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Conditional Sum 
Adders

Logarithmic                                             
speed-up                                                 
of addition

- O(log n)

For given k operand bits - generate two outputs -
each with k sum bits and an outgoing carry - one for                                              
incoming carry 0 and one for 1

When incoming carry known - select correct output 
out of two  - no waiting for carry to propagate  

Should not apply this idea to all n bits at once
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Dividing into Groups

Divide n bits into smaller groups - apply above to each  

Serial carry-propagation inside groups done in parallel  

Groups can be further divided into subgroups

Outputs of subgroups combined to generate output of 
groups

Natural division of n - two groups of n/2 bits each 

Each can be divided into two groups of n/4, and so on 

If n power of 2 - last subgroup is of size 1 and    
log  n steps are needed  

Division not necessarily into equal-sized subgroups -
scheme can be applied even if n not a power of 2
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Example - Combining Single Bits into Pairs

si /  si  - sum bit at position i under the                                                      
assumption that incoming carry into currently 
considered group is 0 /1

Similarly - outgoing carries (from group)             
ci+1 / ci+1

Step 1 - each bit constitutes a separate group:

0 1

0 1
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Example - Step 2
Step 2 - two bit positions combined (using data                                                  

selectors) into one group of size 2

Carry-out from position 6 becomes internal (to 
group) carry and appropriate set of outputs                            
for position 7 selected
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Example -
Addition of                                               
Two 8-bit 
Operands

Log  8=3 steps

Forced carry                                              
(=0 here) available at start

Only one set of outputs generated                    
for rightmost group at each step
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Carry-Select Adder

Variation of conditional sum adder

n bits divided into groups - not necessarily equal

Each group generates two sets of sum bits and 
an outgoing carry bit - incoming carry selects 
one 

Each group is not further divided into subgroups

Comparing Conditional-sum and Carry-look-ahead
 Both methods have same speed

 Design of conditional sum adder less modular (why?) 

 Carry-look-ahead adder more popular
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Optimality of Algorithms and Their 
Implementations

Numerous algorithms for fast addition proposed -
technology keeps changing making new algorithms 
more suitable

Performance of algorithm affected by its unique 
features and number system used to represent 
operands and results

Many studies performed to compare performance 
of different algorithms - preferably 
independently of implementation technology  

Some studies find the limit (bound) on the 
performance of any algorithm in executing a given 
arithmetic operation
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Optimal Addition Algorithms

Execution time reduced by avoiding (or limiting)  
carry-propagation

Number systems such as the residue number 
system and the SD number system have almost 
carry-free addition - provide fast addition 
algorithms 

These number systems not frequently used -
conversions between number systems needed - may 
be more complex than addition - not always 
practical
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Lower Bound on Addition Speed

Theoretical model - derives a bound independent of 
implementation technology 

Assumptions:
 Circuit for addition realized using only one type of gate -

(f,r) gate - r is radix of number system used and f is  
fan-in of gate (maximum number of inputs) 

 All (f,r) gates are capable of computing any r-valued 
function of f (or less) arguments in exactly the same time

 This fixed time period is the unit delay - computation time 
of adder circuit measured in these units

(f,r) gate can compute any function of f arguments 
- all we need to find out is how many such gates 
are required and how many circuit levels are needed 
in order to properly connect the gates
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Lower Bound - Cont.

A circuit for adding two radix-r operands with n digits 
each - 2n inputs and n+1 outputs 

Consider output requiring all 2n inputs - can be 
reduced to a smaller number of arguments by using                            

such (f,r) gates operating in parallel

Number of intermediate arguments - - can be 
further reduced by a second level of (f,r) gates

Number of levels in tree - at least  

Lower bound - assumes that no argument is needed as 
input to more than one (f,r) gate

Lower bound on addition time - measured in units of 
(f,r) gate delay -
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Circuit Implemented with (f,r) Gates
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Limitations of Model

Only fan-in limitation considered - fan-out ignored

Fan-out of gate - ability of its output to drive a 
number of inputs to similar gates in the next level

In practice fan-out is constrained

More important - model assumes that any r-valued 
function of f arguments can be calculated by a 
single (f,r) gate in one unit delay - not true in 
practice – O(f)

Many functions require either a more complex gate 
(longer delay) or are implemented using several 
simple gates organized in two or more levels
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Improved Bound
Previous bound assumes at least one output digit 

that depends on all 2n input digits

If not - a better (lower) value for the bound exists 
- smaller trees (with fewer inputs) can be used

This occurs if carry cannot propagate from least-
significant to most-significant position

