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1.1 Continuum Mechanics

1.1.1 Definition of Fluid

e Fluid can not withstand shearing forces when a shear stress is applied:
Fluids continuously deform and Solids deform or bend.

e While solid can be in stable equilibrium under shear stress oblique to the
surface separating any two parts, fluid cannot be in stationary equilibrium.

e} Slied (¢ Fluid

1.1 Behavior of a solid and a fluid, under the action of constant shear force. Solid
(left); Fluid (right). (From Fox, McDonald & Pritchard 2004)

e Resistance to rate of shear deformation from viscosity gives rise to drag
for bodies. We can easily recognize that such shear stresses do exist in
fluids: e.g., consider how the fluid in a rotating circular vessel takes on the
rotating motion of the vessel eventually.
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e Other observed properties of fluids are:

— resistance to volumetric compression and tension in general,

— no shape or preferred orientation (Solids: definite shape; Fluids: no
preferred shape),

— homogeneous matter in general, and

— has mass.

e There are two kinds of fluids depending on bulk elasticity (compressibil-
ity): !

— Liquid forms a free surface(density p ~ 0 above free surface).

— Gas expands to fill container.

1.1.2 Assumptions and Axioms

e Continuum Viewpoint: Fluid as a continuum in macroscopic scale com-
pared with molecules.
We assume that the fluid is continuous and homogeneous in structure.

— Actually this is not so since matter is ultimately made up of molecules
and atoms, but in many applications the dimensions we are concerned
with are large compared to the molecular structure, and the small-
est sample of fluid that concerns us contains a very great number of

molecules (i.e., number of about 2.687 x 10'?/cm?). 2

— In such cases, the properties of any sample are the average values over
many molecules, and the approximation of a continuum is found to be
acceptable and useful.

* Measurable smallest scale: length [ ~ O(107°) m, volume V ~
O(10715) m?.

10On the mechanism of formation of liquid and vapor, see Brennen, C. (1995), Cavitation and Bubble Dynamics,
Oxford University Press, pp. 1-6.

2 Avogadro no./1 mol = 6.02214 x 1023 /22.414 liter. This number is about 10 times as many as the total no.
of stars in the known universe, and about 100 times as many as grains of sand on all beaches and deserts. (See
Garrison, T. (2007), Oceanography: An Invitation to Marine Science, 6th ed., Thomson Brooks/Cole.) Suppose
a supercomputer can count at the rate of one billion molecules per second. For a cubic centimeter of a fluid we
would take a very long time for counting the occupied molecules: 2.687 x 10'° sec ~ 850 yr.
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- Nano scale devices: [ ~ O(107%)m
- Ocean current diameter: [ ~ O(10°)m
* No. of air molecules in the volume at standard pressure: ~ 3 X
10,
* No. of water molecules in the volume at standard pressure: ~
10%.

Example: definition of density at a point (see Figures 1.2 and 1.3)

. om
e Y% =2 9,21) b
vk Valume ¥
of mass, m
II . r
20 Vaolume o¥
jf of mass, om
’
NN G
| |
| |
| |
|
| | ‘o
| | l;,. = |
| -
- | v
3 i P T PO ATy ke

hat)

1.2 Definition of density. (From Fox, McDonald & Pritchard 2004)
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1 1
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variations due to variations due to
molecular fluctuations varying flow

01079 ~ 1075 m

1.3 Measured data to define density with variation of length scale. (From Pan-
ton 1984)

e Nevertheless, results obtained on the assumption of a continuum may
be erroneous whenever the molecular structure dimensions are relatively
large.

— For example, at very high altitudes (low pressures), the molecular
spacing is so great that air is not even approximately a continuum
in its contact with a body.

— Failures of the continuum assumption occur probably in the cases of
that body size compares with molecular dimensions (e.g., a very small
body in a fluid) or with distances between molecules (e.g., a body in a
rarefied gas).

e Other acceptable and useful assumptions are those as follows:

(1) that physical laws are independent of the coordinate system used to
express them (frame indifference),

(2) that natural laws are independent of the dimensions of physical quan-
tities that occur in the expressions (dimensional homogeneity),

(3) that derivations of physical quantities with respect to space and time
exist to the required order (smoothness of quantities), and
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(4) that the present motion is a function of its history and not the future
(memory of history).

