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Chapter 7. Optimization

7.1 Introduction

- Definition : Finding the conditions that give max. or min. values of a function
- Target : Selecting which criterion is to be optimized ex) size, weight, cost

- Components and system simulation are preliminary steps to optimization
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Chapter 7. Optimization

7.2 Levels of Optimization

- Two levels of optimization
optimization within a concept

comparison of alternate concepts &

- A complete optimization procedure ;

(

Proposal

~

» Optimizing the design of each concepts

» Choosing the best design

» Proposing all reasonable alternate concepts
( N
Optimization
.
( N
Choice
\. .
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Chapter 7. Optimization

7.3 Mathematical Representation of Optimization Problems

- Objective function : Meaning the function to be optimized ('y’ below equation)

- Independent variables : Constituting an objective function but independent with
each variable ('x; ---x;,," below equation)

Y = Y(Xl, ST T Xn) — optimize

/ |

Objective function Independent variables
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7.3 Mathematical Representation of Optimization Problems

- In many physical situations there are constraints, some of which may be equality
constraints as well as inequality constraints.

- Equality constraints (%) ;
b=, %) =0

- Inequality constraints (£-&52) ;

Wi =i (X, X)) < Lj
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7.3 Mathematical Representation of Optimization Problems

- An additive constant in the objective function does not affect the values of
independent variables at which the optimum occurs.

lf y:a-l_Y(xl!"'an)
T

Additive constant

then miny=a+ minY

- The maximum of a function occurs at the same state point at which the
minimum of the negative of the function occurs

maX[y(xli T xn)] — _min[_y(xli Y xn)]
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Chapter 7. Optimization

7.4 A Water-Chilling System

- A water-chilling system, shown schematically in the figure, will be used to illustrate
the mathematical statement.

- Task : Minimize the first cost to satisfy the cooling system’s requirements

Cooling water et SN

AR ' ( > |
Condenser CD o

Refrigerant
A
——VVVWVAAA >
Evaporator EV
i AMAMNAA—L——— i 8°C
Water

20°kg/s, 13°C Compressor CP

Fig. Water-chilling unit being optimized for minimum first cost 7/27



Chapter 7. Optimization

7.4 A Water-Chilling System
(Given)

- System'’s requirements
mass flow rate : 20 kg/s of water inserted
cooling temperature : from 13°C to 8 °C

Rejecting the heat to the atmosphere through cooling tower
- Target : total costy = objective function

- Variables : x¢cp, xgy, xcp, xp, xcr = individual variables

(meaning the size of the compressor, evaporator, condenser, pump, cooling tower, respectively)
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7.4 A Water-Chilling System
(Optimization)
- The total costy; y = y(xcp, Xpv, Xcp, Xp, Xcr) = minimize

- Prior to optimization, the water-chilling assignment can be calculated as below;

4.19 kJ
kg - K

20 kg/s x (13 — 8)°C x

] = 419 kW

- The cooling capacity ¢ ; @ = o(xcp, Xgy, Xcp, Xp, Xcr) = 419 kW
- t,., Is above 0°C to prevent water from freezing on the tube surface.

- The evaporating temperature t.,; t.,(Xxcp, Xgy, Xcp, Xp, Xcr) = 0°C

- There may be other inequality constraints, such as limiting the condenser cooling

water flow, discharge temperature of the refrigerant leaving the compressor.
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7.5 Optimization Procedures

- The objective function is dependent upon more than one variable.

- Some thermal systems may have many variables which demand
sophisticated optimization techniques.

- Several optimization methods will be listed in the next sections.
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7.6 Calculus Methods : Lagrange Multipliers (Ch.8 & 16)

- Using derivatives to indicate the optimum. (presented in Ch.8 and Ch.16)

- The method of Lagrange multipliers performs an optimization where
equality constraints exist.
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7.7 Search Methods (Ch.9 & 17)

- These method involve examining many combinations of the independent
variables

- Then, drawing conclusions from the magnitude of the objective function at
these combinations (presented in Ch.9 & 17)

- Usually inefficient, but it can be proper when optimizing systems where
the components are available only in finite steps of sizes.
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7.8 Dynamic Programming (Ch.10 & 18)

- Not meaning computer programming, but optimization technique

- The result of this method is an optimum function, relating several
variables, rather than an optimum state point. (covered in Ch.10 & 18)

- E.g. the best route of a gas pipeline
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7.9 Geometric Programming (Ch.11)

- Optimizing a function that consists of a sum of polynomials wherein the
variables appear to integer and non-integer exponents. (covered in Ch.11)

7.10 Linear Programming (Ch.12)

- Widely used and well-developed discipline applicable when a given
equation is linear. (covered in Ch.12)
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7.11 Setting up the Mathematical Statement of optimization Problem
- Strategy

1) Specify all direct constraints e.g. capacity, temperature, pressure
2) Describe in equation form the component characteristics

3) Write mass and energy balances
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Example 7.1 : Equations for Optimizing Air-Cooling System

- Hot air is cooled by two-stage water cooling system. Develope (a) the
objective function and (b) the constraint equations for an optimization to
provide minimum first cost.