Example - only xi,yi,xi-1,yi-1 needed to determine 
sum digit si -

In the binary system - carry can propagate 
through all n positions -

In the two addition algorithms - carry-look-ahead 
and conditional sum - execution time proportional to 
log n - previous bound approached
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Implementation Cost

Implementation cost must be considered in addition 
to execution time 

Implementation cost measure depends on technology  

Example - discrete gates
 Number of gates measures implementation cost  

 Number of gates along the critical (longest) path (number of 
circuit levels) determines execution time  

Example - full custom VLSI technology
 Number of gates - limited effect on implementation cost 

 Regularity of design and length of interconnections more 
important - affect both silicon area and design time

Trade-off between implementation cost and addition 
speed exists
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Performance - Cost Trade-off

If performance more important - carry-look-ahead 
adder preferable

Implementation cost can be reduced - determined  
by regularity of design and size of required area  

Taking advantage of the available degree of freedom 
in design - the blocking factor - bounded by fan-in 
constraint

Additional constraints exist - e.g., number of pins 

Highest blocking factor - not necessarily best 

Example - blocking factor of 2 results in a very 

regular layout of binary trees with up to log2n
levels - total area approximately  nlog2n
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Manchester Adder

If lower cost implementation 

required, ripple-carry 

method with speed-up 

techniques is best 

Manchester adder
uses switches that can                                          
be realized using pass                              
transistors

 Pi=xi  yi carry-propagate signal

 Gi=xi yi carry-generate signal 

 Ki=xiyi carry-kill signal

Only one of the switches is closed at any time 

- -
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Manchester Adder

 Pi=xi  yi used instead of Pi=xi + yi

 If Gi=1 - an outgoing carry is generated always 

 If Ki=1 - incoming carry not propagated

 If Pi=1 - incoming carry propagated

yi xi
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Manchester Adder
Switches in units 0 through n-1 set simultaneously -

propagating carry experiences only a single switch 
delay per stage 

Number of carry-propagate switches that can be 
cascaded is limited to k, which depends on technology
ㅇdelay per group – O(k2)

n units partitioned into groups with separating devices 
(buffers) between them

In theory - execution time is still linearly proportional 
to O(n) although it is faster

In practice - ratio between execution time and that 
of another adder (e.g., carry-look-ahead) depends on 
particular technology

Implementation cost - measured in area and/or design 
regularity - lower than carry-look-ahead adder
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Carry-Look-Ahead Addition Revisited

Generalizing equations for fast adders -
carry-look-ahead, carry-select and carry-skip

Notation: 

 Pi:j -
group-propagated carry 

 Gi:j - group-generated carry                                                               

for group of bit positions i,i-1,...,j (i  j)

Pi:j=1 when incoming carry into least significant position 
j, cj, is allowed to propagate through all i-j+1 positions

Gi:j=1 when carry is generated in at least one of  
positions j to i and propagates to i+1,  (ci+1 = 1)
 Generalization of previous equations

 Special case - single bit-position functions Pi and Gi
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Group-Carry Functions

Boolean equations

Pi:i  Pi ; Gi:i  Gi

Recursive equations can be generalized (i  m  j+1)

Proof - induction on m
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Fundamental Carry Operator
Boolean operator - fundamental carry operator - 

Using the operator 

(Pi:j,Gi:j)=(Pi:m,Gi:m)  (Pm-1:j,Gm-1:j) (imj+1)
Operation is associative

Operation is idempotent 

Therefore                                    
(Pi:j,Gi:j)=(Pi:m,Gi:m)  (Pv:j,Gv:j)     im ; vj ;                         

vm-1
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Combining two subgroups

Group carries Pi:j and Gi:j calculated from two 
subgroup carries - subgroups are of arbitrary size 
and may even overlap

Group and subgroup carries used to calculate 
individual bit carries ci+1, ci,…, cj+1, and sum outputs 
si, si-1,…, sj

For the mth bit position, i  m  j

(Pi:j,Gi:j)=(Pi:m,Gi:m)  (Pv:j,Gv:j)     im ; vj ;                         

vm-1

v
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Individual Bit Carry & Sum

Must take into account “external” carry cj

For the mth bit position, i  m  j



rewritten as



If  Pm = xm  ym then   sm = cm  Pm

If  Pm=xm+ym then  sm=cm  (xm  ym)
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Various Adder Implementations
Equations can be used to derive various 

implementations of adders - ripple-carry, carry-
look-ahead, carry-select, carry-skip, etc. 

