)

fanout (1,1,1,1)
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Han-Carlson Adder
Other variants - small delay in exchange for high 

overall area and/or power
 Compromises between wiring simplicity and overall delay 

A hybrid design combining stages from BK and KS
 5 stages - middle 3 resembling KS - wires with shorter span 

than KS
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Han-Carlson
(l,f,t)=(1,0,2)

1:03:25:47:69:811:1013:1215:14

3:05:27:49:611:813:1015:12

5:07:09:211:413:615:8

0123456789101112131415

15:014:013:012:011:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0
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Carry-Select Adders

n bits divided into non-overlapping groups of possibly 
different lengths - similar to conditional-sum adder 

Each group generates two sets of sum and carry; 
one assumes incoming carry into group is 0,         
the other 1

the lth group consists of k bit positions starting 
with j and ending with i=j+k-1
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Carry-Select Adders
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Carry-Select Adder - Equations

Outputs of group: sum bits si, si-1, … , sj

and group outgoing carry ci+1

Same notation as for conditional-sum adder

Two sets of outputs can be calculated in a 
ripple-carry manner 
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Detailed Expressions

For bit m - calculate carries from Gm-1:j ; Gm-1:j

Pm-1:j has no superscript - independent of incoming 
carry 

Once individual carries are calculated - corresponding 
sum bits are

Since ci+1 implies ci+1,

Group sizes can be either different

0 1

0 1

and Ci+1  Ci+1
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Different Group Sizes 
Notations:

 Size of group l - kl 

 L - number of groups

G - delay of a single gate

kl chosen so that delay of ripple-carry within group is 
equal to delay of carry-select chain from group 1 to l

Actual delays depend on technology and implementation
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Different Group Sizes 

Example: Two-level gate implementation of MUX 
 Delay of carry-select chain through preceding l-1 groups -

(l-1)2G

 Delay of ripple-carry in lth group  - kl 2G

Equalizing the two - kl = l-1 with kl  1 ; l=1,2,…,L
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Different Group Sizes - Cont. 

Resulting group sizes - 1, 1, 2, 3, ...

Sum of group sizes  n

1+L(L-1)/2  n  L(L-1)  2(n-1)

Size of largest group and execution time of carry-
select adder are of the order of n

Example: n=32, 9 groups required - one possible 
choice for sizes: 1, 1, 2, 3, 4, 5, 6, 7 & 3

Total carry propagation time is 18G, instead of 
62G for ripple-carry adder 

___
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Different Group Sizes - Cont. 

If sizes of L groups are equal, carry-select chain 
(i.e., generating Group Carry-Out from Group Carry-
In) not necessarily ripple-carry type

Single or multiple-level carry-look-ahead can be used
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Carry-Skip Adders
Reduces time needed to propagate carry by skipping 

over groups of consecutive adder stages 

Generalizes idea behind Manchester Adder

Illustrates dependence of “optimal” algorithm for 
addition on available technology 
 Known for many years, only recently became popular 

In VLSI - speed comparable to carry look-ahead (for 
commonly used word lengths - not asymptotically) 

Requires less chip area and consumes less power

Based on following observation: 

Carry propagation process can skip any adder stage 
for which xm  ym (or, Pm = xm  ym = 1) 

Several consecutive stages can be skipped if all 
satisfy xm  ym
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Carry-Skip Adder - Structure
n stages divided into groups of consecutive stages 

with simple ripple-carry used in each group 

Group generates a group-carry-propagate signal 
that equals 1 if for all internal stages Pm=1

Signal allows an incoming carry into group to “skip” 
all stages within group and generate a group-
carry-out

Group l consists of k bit positions j,j+1,…,j+k-
1(=i)
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Carry Skip Adder - Structure

Group_l_Carry-out = Gi:j + Pi:j Group_l_Carry-in

Gi:j = 1 when a carry is generated internal to 
group and allowed to propagate through all 
remaining bit positions including i

Pi:j = 1 when k=i-j+1 bit positions allow incoming 
carry cj to propagate to next position i+1

Buffers realize the OR operation
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Example - 15-bit carry-skip adder

Consisting of 3 groups of size 5 each

Pi:j for all groups can be generated 
simultaneously allowing a fast skip of groups 
which satisfy Pi:j=1
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Determining Optimal Group Size k

Assumption: Groups have equal size k - n/k integer 

k selected to minimize time for longest carry-
propagation chain 

Notations:
 tr - carry-ripple time through a single stage 

 ts(k) - time to skip a group of size k (for most 
implementations - independent of k)

 tb - delay of buffer (implements OR) between two groups

 Tcarry - overall carry-propagation time - occurs when a 
carry is generated in stage 0 and propagates to stage n-1

Carry will ripple through stages 1,2, … ,k-1 within 
group 1, skip groups 2,3, … , (n/k-1), then ripple 
through group n/k
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Determining Optimal k  - Cont.

