Optimal Design of Energy Systems (M2794.003400)

Chapter 8. Lagrange Multipliers

Min Soo KIM

Department of Mechanical and Aerospace Engineering Seoul National University

8.1 Calculus Methods of optimization

- Differentiable function
- Equality constraints

- Inequality constraints
- Not continuous function

Using calculus

Using the other methods

8.2 Lagrange Multiplier equations

Function:
$$y = y(x_1, x_2, \dots, x_n)$$

Constraints:
$$\phi_1(x_1, x_2, \dots, x_n) = 0$$

$$\phi_2(x_1, x_2, \cdots, x_n) = 0$$

$$\phi_m(x_1, x_2, \cdots, x_n) = 0$$

How to optimize the function subject to the constraints?

8.2 Lagrange Multiplier equations

For an optimized point function f(x,y) and g(x,y) are parallel, which means gradient of f(x,y) is tangent to that of g(x,y)

Thus, for a certain constant λ , equation below is established

$$\nabla f(x,y) = \lambda \nabla g(x,y)$$

For multiple m constraints

$$\nabla f = \sum_{k=1}^{m} \lambda_m \nabla g_m = 0$$

8.3 The gradient vector

Gradient of scalar

$$\nabla y = \frac{\partial y}{\partial x_1} \hat{\imath}_1 + \frac{\partial y}{\partial x_2} \hat{\imath}_2 + \dots + \frac{\partial y}{\partial x_n} \hat{\imath}_n$$

 ∇ = gradient vector

 $\hat{i} = unit \ vector : have \ direction, unit \ magnitude$ $(\hat{i}_1, \hat{i}_2, \hat{i}_3 \ are \ the \ unit \ vector \ in \ the \ x_1, x_2, x_3 \ direction)$

8.4 Further explanation of Lagrange multiplier equations

n scalar equations

$$\hat{\iota}_1: \quad \frac{\partial y}{\partial x_1} - \lambda_1 \frac{\partial \phi_1}{\partial x_1} - \lambda_m \frac{\partial \phi_m}{\partial x_1} = 0$$

$$\hat{\iota}_n: \quad \frac{\partial y}{\partial x_n} - \lambda_1 \frac{\partial \phi_1}{\partial x_n} - \lambda_m \frac{\partial \phi_m}{\partial x_n} = 0$$

+ m constraint equations m+n simultaneous equations

unknowns
$$\lambda_1 \cdots \lambda_m, \quad x_1^* \cdots x_n^*$$
m

at optimum point

$$m < n$$
 optimum point can be found if $m = n$ fixed values of x's (no optimization)

8.5 Unconstrained optimization

$$y = y(x_1, x_2, \cdots, x_n)$$

$$\rightarrow \nabla y = 0 \text{ (no } \phi's) \text{ or } \frac{\partial y}{\partial x_1} = \frac{\partial y}{\partial x_2} = \dots = \frac{\partial y}{\partial x_n} = 0$$

The state point where the derivatives are zero = critical point

⇒ may be max, min, saddle point, ridge, valley

Example 8.1:

Find minimum value of z for a given constraint

(Solution)

$$\nabla f(x,y) = \lambda \nabla g(x,y)$$
 $\cdots \cdot (1)$
 $g(x,y) - 1 = 0$ $\cdots \cdot (2)$

From (1),
$$2x - \lambda(2x + y) = 0$$

 $2y - \lambda(2y + x) = 0$ $y = x \text{ or } y = -x$

Substituting (2) from the result

$$1 = 3x^2 \text{ or } 1 = x^2$$

Thus, minimum value z is
$$\frac{2}{3}$$
 at $x, y = \left(\frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}\right)$

Example 8.2,3: Constrained/Unconstrained optimization

A total length of 100 m of tubes must be installed in a shell-and-tube heat exchanger.

$$Total\ cost = 900 + 1100D^{2.5}L + 320DL \qquad (a)$$

where L is the length of the heat exchanger and D is the diameter of the shell, both in meters. **200 tubes will fit in a cross-sectional area of 1 m²** in the shell. Determine the D and L of the heat exchanger for **minimum first cost**.

(Solution) - Unconstrained Optimization

Have to put 100m tubes in the shell

:
$$\left(\frac{\pi D^2}{4} \text{ m}^2\right) (200 \text{ tubes/m}^2) * (L[m]) = 100 \text{ m}$$

 $\Rightarrow 50\pi D^2 L = 100$ (b)

Substitute (b) into (a)

$$\Rightarrow Total\ cost = 900 + \frac{2200}{\pi} D^{0.5} + \frac{640}{\pi D}$$

$$\frac{d(Total\ cost)}{d(D)} = \frac{1100}{\pi D^{0.5}} - \frac{640}{\pi D^2}$$

$$D^* = 0.7 \text{ m}, L^* = 1.3 \text{ m}, Total cost}^* = $1777.45$$

(Solution) - Constrained Optimization

$$Total\ cost = 900 + 1100D^{2.5}L + 320DL \qquad (a)$$

$$50\pi D^2 L = 100 \tag{b}$$

$$\nabla y = [(2.5)(1100)D^{1.5}L + 320L]\hat{i_1} + (1100D^{2.5} + 320D)\hat{i_2}$$

$$\nabla \phi = 100\pi D L \hat{i}_1 + 50\pi D^2 \hat{i}_2$$

$$\hat{i_1}$$
: $2750D^{1.5}L + 320L - \lambda 100\pi DL = 0$ (c)

$$\hat{i}_2$$
: $1100D^{2.5} + 320D - \lambda 50\pi D^2 = 0$ (d)