5-bit ripple-carry adder: All subgroups consist of a 
single bit position ; computation starts at position 0, 
proceeds to position 1 and so on

16-bit carry-look-ahead adder: 4 groups of size 
4; ripple-carry among groups
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Brent-Kung Adder
Variant of carry-look-ahead adder - blocking factor 

of 2  very regular layout tree with log2n levels -

total area  n log2n

Consider c16 - incoming carry at stage 16 in a 17-
bit (or more) adder and suppose G0=x0 y0+P0 c0

The part that generates (P7:0,G7:0) corresponds to

Each line, except c0, represents two signals - either 
xm,ym or Pv:m,Gv:m
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Tree Structure for Calculating C16

Fundamental carry operator - 
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Carry Calculation

Circuits in levels 2 to                                   
5 implement                                 
fundamental carry op

c16=G15:0 ; Pm=xmym

sum: s16=c16  P16

Tree structure also generates carries c2, c4 and c8

Carry bits for remaining positions can be calculated 
through extra subtrees that can be added

Once all carries are known - corresponding sum bits 
can be computed

Above - blocking factor = 2
 Different factors for different levels may lead to more 

efficient use of space and/or shorter interconnections 
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Prefix Adders

The BK adder is a parallel prefix circuit -
a combinational circuit with 2n inputs (P1, G1), 

(P2, G2),...,(Pn, Gn)

producing outputs (P1, G1), (P2, G2)(P1, G1),...,

(Pn, Gn)(Pn-1, Gn-1) ...(P1, G1), where  is an 
associative binary operation 

(before the parallel prefix circuit) First stage of 
adder generates individual Pi and Gi from xi and yi

Remaining stages constitute the parallel prefix circuit 
with fundamental carry operation serving as the 
associative binary operation  

This part of tree can be designed in different ways
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Parallel prefix graph of 
the 16-bit Brent-Kung Adder 

O : p & g generator : fundamental carry operation : sum generator
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Brent-Kung Parallel Prefix Graph

Bullets implement the fundamental carry operation -
empty circles generate individual Pi and Gi

Number of stages and total delay - can be reduced by 
modifying structure of parallel prefix graph

Minimum # of stages = log2n
4 for n=16

For BK parallel                                          
prefix graph =

2log2n - 1
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Prefix Diagram Notation

i:j

i:j

i:k k-1:0

i:0

i:k k-1:j

i:j

Gi:k

Pk-1:j

Gk-1:j

Gi:j

Pi:j

Pi:k

Gi:k

Gk-1:0

Gi:0 Gi:j

Pi:j

Gi:j

Pi:j

Pi:k

Black cell Gray cell Buffer

PiPi

group generate/propagate group generate

PiPi

PiPi
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Tree Adder Taxonomy
Ideal N-bit tree adder would have

 L = log N   logic levels

 Fanout never exceeding 2

 No more than one wiring track between levels

Describe adder with 3-D taxonomy (l, f, t)
 Logic levels: L + l

 Fanout: 2f + 1

 Wiring tracks: 2t

Known tree adders sit on plane defined by

l + f + t = L-1
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Tree Adder Taxonomy

f (Fanout)

t (Wire Tracks)

l (Logic Levels)

0 (2)

1 (3)

2 (5)

3 (9)

0 (4)

1 (5)

2 (6)

3 (8)

2 (4)

1 (2)

0 (1)

3 (7)
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Tree Adder Taxonomy
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Brent-Kung Adder

1:03:25:47:69:811:1013:1215:14

3:07:411:815:12

7:015:8

11:0

5:09:013:0

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(3,0,0)

# of levels = 7; max fanout = 2; max #of tracks = 1
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Sklansky Adder

As a special case of Ladner-Fisher adder

Implementing a 4-stage parallel prefix graph

Unlike BK, LF adder employs fundamental carry 
operators with a fan-out  2 - blocking factor varies 
from 2 to n/2

Fan-out  n/2 requiring buffers : adding to overall 
delay
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Sklansky Adder

1:0

2:03:0

3:25:47:69:811:1013:1215:14

6:47:410:811:814:1215:12

12:813:814:815:8

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(0,3,0)

# of levels = 4; fanout (8,4,2,1); max # of tracks = 1
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Ladner-Fischer

1:03:25:47:69:811:1013:12

3:07:411:815:12

5:07:013:815:8

15:14

15:8 13:0 11:0 9:0

0123456789101112131415

15:014:013:012:011:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(1,2,0)
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Kogge-Stone Adder

log2n stages - but lower fan-out

More lateral wires with long span than BK - requires 
buffering causing additional delay
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Kogge-Stone