Tcarry=(k-1)tr+tb+(n/k-2)(ts+tb)+(k-1)tr

Example - two-level gate implementation used for 
ripple-carry and carry-skip circuits                     

 tr = ts+tb=2G

 Tcarry=(4k+2n/k-7) G

Differentiating Tcarry with                       
respect to k and equating to 0 -

 kopt = n/2
Group size and carry propagation time proportional 

to n - same as for carry-select adder 

Example: n=32,  8 groups of size kopt = 4 is best

Topt=25G instead of 62G for ripple-carry adder

_____

___
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Further Speedup

Size of first and last groups smaller than fixed size 
k  ripple-carry delay through these is reduced 

Size of center groups increased - since skip time is 
usually independent of group size

Another approach: add second level to allow skipping 
two or more groups in one step (more levels possible) 

Algorithms exist for deriving optimal group sizes for 
different technologies and implementations (i.e., 
different values of ratio (ts+tb)/tr)
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Variable-Size Groups

Unlike equal-sized group case - cannot restrict to 
analysis of worst case for carry propagation

This may lead to trivial conclusion: first and last 
groups consisting of a single stage - remaining n-2
stages constituting a single center group 

Carry generated at the beginning of center group 
may ripple through all other n-3 stages - becoming 
the worst case

Must consider all possible carry chains starting at 
arbitrary bit position a (with xa=ya) and stopping 
at b (xb=yb) where a new carry chain (independent 
of previous) may start
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Optimizing Different Size Groups

k1, k2, … , kL - sizes of L groups -

General case: Chain starts within group u, ends 
within group v, skips groups u+1, u+2, … ,v-1

Worst case - carry generated in first position 
within u and stops in last position within v

Overall carry-propagation time is

Number of groups L and sizes k1, k2, …, kL

selected so that longest carry-propagation 
chain is minimized -



Solution algorithms developed - geometrical 
interpretations or dynamic programming
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Optimization - Example

32-bit adder with single level carry-skip 

ts+tb=tr

Optimal organization: L=10 groups with sizes      
k1,k2,…,k10 = 1,2,3,4,5,6,5,3,2,1

Resulting in  Tcarry  9 tr

If tr=2 G - Tcarry  18 G instead of 25 G

in equal-size group case

Exercise: Show that any two bit positions in any 
two groups u and v ( 1  u  v  10 )  satisfy  
Tcarry(u,v)  9 tr

...
1,2,3,5,6,5,4,3,2,1
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Carry-skip vs. Carry-select Adder

Strategies behind two schemes sound different

Equations relating group-carry-out with group-
carry-in are variations of same basic equation 

Both have execution time proportional to n

Only details of implementation vary, in particular 
calculation of sum bits

Even this difference is reduced when the 
multiplexing circuitry is merged into summation 
logic

___
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Hybrid Adders

Combination of two or more addition methods
Common approach: one method for carry,

another for sum
Two hybrid adders combining variation of 

 a carry-select for sum
 modified Manchester carry for carry

Both divide operands into equal groups - 8 bits each
 First - uses carry-select for sum for each group of 8 bits 

separately
 Second - uses a variant of conditional-sum

Group carry-in signal into 8-bit groups, which selects 
one out of two sets of sum bits, is generated by a 
carry-look-ahead tree

64-bit adder - carries are c8,c16,c24,c32,c40,c48,c56
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Blocking Factor in Carry Tree

Structure of carry-look-ahead tree for generating  
carries similar to those seen before

Differences - variations in blocking factor at each 
level and exact implementation of fundamental 
carry operator

Restricting to a fixed blocking factor - natural 
choices include 2, 4 or 8
 2 - largest number of levels in tree, vs. 