Using (b), (c), (d), find D^* , L^* , λ

Result is the **same** as unconstrained optimization

8.7 Gradient vector

- gradient vector is normal to contour line

$$y = y(x_1, x_2)$$

$$dy = \frac{\partial y}{\partial x_1} dx_1 + \frac{\partial y}{\partial x_2} dx_2$$

Along the line of y = const.

$$dy = 0 \rightarrow dx_1 = -dx_2 \frac{\partial y/\partial x_2}{\partial y/\partial x_1}$$

Substitution into arbitrary unit vector

$$\frac{dx_1\hat{i} + dx_2\hat{j}}{\sqrt{(dx_1)^2 + (dx_2)^2}}$$

8.7 Gradient vector

Tangent vector

$$\widehat{T} = \frac{dx_1 \widehat{\imath} + dx_2 \widehat{\jmath}}{\sqrt{(dx_1)^2 + (dx_2)^2}} = \frac{\widehat{\imath}_2 - \frac{\partial y/\partial x_2}{\partial y/\partial x_1} \widehat{\imath}_1}{\sqrt{\left(\frac{\partial y/\partial x_2}{\partial y/\partial x_1}\right)^2 + 1}} = \frac{-\frac{\partial y}{\partial x_2} \widehat{\imath}_1 + \frac{\partial y}{\partial x_1} \widehat{\imath}_2}{\sqrt{\left(\frac{\partial y}{\partial x_2}\right)^2 + \left(\frac{\partial y}{\partial x_1}\right)^2}}$$

Gradient vector

$$\widehat{G} = \frac{\nabla y}{|\nabla y|} = \frac{(\partial y/\partial x_1)\widehat{i_1} + (\partial y/\partial x_2)\widehat{i_2}}{\sqrt{(\partial y/\partial x_1)^2 + (\partial y/\partial x_2)^2}} \qquad \overrightarrow{T} \bullet \overrightarrow{G} = 0$$

8.9 Test for maximum or minimum

decide whether the point is a maximum, minimum, saddle point, ridge, or valley

ridge & valley point

saddle point

8.9 Test for maximum or minimum

x = a: the minimum is expected to occur

$$y(x) = y(a) + \frac{dy}{dx}(x-a) + \frac{1}{2}\frac{d^2y}{dx^2}(x-a)^2 + \cdots$$
 Taylor series expansion near $x = a$

If
$$\frac{dy}{dx} > 0$$
 or $\frac{dy}{dx} < 0$ there is no minimum

$$\rightarrow \frac{dy}{dx} = 0$$

If
$$\frac{d^2y}{dx^2} > 0$$
 $y(x_1) > y(a)$ when $x_1 > a$ $y(x_2) > y(a)$ when $x_2 < a$

minimum

If
$$\frac{d^2y}{dx^2} < 0$$
 $y(x_1) < y(a)$ when $x_1 > a$
 $y(x_2) < y(a)$ when $x_2 < a$

maximum

8.9 Test for maximum or minimum

 (a_1, a_2) : the minimum of $y(x_1, x_2)$ is expected to occur

$$y(x_1, x_2) = y(a_1, a_2) + \frac{\partial y}{\partial x_1} (x_1 - a_1) + \frac{\partial y}{\partial x_2} (x_2 - a_2) + \frac{1}{2} y_{11}''(x_1 - a_1)^2 + y_{12}''(x_1 - a_1)(x_2 - a_2) + \frac{1}{2} y_{22}''(x_2 - a_2)^2 + \cdots$$

$$D = \begin{vmatrix} y_{11}'' & y_{12}'' \\ y_{21}'' & y_{22}'' \end{vmatrix}$$

$$= y_{11}''y_{22}'' - y_{12}''^{2} \qquad D > 0 \quad and \quad y_{11}'' > 0 \quad (y_{22}'' > 0) \qquad \min$$

$$D > 0 \quad and \quad y_{11}'' < 0 \quad (y_{22}'' < 0) \qquad \max$$

$$D < 0$$
 and $y_{11}^{"} < 0$ $(y_{22}^{"} < 0)$

Example 8.4: Test for maximum or minimum

Optimal values of x_1 and x_2 , test max, min

$$y = \frac{x_1^2}{4} + \frac{2}{x_1 x_2} + 4x_2$$

(Solution)

$$\frac{\partial y}{\partial x_1} = \frac{x_1}{2} - \frac{2}{x_1^2 x_2} \\ \frac{\partial y}{\partial x_2} = -\frac{2}{x_1 x_2^2} + 4$$

$$x_1^* = 2, x_2^* = \frac{1}{2}$$

At x_1 and x_2

$$\frac{\partial^2 y}{\partial x_1^2} = \frac{3}{2}, \frac{\partial^2 y}{\partial x_2^2} = 16, \frac{\partial^2 y}{\partial x_1 \partial x_2} = 2 \quad \rightarrow \begin{vmatrix} \frac{3}{2} & 2 \\ 2 & 16 \end{vmatrix} > 0 \quad and \quad y_{11}^{"} > 0 \quad minimum$$

8.10 Sensitivity coefficients

- represents the effect on the optimal value of slightly relaxing the constraints
- variation of optimized objective function y^*

In example 8.3, if the total length of the tube increases from 100m to random value 'H', what would be the increase in minimum cost?

$$50\pi D^{2}L = H \rightarrow D^{*} = 0.7m, L^{*} = 0.013H$$

$$Total\ cost^{*} = 900 + 1100D^{*2.5}L^{*} + 320D^{*}L^{*} = 900 + 8.78H$$

$$SC = \frac{\partial (Total\ cost^{*})}{\partial H} = 8.78 = \lambda$$

Extra meter of tube for the heat exchanger would cost additional \$8.78