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(l,f,t)=(0,0,3)

fanout (1,1,1,1)
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Han-Carlson Adder
Other variants - small delay in exchange for high 

overall area and/or power
 Compromises between wiring simplicity and overall delay 

A hybrid design combining stages from BK and KS
 5 stages - middle 3 resembling KS - wires with shorter span 

than KS
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Han-Carlson
(l,f,t)=(1,0,2)

1:03:25:47:69:811:1013:1215:14

3:05:27:49:611:813:1015:12

5:07:09:211:413:615:8

0123456789101112131415

15:014:013:012:011:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0
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Carry-Select Adders

n bits divided into non-overlapping groups of possibly 
different lengths - similar to conditional-sum adder 

Each group generates two sets of sum and carry; 
one assumes incoming carry into group is 0,         
the other 1

the lth group consists of k bit positions starting 
with j and ending with i=j+k-1
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Carry-Select Adders
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Carry-Select Adder - Equations

Outputs of group: sum bits si, si-1, … , sj

and group outgoing carry ci+1

Same notation as for conditional-sum adder

Two sets of outputs can be calculated in a 
ripple-carry manner 
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Detailed Expressions

For bit m - calculate carries from Gm-1:j ; Gm-1:j

Pm-1:j has no superscript - independent of incoming 
carry 

Once individual carries are calculated - corresponding 
sum bits are

Since ci+1 implies ci+1,

Group sizes can be either different

0 1

0 1

and Ci+1  Ci+1
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Different Group Sizes 
Notations:

 Size of group l - kl 

 L - number of groups

G - delay of a single gate

kl chosen so that delay of ripple-carry within group is 
equal to delay of carry-select chain from group 1 to l

Actual delays depend on technology and implementation
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Different Group Sizes 

Example: Two-level gate implementation of MUX 
 Delay of carry-select chain through preceding l-1 groups -

(l-1)2G

 Delay of ripple-carry in lth group  - kl 2G

Equalizing the two - kl = l-1 with kl  1 ; l=1,2,…,L
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Different Group Sizes - Cont. 

Resulting group sizes - 1, 1, 2, 3, ...

Sum of group sizes  n

1+L(L-1)/2  n  L(L-1)  2(n-1)

Size of largest group and execution time of carry-
select adder are of the order of n

Example: n=32, 9 groups required - one possible 
choice for sizes: 1, 1, 2, 3, 4, 5, 6, 7 & 3

Total carry propagation time is 18G, instead of 
62G for ripple-carry adder 

___
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Different Group Sizes - Cont. 

If sizes of L groups are equal, carry-select chain 
(i.e., generating Group Carry-Out from Group Carry-
In) not necessarily ripple-carry type

Single or multiple-level carry-look-ahead can be used
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Carry-Skip Adders
Reduces time needed to propagate carry by skipping 

over groups of consecutive adder stages 

Generalizes idea behind Manchester Adder

Illustrates dependence of “optimal” algorithm for 
addition on available technology 
 Known for many years, only recently became popular 

In VLSI - speed comparable to carry look-ahead (for 
commonly used word lengths - not asymptotically) 

Requires less chip area and consumes less power

Based on following observation: 

Carry propagation process can skip any adder stage 
for which xm  ym (or, Pm = xm  ym = 1) 

Several consecutive stages can be skipped if all 
satisfy xm  ym
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Carry-Skip Adder - Structure
n stages divided into groups of consecutive stages 

with simple ripple-carry used in each group 

Group generates a group-carry-propagate signal 
that equals 1 if for all internal stages Pm=1

Signal allows an incoming carry into group to “skip” 
all stages within group and generate a group-
carry-out

Group l consists of k bit positions j,j+1,…,j+k-
1(=i)
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Carry Skip Adder - Structure

Group_l_Carry-out = Gi:j + Pi:j Group_l_Carry-in

Gi:j = 1 when a carry is generated internal to 
group and allowed to propagate through all 
remaining bit positions including i

Pi:j = 1 when k=i-j+1 bit positions allow incoming 
carry cj to propagate to next position i+1

Buffers realize the OR operation
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Example - 15-bit carry-skip adder

Consisting of 3 groups of size 5 each

Pi:j for all groups can be generated 
simultaneously allowing a fast skip of groups 
which satisfy Pi:j=1
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Determining Optimal Group Size k

Assumption: Groups have equal size k - n/k integer 

k selected to minimize time for longest carry-
propagation chain 

Notations:
 tr - carry-ripple time through a single stage 

 ts(k) - time to skip a group of size k (for most 
implementations - independent of k)

 tb - delay of buffer (implements OR) between two groups

 Tcarry - overall carry-propagation time - occurs when a 
carry is generated in stage 0 and propagates to stage n-1

Carry will ripple through stages 1,2, … ,k-1 within 
group 1, skip groups 2,3, … , (n/k-1), then ripple 
through group n/k
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Determining Optimal k  - Cont.