 8 - complex modules for fundamental carry operator with  
high delay

Factor of 4 - a reasonable compromise

A Manchester carry chain (MCC), which generates 
both carry generate/propagate bits, with a blocking 
factor of 4

0 0 0
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Manchester Carry Module

MCC
G0, P0

G1, P1

G2, P2

G3, P3

G1:0, P1:0

G2:0, P2:0

G3:0, P3:0
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64-bit 
Hybrid 
Adder

55:48 – 55:0  C56
47:32 – 47:0  C48
31:16 – 31:0
15:0  - x

38:32 – 39:0  C40
31:16 – 31:0  C32
23:16 – 23:0  C24
15:0  - x

15:12 - 15:0  C16
11:8  – 11:0
7:4   – 7:0   C8
3:0   – x

*
*
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MCC - General Case

MCC accepts 4 pairs of inputs:

(Pi1:i0,Gi1:i0),(Pj1:j0,Gj1:j0),(Pk1:k0,Gk1:k0),(Pl1:l0,Gl1:l0)

where i1  i0, j1 j0, k1  k0, l1  l0

Produces 3 pairs of outputs: 

(Pj1:i0,Gj1:i0),(Pk1:i0,Gk1:i0),(Pl1:i0,Gl1:i0)

where i1  j0-1, j1  k0-1, k1  l0-1

Allows overlap among input subgroups 
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Carry Tree

First level - 14 MCCs calculating                             
(P3:0,G3:0),…,(P55:52,G55:52)
 only outputs P3:0 and G3:0 are utilized

Second level: each MCC generates                      
2 pairs (P3:0, G3:0),(P1:0, G1:0)

Providing                                                      
(P7:0,G7:0),(P15:0,G15:0),                      
(P23:16,G23:16),(P31:16,G31:16),                  
(P39:32,G39:32),(P47:32,G47:32),              
(P55:48,G55:48)

Generates c8 & c16 - G7:0 & G15:0

c0 is incorporated into MCC*

for (P3:0, G3:0) *
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A Schematic Diagram of a 32-bit 
Hybrid Adder

Conditional sum adders

Carry select adder
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Grouping of Bits in a 64-bit Adder

64 bits divided into two sets of 32 bits, each set  
further divided into 4 groups of 8 bits

For every group of 8 bits - 2 sets of conditional 
sum outputs generated separately 

Two most significant groups combined into group 
of size 16

Further combined with next group of 8 to form 
group of 24 bits and so on 
 principle of conditional-sum addition

 However, the way input carries for basic 8-bit groups 
are generated is differently with MCC

MCC generates Pm, Gm and Km and cout ,cout for 
assumed incoming carries of 0 and 1

Conditional carry-out signals control multiplexers

0 1
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Dual and Regular Multiplexer 

Two sets of dual multiplexers (of size 8 and 16) 

Single regular multiplexer of size 24
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High-Order Half of 64-bit Adder

Similar structure but incoming carry c32

calculated by separate carry-look-ahead circuit 

Inputs are conditional carry-out signals 
generated by 4 MCCs

Allows operation of high-order half to overlap 
operation of low-order half

Summary: combines variants of 3 different 
techniques for fast addition: Manchester carry 
generation, carry-select, conditional-sum 

Other designs of hybrid adders exist - e.g., 
groups with unequal number of bits

“Optimality” of hybrid adders depends on 
technology and delay parameters
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Carry-Save Adders (CSAs)

3 or more operands added simultaneously (e.g., in 
multiplication) using 2-operand adders

Time-consuming carry-propagation must be repeated 
several times:  k operands  - k-1 propagations

Techniques for lowering this penalty exist - most 
commonly used - carry-save addition

Carry propagates only in last step - other steps 
generate partial sum and sequence of carries

Basic CSA accepts 3 n-bit operands; generates 2      
n-bit results: n-bit partial sum, n-bit carry

Second CSA accepts the 2 sequences and another 
input operand, generates new partial sum and carry

CSA reduces number of operands to be added from  
3 to 2 without carry propagation
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Implementing Carry Save Adders

Simplest implementation - full adder (FA) with 3
inputs x,y,z

x+y+z=2c+s (s,c - sum and carry outputs) 

Outputs - weighted binary representation of number 
of 1's in inputs

FA called a (3,2) counter

n-bit CSA: n  (3,2)
counters in parallel                                   
with no carry links
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Carry-Save Adder for four 4-bit Operands

 Upper 2 levels - 4-bit CSAs

 3rd level - 4-bit carry-propagating adder (CPA) 

 Ripple-carry adder - can be replaced by a carry-look-
ahead adder or any other fast CPA

 Partial sum bits and carry bits interconnected to 
guarantee that only bits having same weight are added 
by any (3,2) counter
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Adding k Operands

(k-2) CSAs + one CPA

If CSAs arranged in                       
cascade - time to add                             
k operands is  (k-2)TCSA + TCPA

TCPA ; TCSA - operation time of CPA ; CSA

G  ; FA delay of a single gate ; full adder   

TCSA = FA  2 G 

Sum of k operands of size n bits each can be 
as large as k(2 -1)

