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Chapter 8. Lagrange Multipliers

8.1 Calculus Methods of optimization

-

- Differentiable function
- Equality constraints

\_
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- Inequaility constraints
- Not continuous function

- Using calculus
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» Using the other methods
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Chapter 8. Lagrange Multipliers

8.2 Lagrange Multiplier equations

Function : y = y(xq, %, , Xp)

Constraints : ¢1(x1, %5, ,%,) =0

¢2(x11x21 '"rxn) =0

» How to optimize the function subject to the constraints?
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Chapter 8. Lagrange Multipliers

8.2 Lagrange Multiplier equations

For an optimized point function f(x,y) and g(x,y) are parallel, which means

gradient of f(x,y) is tangent to that of g(x,y)

Thus, for a certain constant A, equation below is established

Vi(x,y) = AVg(x,y)

For multiple m constraints

m
Vf = Z A.Vg, =0
k=1
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Chapter 8. Lagrange Multipliers

8.3 The gradient vector

Gradient of scalar

dy . dy . 0y .
— 14 +6_x2l2 +"°+a—xnln

Vy - 6x1

V = gradient vector
l

= unit vector : have direction, unit magnitude
(i1, 1, I3 are the unit vector in the x4, x,, x5 direction)
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Chapter 8. Lagrange Multipliers

8.4 Further explanation of Lagrange multiplier equations

n scalar equations

s 0 3y 0m _ g
1 axl 1 6x1 m axl
fn: 0xp 4 0xp m ax, 0

+ m constraint equations » m+n simultaneous equations

n
K_M
unknowns A A, X oo X,
m at optimum point
m<n

optimum point can be found
if m=n fixed values of x's
(no optimization)
¥uR
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Chapter 8. Lagrange Multipliers

8.5 Unconstrained optimization

y = y(xllXZ""lxn)

ay_ay_ ay_

— Vy =0 (nod’'s) ora—h—a—xz—--'zaxn

0

The state point where the derivatives are zero = critical point

= may be max, min, saddle point, ridge, valley
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Chapter 8. Lagrange Multipliers

Example 8.1 :

Find minimum value of z for a given constraint

z=x2%+7y? 1=x?+xy +y?
(Solution)
Vf(x,y)=/1\7g(x,y) """ (1)
Q(X;Y)—1=0 """ (2)
From (1), 2x —A2x+y)=0
y=xo0ry=—x

2y —AQRy+x) =0

Substituting (2) from the result

1=3x%0r1=x2
" | 2 (1 4 1>
Thus, minimum value zis = at XY =|\—F=T—=
3 V3 T3
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Chapter 8. Lagrange Multipliers

Example 8.2,3 : Constrained/Unconstrained optimization

A total length of 100 m of tubes must be installed in a shell-and-tube heat
exchanger.

Total cost = 900 + 1100D?%°L + 320DL (a)

where L is the length of the heat exchanger and D is the diameter of the shell,
both in meters. 200 tubes will fit in a cross-sectional area of 1 m? in the shell.
Determine the D and L of the heat exchanger for minimum first cost.

~ 1 m? accommodates 200 tubes
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Chapter 8. Lagrange Multipliers

(Solution) — Unconstrained Optimization

Have to put 100m tubes in the shell

D2

) (T mz) (200 tubes/m?) * (L[m]) = 100 m
= 507D2L = 100 (b)

Substitute (b) into (a)

2200 640

= Total cost = 900 + —— D%> + —
T D

d(Total cost) 1100 640
d(D) ~ mwDO5  gD2

M) D' =07m, L' = 1.3m,Total cost” = $1777.45
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Chapter 8. Lagrange Multipliers

(Solution) — Constrained Optimization

Total cost = 900 + 1100D?°L + 320DL (a)
50rD?L = 100 (b)
Vy = [(2.5)(1100)D*>L + 320L]i; + (1100D?® + 320D)1,

V¢ = 100mDLi; + 50mwD?i,

i 2750D5L + 320L —A100nDL =0  (c)
iy 1100D?%> + 320D — A50nD%? =0 (d)
Using (b), (), (d), find D*,L*, A

Result is the same as unconstrained optimization
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Chapter 8. Lagrange Multipliers

8.7 Gradient vector

- gradient vector is normal to contour line

Tangent vecior
dx, ‘ ,_f

dx,
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y = y(x1,x2)
dy dy
dy = a—)qul +a—xzdx2

Along the line of y = const.

dy/0x,
dy/0xq

dy =0-dx; = —dx,

Substitution into arbitrary unit vector

dxil+ dx,]
V(dx)? + (dx;)?
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8.7 Gradient vector

Tangent vector
~ ay/ﬁxz ~ ay ™~ ay ~
dx;i+dx,j "2 l 1 2

T:JMMV+WMV_J

Gradient vector

Vy  (3y/oxy)i; + (By/0x,)i,

2T J(@y/0x1)% +(dy/0x,)?

=
[ )
O
I
o
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8.9 Test for maximum or minimum

decide whether the point is a maximum, minimum, saddle point,
ridge, or valley

ridge & valley point saddle point
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Chapter 8. Lagrange Multipliers

8.9 Test for maximum or minimum

X = a : the minimum is expected to occur
y(x) = y(a) +— L ~(x—a) + = 3 (x a)? + --- Taylor series expansion near x = a

d d ) ..
|f d—i > (0 or d—i < 0 there is no minimum

dx
y(xy) >y(a) when x;>a . \xz\/x1

axz >V y(x,) >vy(a) when x,<a minimum a
2 a
|f a7y <0 y(xl) < y(a) when X >a . X, X,
dx? y(x,) <y(a) when x,<a maximum

o
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Chapter 8. Lagrange Multipliers

8.9 Test for maximum or minimum

(aq,a,): the minimum of y(xq,x,) is expected to occur

N s
_ ay ay 1 2
y(xq,%x3) = y(aq,ay) Yo X1 — aq) FYoN X, — az) + 5)’11(961 —a))“ +
1 2

1
V12 (x1 — ag)(xy — az)"’;)’é’z(xz o

o[t
y21 y22 \/
=yVn—Vyn. ~ D>0 and yi3 >0 (y33>0) min
D>0 and y;; <0 (3, <0) max /\
D<0 and y{1 <0 (y3, <0)
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Chapter 8. Lagrange Multipliers

Example 8.4 : Test for maximum or minimum

Optimal values of x; and x,, test max, min

2
X1 2
Yy = 2 +x1x2+4x2

(Solution)

dy 1 2

axl_?—sz_XZ *x *_1

3y 2 ) xi=2x= 2

—=—-——+4

0x; X1X5

At X1 and X2

02 3 02 92 3

—)2/=—,—32]= , 4 —2 52 %[>0 and y11 >0
dx? 2’ 0x3 0x10x; 2 16

i
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8.10 Sensitivity coefficients

- represents the effect on the optimal value of slightly
relaxing the constraints

- variation of optimized objective function y*

In example 8.3, if the total length of the tube increases from 100m to
random value 'H’, what would be the increase in minimum cost ?

50rD?L =H —» D*=0.7m,L* = 0.013H
Total cost* = 900 + 1100D**°L* + 320D*L* = 900 + 8.78H

- d(Total cost™)

3 8.78 = 1

Extra meter of tube for the heat exchanger would cost additional $8.78
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