Tcarry=(k-1)tr+tb+(n/k-2)(ts+tb)+(k-1)tr

Example - two-level gate implementation used for 
ripple-carry and carry-skip circuits                     

 tr = ts+tb=2G

 Tcarry=(4k+2n/k-7) G

Differentiating Tcarry with                       
respect to k and equating to 0 -

 kopt = n/2
Group size and carry propagation time proportional 

to n - same as for carry-select adder 

Example: n=32,  8 groups of size kopt = 4 is best

Topt=25G instead of 62G for ripple-carry adder

_____

___
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Further Speedup

Size of first and last groups smaller than fixed size 
k  ripple-carry delay through these is reduced 

Size of center groups increased - since skip time is 
usually independent of group size

Another approach: add second level to allow skipping 
two or more groups in one step (more levels possible) 

Algorithms exist for deriving optimal group sizes for 
different technologies and implementations (i.e., 
different values of ratio (ts+tb)/tr)
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Variable-Size Groups

Unlike equal-sized group case - cannot restrict to 
analysis of worst case for carry propagation

This may lead to trivial conclusion: first and last 
groups consisting of a single stage - remaining n-2
stages constituting a single center group 

Carry generated at the beginning of center group 
may ripple through all other n-3 stages - becoming 
the worst case

Must consider all possible carry chains starting at 
arbitrary bit position a (with xa=ya) and stopping 
at b (xb=yb) where a new carry chain (independent 
of previous) may start
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Optimizing Different Size Groups

k1, k2, … , kL - sizes of L groups -

General case: Chain starts within group u, ends 
within group v, skips groups u+1, u+2, … ,v-1

Worst case - carry generated in first position 
within u and stops in last position within v

Overall carry-propagation time is

Number of groups L and sizes k1, k2, …, kL

selected so that longest carry-propagation 
chain is minimized -



Solution algorithms developed - geometrical 
interpretations or dynamic programming
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Optimization - Example

32-bit adder with single level carry-skip 

ts+tb=tr

Optimal organization: L=10 groups with sizes      
k1,k2,…,k10 = 1,2,3,4,5,6,5,3,2,1

Resulting in  Tcarry  9 tr

If tr=2 G - Tcarry  18 G instead of 25 G

in equal-size group case

Exercise: Show that any two bit positions in any 
two groups u and v ( 1  u  v  10 )  satisfy  
Tcarry(u,v)  9 tr

...
1,2,3,5,6,5,4,3,2,1
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Carry-skip vs. Carry-select Adder

Strategies behind two schemes sound different

Equations relating group-carry-out with group-
carry-in are variations of same basic equation 

Both have execution time proportional to n

Only details of implementation vary, in particular 
calculation of sum bits

Even this difference is reduced when the 
multiplexing circuitry is merged into summation 
logic

___
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Hybrid Adders

Combination of two or more addition methods
Common approach: one method for carry,

another for sum
Two hybrid adders combining variation of 

 a carry-select for sum
 modified Manchester carry for carry

Both divide operands into equal groups - 8 bits each
 First - uses carry-select for sum for each group of 8 bits 

separately
 Second - uses a variant of conditional-sum

Group carry-in signal into 8-bit groups, which selects 
one out of two sets of sum bits, is generated by a 
carry-look-ahead tree

64-bit adder - carries are c8,c16,c24,c32,c40,c48,c56
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Blocking Factor in Carry Tree

Structure of carry-look-ahead tree for generating  
carries similar to those seen before

Differences - variations in blocking factor at each 
level and exact implementation of fundamental 
carry operator

Restricting to a fixed blocking factor - natural 
choices include 2, 4 or 8
 2 - largest number of levels in tree, vs. 