Final addition result may reach a length of                                  
n+log 2 k bits

n
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Six-operand Wallace Tree

Better organization for CSAs - faster operation time
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Number of Levels in Wallace Tree
Number of operands reduced by a factor of 2/3 at                    

each level - (l - number of levels)  

Consequently,  l =

Only an estimate of l - number of operands at each 
level must be an integer

Ni - number of operands at level i

Ni+1 - at most 3/2 Ni ( x - largest integer 
smaller than or equal to x )

Bottom level (0) has 2 - maximum at level 1 is 3 -
maximum at level 2 is 9/2 =4

Resulting sequence: 2,3,4,6,9,13,19,28,…

For 5 operands - still 3 levels
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Number of Levels in a CSA Tree 
for k operands

Example: k=12 - 5 levels - delay of 5TCSA instead 
of 10TCSA in a linear cascade of 10 CSAs
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Most Economical Implementation (Fewer CSAs)

Achieved when number of operands is element of 
3,4,6,9,13,19,28,…

If given number of operands, k, not in sequence -
use only enough CSAs to reduce k to closest 
(smaller than k) element 

Example: k=27, use 8 CSAs (24 inputs) rather 
than 9, in top level - number of operands in next 
level is 82+3=19

Remaining part of tree                                    
will follow the series
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(7,3) and Other Counters

(7,3) counter: 3 outputs - represent number of 1's 
in 7 inputs 

Another example: (15,4)
counter

In general: (k,m) counter -
k and m satisfy             
2  -1  k or                
m  log 2 (k+1)

(7,3) counter using (3,2)
counters:

Requires 4  (3,2)’s in                  
3 levels - no speed-up

m
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(7,3) Counters

(7,3) can be implemented as a multilevel circuit -
may have smaller delay

Number of interconnections affects silicon area -
(7,3) preferrable to (3,2)
 (7,3) has 10 connections and removes 4 bits 

 (3,2) has 5 connections and removes only 1 bit

Another implementation of (7,3) - ROM of size       
2  x 3= 128 x 3 bits

Access time of ROM unlikely to be small enough

Speed-up may be achieved for ROM implementation 
of (k,m) counter with higher values of k

7
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Avoiding Second Level of Counters

Several (7,3) counters (in parallel) are used to add 
7 operands - 3 results obtained 

Second level of (3,2) counters needed to reduce 
the 3 to 2 results (sum and carry) added by a CPA

Similarly - when (15,4) or more complex counters 
are used - more than two results generated 

In some cases - additional level of counters can 
be combined with first level - more convenient 
implementation

When combining a (7,3) counter with a (3,2)
counter - combined counter called a (7;2)
compressor
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(k;m) Compressor

Variant of a counter with k primary inputs, all of 
weight 2  , and m primary outputs of weights            
2  ,2   ,...,2

Compressor has several incoming carries of weight 
2  from previous compressors, and several 
outgoing carries of weights 2  and up 

Trivial example of a (6;2) compressor: 

All outgoing carries have weight 2

Number of outgoing carries =                            
number of incoming carries =                            
k-3 (in general)

i

i+1i

i+1

i+1

i

i+m-1
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Implementation of a 
(7;2) Compressor

 7 primary inputs                                                       
of weight 2  and 2 carry inputs from columns i-1 and i-2

 2 primary outputs, S2  and S2   , and 2 outgoing carries         
C2   , C2   , to columns i+1 and i+2

 Input carries do not participate in generation of output carries -
avoids slow carry-propagation 

 Not a (9,4) counter - 2 outputs with same weight

 Above implementation does not offer any speedup 

 Multilevel implementation may yield smaller delay as long as 
outgoing carries remain independent of incoming carries

 Bottom right (3,2)
- additional (3,2), 
while remaining four 
- ordinary (7,3)
counter

i

i

i+1

i+1 i+2
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multiple-column counters

Generalized parallel counter: add l input columns 
and produce m-bit output - (kl-1,kl-2,...,k0,m) 

ki - number of input bits in i-th column with 
weight 2

(k,m) counter - a special case

Number of outputs m must satisfy

If all l columns have same height k  -
(k0=k1= ... =kl-1=k) -

2  - 1  k(2  - 1)

i

m l
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Example - (5,5,4) Counter
k=5,l=2,m=4

2  -1=k(2  -1) -
all 16 combinations                                 
of output bits are useful 

(5,5,4) counters can be used to reduce 5
operands (of any length) to 2 results that can 
then be added with one CPA 