Water

4 *

2.3 kg/s o0 j
Cooling |
tower

A2
Compression power P, kW 24°C
I \
AN VVAA———— T AAVAAAAN

Air
95°C 92 B S
1.2kg/s t3 10°C

— 1MV AN
Refrigeration

Precooler :
unit

Fig. Air-cooling system in Example 7.1 16/27



Chapter 7. Optimization

Example 7.1 : Setting up equations for optimizing cooling system

(Variables)

Cost of refrigeration unit, pre-cooler, cooling tower : x;,x,, x5 [$] (respectively)
Rate of heat transfer of refrigeration unit, pre-cooler, cooling tower : g4, g2, g3 [kKW]
Compression power required by refrigeration unit : P [kW]

Local temperature : t;,t,, t; (covered in Fig.)

(Given)
- Air: m, = 1.2kg/s and C,, = 1.0KJ/(kg-K) 95°C - 10°C (cooled down)
- Water: m, =23kg/s and C, =4.19K]/(kg-K)

Cooling tower : t, = 24°C (leaving from)
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Example 7.1 : Setting up equations for optimizing cooling system
(Given)
- Relation between variables :
Refrigeration unit : x; = 48q,

50
Precooler : Xy =7 1z

(applicable when t; > t;)

3~
Cooling tower : X3 = 25@;

Compression power : P = 0.25¢;

- q;u and P must be absorbed by the condenser cooling water passing
through the refrigeration unit

- Pipelines, which consist of the system, are adiabatic.
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Example 7.1 : Setting up equations for optimizing cooling system

(Solution)

(a) Total cost (objective function) : y = x; + x, + x3

- However it can be also written in terms of Rate of heat transfer (the g 's) or even
The temperature (the t 's), not only by the individual costs (the x 's)
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Example 7.1 : Setting up equations for optimizing cooling system

(Solution)

(b) Refrigeration unit :

1) q,+P = (2.3kg/s)[4.19K]/(kg - K)|(t; — 24) (water side)
2) q1 = MaC,AT = (1.2 kg/s)[1.0K]/(kg - K)](t; — 10) (air side)
Pre-cooler :

3) (1.2)(1.0)(95 — t3) = (2.3)(4.19)(t, — t;) (from energy balance)
4) gy = maC,AT = (12kg/s)[LOK/(kg - K)](95 — t3)

Cooling tower :
5) q3 = my, CyAT = (2.3 kg/s)[4.19K]/(kg - K)|(t; — 24)
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Example 7.1 : Setting up equations for optimizing cooling system

(Solution)
(b) The given relations :
6) Refrigeration unit : X, = 48q,

50
7) Precooler : Xy =7 1z

(applicable when t; > t;)

3~
8) Cooling tower :  x3 = 25¢;

9) Compression power : P = 0.25¢q,

UnknownS . ql'“q3, x1-°'x3, tl"'tg, P

= There are 9 equations in the set and 10 unknowns
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Example 7.1 : Setting up equations for optimizing cooling system

(Solution)
(b) The number of equations : 9 => 2 (one less than the # of equations)
The number of unknowns: 10 = 3 (the individual costs, x; -+* x3)

- Eliminating the variables, two equations finally remain as follows;
@1 (1, x5, %3) = 0.01466x,x, — 14x, + 1.042x; — 5100 = 0
@2(361, xZ,X3) = 7693(3 — X1 — 19,615 =0
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Example 7.1 : Setting up equations for optimizing cooling system

(Answer)
Minimize
(a) Yy =Xx1+X + X3
Subject to
(b) B, (%1, %5, %3) = 0.01466x,x, — 14x, + 1.042x; — 5100 = 0

®2(x11 xZ; x3) - 7.69363 - xl — 19’615 = O
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7.12 Discussion of Example 7.1

- The optimum value of x :
(x4, %5,%x3) = ($1450, $496,$2738)

With the methods in the subsequent chapters (not covered in here)

- Limitation of temperature

SOCIZ
t3—t1

)

- From heat transfer consideration, the precooler can cool the air
no lower than 24°C

- If t; <t;, x, becomes negative, physically impossible (x, =
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7.12 Discussion of Example 7.1

- The equation permits to x, - 0, when all cooling is performed by the
refrigeration unit (x,).

0.01466x,x, — 14x, + 1.042x; — 5100 = 0
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7.12 Discussion of Example 7.1

- The constraint equation below imposes a minimum value of the cooling
tower x;.

- The refrigeration unit x; T — the cooling tower x; 1

because of the compression power associated with the refrigeration unit.

7.69x3 —x; —19,615=0
X1 = 4‘8q1
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7.13 Summary

- This chapter is to introduce procedures for setting up the mathematical
statement of the optimization problem.

- In the next five chapters, specific optimization techniques are suggested

- The optimization is available when the characteristics of the physical
system have been converted into the equations for the objective function
and constraints.
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