 8 - complex modules for fundamental carry operator with  
high delay

Factor of 4 - a reasonable compromise

A Manchester carry chain (MCC), which generates 
both carry generate/propagate bits, with a blocking 
factor of 4

0 0 0
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Manchester Carry Module

MCC
G0, P0

G1, P1

G2, P2

G3, P3

G1:0, P1:0

G2:0, P2:0

G3:0, P3:0
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64-bit 
Hybrid 
Adder

55:48 – 55:0  C56
47:32 – 47:0  C48
31:16 – 31:0
15:0  - x

38:32 – 39:0  C40
31:16 – 31:0  C32
23:16 – 23:0  C24
15:0  - x

15:12 - 15:0  C16
11:8  – 11:0
7:4   – 7:0   C8
3:0   – x

*
*
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MCC - General Case

MCC accepts 4 pairs of inputs:

(Pi1:i0,Gi1:i0),(Pj1:j0,Gj1:j0),(Pk1:k0,Gk1:k0),(Pl1:l0,Gl1:l0)

where i1  i0, j1 j0, k1  k0, l1  l0

Produces 3 pairs of outputs: 

(Pj1:i0,Gj1:i0),(Pk1:i0,Gk1:i0),(Pl1:i0,Gl1:i0)

where i1  j0-1, j1  k0-1, k1  l0-1

Allows overlap among input subgroups 



Koren Chap.5.68

Carry Tree

First level - 14 MCCs calculating                             
(P3:0,G3:0),…,(P55:52,G55:52)
 only outputs P3:0 and G3:0 are utilized

Second level: each MCC generates                      
2 pairs (P3:0, G3:0),(P1:0, G1:0)

Providing                                                      
(P7:0,G7:0),(P15:0,G15:0),                      
(P23:16,G23:16),(P31:16,G31:16),                  
(P39:32,G39:32),(P47:32,G47:32),              
(P55:48,G55:48)

Generates c8 & c16 - G7:0 & G15:0

c0 is incorporated into MCC*

for (P3:0, G3:0) *
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A Schematic Diagram of a 32-bit 
Hybrid Adder

Conditional sum adders

Carry select adder
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Grouping of Bits in a 64-bit Adder

64 bits divided into two sets of 32 bits, each set  
further divided into 4 groups of 8 bits

For every group of 8 bits - 2 sets of conditional 
sum outputs generated separately 

Two most significant groups combined into group 
of size 16

Further combined with next group of 8 to form 
group of 24 bits and so on 
 principle of conditional-sum addition

 However, the way input carries for basic 8-bit groups 
are generated is differently with MCC

MCC generates Pm, Gm and Km and cout ,cout for 
assumed incoming carries of 0 and 1

Conditional carry-out signals control multiplexers

0 1
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Dual and Regular Multiplexer 

Two sets of dual multiplexers (of size 8 and 16) 

Single regular multiplexer of size 24
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High-Order Half of 64-bit Adder

Similar structure but incoming carry c32

calculated by separate carry-look-ahead circuit 

Inputs are conditional carry-out signals 
generated by 4 MCCs

Allows operation of high-order half to overlap 
operation of low-order half

Summary: combines variants of 3 different 
techniques for fast addition: Manchester carry 
generation, carry-select, conditional-sum 

Other designs of hybrid adders exist - e.g., 
groups with unequal number of bits

“Optimality” of hybrid adders depends on 
technology and delay parameters
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Carry-Save Adders (CSAs)

3 or more operands added simultaneously (e.g., in 
multiplication) using 2-operand adders

Time-consuming carry-propagation must be repeated 
several times:  k operands  - k-1 propagations

Techniques for lowering this penalty exist - most 
commonly used - carry-save addition

Carry propagates only in last step - other steps 
generate partial sum and sequence of carries

Basic CSA accepts 3 n-bit operands; generates 2      
n-bit results: n-bit partial sum, n-bit carry

Second CSA accepts the 2 sequences and another 
input operand, generates new partial sum and carry

CSA reduces number of operands to be added from  
3 to 2 without carry propagation
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Implementing Carry Save Adders

Simplest implementation - full adder (FA) with 3
inputs x,y,z

x+y+z=2c+s (s,c - sum and carry outputs) 

Outputs - weighted binary representation of number 
of 1's in inputs

FA called a (3,2) counter

n-bit CSA: n  (3,2)
counters in parallel                                   
with no carry links
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Carry-Save Adder for four 4-bit Operands

 Upper 2 levels - 4-bit CSAs

 3rd level - 4-bit carry-propagating adder (CPA) 

 Ripple-carry adder - can be replaced by a carry-look-
ahead adder or any other fast CPA

 Partial sum bits and carry bits interconnected to 
guarantee that only bits having same weight are added 
by any (3,2) counter
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Adding k Operands

(k-2) CSAs + one CPA

If CSAs arranged in                       
cascade - time to add                             
k operands is  (k-2)TCSA + TCPA

TCPA ; TCSA - operation time of CPA ; CSA

G  ; FA delay of a single gate ; full adder   

TCSA = FA  2 G 

Sum of k operands of size n bits each can be 
as large as k(2 -1)