Length of operands determines number of (5,5,4)
counters in parallel

Reasonable implementation - using ROMs

For (5,5,4) - 2   x4 (=1024x4)  ROM

m l

5+5
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Number of Results of General Counters

String of (k,k,…,k,m) counters may generate more 
than 2 intermediate results
 requiring additional reduction before CPA

Number of intermediate results: 

A set of (k,k,…,k,m) counters, with l columns 
each, produces m-bit outputs at intervals of l bits

Any column has at most m/l output bits  

k operands can be reduced to s= m/l operands

 If s=2 - a single CPA can generate final sum 

 Otherwise, reduction from s to 2 needed



Koren Chap.5.89

Example

Number of bits per column in a 2-column 
counter (k,k,m) is increased beyond 5 -
m  5 and s= m/2 > 2

For k=7,  2   -1  7 x 3 = 21  m=5

(7,7,5) counters generate s=3 operands -
another set of (3,2) counters is needed to 
reduce number of operands to 2

m
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Reducing Hardware Complexity of CSA Tree
Design a smaller carry-save tree - use it iteratively 

n operands divided into n/j groups                    
of j operands - design a tree for                          
j+2 operands and a CPA

Feedback paths - must complete first pass through 
CSA tree before second set of j operands is applied 

Execution slowed down - pipelining not possible
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Pipelining of Arithmetic Operations

Pipelining - well known technique for accelerating  
execution of successive identical operations 

Circuit partitioned into several subcircuits that can 
operate independently on consecutive sets of operands

Executions of several successive operations overlap -
results produced at higher rate 

Algorithm divided into several steps - a suitable 
circuit designed for each step 

Pipeline stages operate independently on different 
sets of operands

Storage elements - latches - added between adjacent 
stages - when a stage works on one set of operands, 
preceding stage can work on next set of operands
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Pipelining - Example

Addition of 2 operands X,Y performed in 3 steps

Latches between stages 1 and 2 store 
intermediate results of step 1

Used by stage 2 to execute step 2 of algorithm

Stage 1 starts executing step 1 on next set of 
operands X,Y
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Pipelining Timing Diagram

4 successive additions with operands X1 & Y1,                          
X2 & Y2, X3 & Y3, X4 & Y4 producing results 
Z1, Z2, Z3, Z4
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Pipeline Rate

i - execution time of stage i 

l - time needed to store new data into latch

Delays of different stages not identical - faster stages  
wait for slowest before switching to next task 

 - time interval between two successive results being 
produced by pipeline: 

k - number of stages 

 - pipeline period ; 1/ - pipeline rate or bandwidth

Clock period  

After latency of 3, new results produced at rate  1/
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Design Decisions
Partitioning of given algorithm into steps to be 

executed by separate stages 
 Steps should have similar execution times - pipeline rate 

determined by slowest step 

Number of steps 
 As this number increases, pipeline period decreases, but 

number of latches (implementation cost) and latency go up 

Latency - time elapsed until first result produced 
 Especially important when only a single pass through pipeline 

required 

Tradeoff between latency and implementation cost 
on one hand and pipeline rate on the other hand 

Extra delay due to latches, l , can be lowered by 
using special circuits like Earl latch 
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Pipelining of Two-Operand Adders

Two-operand adders - usually not pipelined 

Pipelining justified with many successive additions 

Conditional-sum adder - easily pipelined

log2n stages corresponding to log2n steps -
execution of up to log2n additions can be overlapped

Required number of latches may be excessive 

Combining several steps to one stage reduces  
latches' overhead and latency

Carry-look-ahead adder cannot be pipelined - some 
carry signals must propagate backward 

Different designs can be pipelined - final carries and 
carry-propagate signals (implemented as Pi=xiyi) 
used to calculate sum bits - no need for feedback 
connections 
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Pipelining in Multiple-Operand Adders

Pipelining more beneficial in multiple-operand 
adders like carry-save adders

Modifying implementation of CSA trees to form a 
pipeline is straightforward - requires only 
addition of latches

Can be added at each level of tree if maximum 
bandwidth is desired 

Or - two (or more) levels of tree can be 
combined to form a single stage, reducing overall 
number of latches and pipeline latency
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Partial Tree
Reduced hardware complexity of                       

CSA tree  - partial tree 

Two feedback connections prevent pipelining 

Modification - intermediate                             
results of CSA tree connected                         
to bottom level of tree

Smaller tree with j inputs,                          
2 separate CSAs, and                               
a set of latches at the bottom 

CSAs and latches form                                         
a pipeline stage

Top CSA tree for j operands can be           
pipelined too - overall time reduced 


