Slide#3

Firstly, calculate concentrations in meq/L units: (conc. in meq/L) = (conc. in mg/L) / (lonic weight, IW) x (oxidation number)

Cations	IW (g/mole)	Conc. in mg/L	Conc. in meq/L
Ca ²⁺	40.1	93.8	4.68
Mg^{2+}	24.3	28.0	2.30
Na⁺	23.0	13.7	0.60
K ⁺	39.1	30.2	0.77
			Σ (cations) = 8.35

Cations	IW (g/mole)	Conc. in mg/L	Conc. in meq/L
HCO ₃ -	61.0	164.7	2.70
SO ₄ ²⁻	96.1	134.0	2.79
Cl ⁻	35.5	92.5	2.61
			∑(anions) = 8.10

Slide#3

$$\left| \sum (anions) - \sum (cations) \right| = 0.25$$

$$0.1065 + 0.0155 \sum (anions) = 0.23$$

Therefore,

$$\left|\sum anions - \sum cations\right| > \left(0.1065 + 0.0155 \sum anions\right)$$
 (not acceptable)

Source of error:

- measurement error
- missing one or more significant ions