Final addition result may reach a length of                                  
n+log 2 k bits

n
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Six-operand Wallace Tree

Better organization for CSAs - faster operation time
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Number of Levels in Wallace Tree
Number of operands reduced by a factor of 2/3 at                    

each level - (l - number of levels)  

Consequently,  l =

Only an estimate of l - number of operands at each 
level must be an integer

Ni - number of operands at level i

Ni+1 - at most 3/2 Ni ( x - largest integer 
smaller than or equal to x )

Bottom level (0) has 2 - maximum at level 1 is 3 -
maximum at level 2 is 9/2 =4

Resulting sequence: 2,3,4,6,9,13,19,28,…

For 5 operands - still 3 levels
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Number of Levels in a CSA Tree 
for k operands

Example: k=12 - 5 levels - delay of 5TCSA instead 
of 10TCSA in a linear cascade of 10 CSAs
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Most Economical Implementation (Fewer CSAs)

Achieved when number of operands is element of 
3,4,6,9,13,19,28,…

If given number of operands, k, not in sequence -
use only enough CSAs to reduce k to closest 
(smaller than k) element 

Example: k=27, use 8 CSAs (24 inputs) rather 
than 9, in top level - number of operands in next 
level is 82+3=19

Remaining part of tree                                    
will follow the series
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(7,3) and Other Counters

(7,3) counter: 3 outputs - represent number of 1's 
in 7 inputs 

Another example: (15,4)
counter

In general: (k,m) counter -
k and m satisfy             
2  -1  k or                
m  log 2 (k+1)

(7,3) counter using (3,2)
counters:

Requires 4  (3,2)’s in                  
3 levels - no speed-up

m



Koren Chap.5.82

(7,3) Counters

(7,3) can be implemented as a multilevel circuit -
may have smaller delay

Number of interconnections affects silicon area -
(7,3) preferrable to (3,2)
 (7,3) has 10 connections and removes 4 bits 

 (3,2) has 5 connections and removes only 1 bit

Another implementation of (7,3) - ROM of size       
2  x 3= 128 x 3 bits

Access time of ROM unlikely to be small enough

Speed-up may be achieved for ROM implementation 
of (k,m) counter with higher values of k

7
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Avoiding Second Level of Counters

Several (7,3) counters (in parallel) are used to add 
7 operands - 3 results obtained 

Second level of (3,2) counters needed to reduce 
the 3 to 2 results (sum and carry) added by a CPA

Similarly - when (15,4) or more complex counters 
are used - more than two results generated 

In some cases - additional level of counters can 
be combined with first level - more convenient 
implementation

When combining a (7,3) counter with a (3,2)
counter - combined counter called a (7;2)
compressor
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(k;m) Compressor

Variant of a counter with k primary inputs, all of 
weight 2  , and m primary outputs of weights            
2  ,2   ,...,2

Compressor has several incoming carries of weight 
2  from previous compressors, and several 
outgoing carries of weights 2  and up 

Trivial example of a (6;2) compressor: 

All outgoing carries have weight 2

Number of outgoing carries =                            
number of incoming carries =                            
k-3 (in general)

i

i+1i

i+1

i+1

i

i+m-1
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Implementation of a 
(7;2) Compressor

 7 primary inputs                                                       
of weight 2  and 2 carry inputs from columns i-1 and i-2

 2 primary outputs, S2  and S2   , and 2 outgoing carries         
C2   , C2   , to columns i+1 and i+2

 Input carries do not participate in generation of output carries -
avoids slow carry-propagation 

 Not a (9,4) counter - 2 outputs with same weight

 Above implementation does not offer any speedup 

 Multilevel implementation may yield smaller delay as long as 
outgoing carries remain independent of incoming carries

 Bottom right (3,2)
- additional (3,2), 
while remaining four 
- ordinary (7,3)
counter

i

i

i+1

i+1 i+2
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multiple-column counters

Generalized parallel counter: add l input columns 
and produce m-bit output - (kl-1,kl-2,...,k0,m) 

ki - number of input bits in i-th column with 
weight 2

(k,m) counter - a special case

Number of outputs m must satisfy

If all l columns have same height k  -
(k0=k1= ... =kl-1=k) -

2  - 1  k(2  - 1)

i

m l
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Example - (5,5,4) Counter
k=5,l=2,m=4

2  -1=k(2  -1) -
all 16 combinations                                 
of output bits are useful 

(5,5,4) counters can be used to reduce 5
operands (of any length) to 2 results that can 
then be added with one CPA 

