Slide#11

1) BOD₅/COD

Assume UBOD=COD as the compound can be completely mineralized biologically

$$\frac{BOD_5}{COD} = \frac{BOD_5}{UBOD} = 1 - \exp(-k_1 t) = 1 - \exp(-0.23/d \times 5d)$$

$$\frac{BOD_5}{COD} = 0.68$$

2) COD/TOC

The reaction to completely mineralize the organic compound can be written as

$$C_5H_7O_2N + 5O_2 \rightarrow 5CO_2 + NH_3 + 2H_2O$$

Molecular weight: 113

Slide#11

COD per g compound is calculated as:

$$\frac{5 \times 32 \ g \ O_2}{113 \ g \ C_5 H_7 O_2 N} = 1.42 \ g \ COD/g \ C_5 H_7 O_2 N$$

This value will be utilized later in this class for modeling biological wastewater treatment!

TOC per g compound is calculated as:

$$\frac{5 \times 12 \ g \ C}{113 \ g \ C_5 H_7 O_2 N} = 0.53 \ g \ TOC/g \ C_5 H_7 O_2 N$$

$$\frac{COD}{TOC} = \frac{1.42}{0.53} = 2.68$$

Slide#11

cf) CH₄ (methane) COD/TOC value

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

COD per g CH₄:

$$\frac{2 \times 32 \ g \ O_2}{16 \ g \ CH_4} = 4.0 \ g \ COD/g \ CH_4$$

TOC per g CH₄:

$$\frac{1 \times 12 \ g \ C}{16 \ g \ CH_4} = 0.75 \ g \ TOC/g \ CH_4$$

$$\frac{COD}{TOC} = \frac{4.0}{0.75} = 5.33$$

$$COD/TOC \ ratio \ is \ much \ higher for \ CH_4 \ than \ for \ C_5H_7O_2N.$$

$$Can \ you \ find \ the \ reason \ why?$$