Length of operands determines number of (5,5,4)
counters in parallel

Reasonable implementation - using ROMs

For (5,5,4) - 2   x4 (=1024x4)  ROM

m l

5+5
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Number of Results of General Counters

String of (k,k,…,k,m) counters may generate more 
than 2 intermediate results
 requiring additional reduction before CPA

Number of intermediate results: 

A set of (k,k,…,k,m) counters, with l columns 
each, produces m-bit outputs at intervals of l bits

Any column has at most m/l output bits  

k operands can be reduced to s= m/l operands

 If s=2 - a single CPA can generate final sum 

 Otherwise, reduction from s to 2 needed
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Example

Number of bits per column in a 2-column 
counter (k,k,m) is increased beyond 5 -
m  5 and s= m/2 > 2

For k=7,  2   -1  7 x 3 = 21  m=5

(7,7,5) counters generate s=3 operands -
another set of (3,2) counters is needed to 
reduce number of operands to 2

m
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Reducing Hardware Complexity of CSA Tree
Design a smaller carry-save tree - use it iteratively 

n operands divided into n/j groups                    
of j operands - design a tree for                          
j+2 operands and a CPA

Feedback paths - must complete first pass through 
CSA tree before second set of j operands is applied 

Execution slowed down - pipelining not possible
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Pipelining of Arithmetic Operations

Pipelining - well known technique for accelerating  
execution of successive identical operations 

Circuit partitioned into several subcircuits that can 
operate independently on consecutive sets of operands

Executions of several successive operations overlap -
results produced at higher rate 

Algorithm divided into several steps - a suitable 
circuit designed for each step 

Pipeline stages operate independently on different 
sets of operands

Storage elements - latches - added between adjacent 
stages - when a stage works on one set of operands, 
preceding stage can work on next set of operands



Koren Chap.5.92

Pipelining - Example

Addition of 2 operands X,Y performed in 3 steps

Latches between stages 1 and 2 store 
intermediate results of step 1

Used by stage 2 to execute step 2 of algorithm

Stage 1 starts executing step 1 on next set of 
operands X,Y
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Pipelining Timing Diagram

4 successive additions with operands X1 & Y1,                          
X2 & Y2, X3 & Y3, X4 & Y4 producing results 
Z1, Z2, Z3, Z4
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Pipeline Rate

i - execution time of stage i 

l - time needed to store new data into latch

Delays of different stages not identical - faster stages  
wait for slowest before switching to next task 

 - time interval between two successive results being 
produced by pipeline: 

k - number of stages 

 - pipeline period ; 1/ - pipeline rate or bandwidth

Clock period  

After latency of 3, new results produced at rate  1/
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Design Decisions
Partitioning of given algorithm into steps to be 

executed by separate stages 
 Steps should have similar execution times - pipeline rate 

determined by slowest step 

Number of steps 
 As this number increases, pipeline period decreases, but 

number of latches (implementation cost) and latency go up 

Latency - time elapsed until first result produced 
 Especially important when only a single pass through pipeline 

required 

Tradeoff between latency and implementation cost 
on one hand and pipeline rate on the other hand 

Extra delay due to latches, l , can be lowered by 
using special circuits like Earl latch 
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Pipelining of Two-Operand Adders

Two-operand adders - usually not pipelined 

Pipelining justified with many successive additions 

Conditional-sum adder - easily pipelined

log2n stages corresponding to log2n steps -
execution of up to log2n additions can be overlapped

Required number of latches may be excessive 

Combining several steps to one stage reduces  
latches' overhead and latency

Carry-look-ahead adder cannot be pipelined - some 
carry signals must propagate backward 

Different designs can be pipelined - final carries and 
carry-propagate signals (implemented as Pi=xiyi) 
used to calculate sum bits - no need for feedback 
connections 
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Pipelining in Multiple-Operand Adders

Pipelining more beneficial in multiple-operand 
adders like carry-save adders

Modifying implementation of CSA trees to form a 
pipeline is straightforward - requires only 
addition of latches

Can be added at each level of tree if maximum 
bandwidth is desired 

Or - two (or more) levels of tree can be 
combined to form a single stage, reducing overall 
number of latches and pipeline latency
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Partial Tree
Reduced hardware complexity of                       

CSA tree  - partial tree 

Two feedback connections prevent pipelining 

Modification - intermediate                             
results of CSA tree connected                         
to bottom level of tree

Smaller tree with j inputs,                          
2 separate CSAs, and                               
a set of latches at the bottom 

CSAs and latches form                                         
a pipeline stage

Top CSA tree for j operands can be           
pipelined too - overall time reduced 