1.1.3 Basic Equations

e Fundamental Laws of Continuum Mechanics:

— Conservation of mass: Continuity equation
— Conservation of momentum (Newton’s law of motion)

* Principle of momentum and angular momentum

x Navier-Stokes equations for viscous flow

* Buler’s equation for inviscid flow

x Bernoulli equation as an energy equation from integration of Eu-
ler’s equation

— Conservation of energy (First law of thermodynamics)

x The First Law of Thermodynamics: Energy conservation for heat

and work interactions

x The Second Law of Thermodynamics: Heat flow in direction of
entropy increase

We postulate that mass, momentum and energy are conserved: Conserva-
tion of mass, Conservation of momentum, Conservation of energy. Since
these notes tend to deal mostly with incompressible flows, we do not ex-
amine the conservation of energy.

e Newton’s equations of motion are derived from rigid body mechanics:

F=m== (1.2)

where m = mass of particle or body, F' = sum of external forces, z =
position vector, and ¢ = time.

— Three differential equations
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— Applicable to mass particle or system of mass particles, differential
element or whole part of continuum

— Concept of dynamic and static equilibrium for given external forces

— General equations of motion applicable to arbitrary elements of bodies

1n concern: M IH
F=——— L= ———
— dt > = dt

where M = linear momentum, L = sum of moment in action, H =

(1.3)

angular momentum.

e Our use of these laws are based on continuum hypothesis.
Equations of motion for continuum:

P =pb+ VT (1.4)

where I = stress tensors (internal or surface forces), b = body force per
unit mass.

e Constitutive Laws

— Solids: Hooke’s law, stress = f (strain)
force/area ~ relative displacement/length
— Fluids: stress = f (rate of strain)

force/area ~ velocity gradient

We need the constitutive equations which are a sort of relationships be-

tween the stress tensor and the strain tensor, under some assumptions such
as homogeneous, isotropic, continuous, elastic (Newtonian) continuum.
Relation to the strain in solid and the strain rate in fluid:

Fox Al FoxAu (1.5)

where the proportional factors are the elasticity and the viscosity coeffi-
cients, respectively.

e Isotropic stress tensors having linear relationship with strain tensor and
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strain rate tensor, respectively: >

= N(V-d) I+ X[Vd+(Vd)"] (1.6)
= [-p+ 4 (V-] + p[Vu+ (Vu)'] (1.7)

N 114

where d and u are, respectively, the displacement and the velocity, X', A,
1/ and p are the proportional factors.
The differential equations for displacement and velocity, respectively:

2d ,

Pom = P Loy T (A + MV (V- d) + \Vd (1.8)
0%u ,

Pam = Plogy =~ VP+ W +0)V(V-w)+pViu (19

e Liquids and gases depending on compressibility (bulk elasticity).

— Liquids: ‘Hydrodynamics’ (Hydrodynamic flows are treated as in-
compressible.)

— Gases: ‘Aerodynamics’ (Aerodynamic flows are treated as compress-
ible.)

e (lassification of fluid mechanics

1.2 Characteristics of Hydrodynamics

1.2.1 Types of Fluid Flow
With the principal types of fluid flow and their associated phenomena, it is pos-
sible to make up practically any flow combination in nature, even the complex

system around a moving ship:

e Potential Flow

3For detailed information on difference and similarity among various fields in continuum mechanics and their
historical background, see the article: ©]%% (1992), “Al &9t} T A A FA| G skrle] AH A", O st
Z413}3] 2], 294, A|3E.
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1.4 Possible classification of fluid mechanics. (From Fox, McDonald &
Pritchard 2004)

Viscous Flow

Turbulent Flow

e Separation of Flow from a Surface
e Cavitation

e Wavemaking

e Circulatory or Vortical Flow

e Elastic or Compressible Flow
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1.5 Schematic diagram of various types of fluid flow. (From Saunders 1957)
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1.2.2 Various Characteristic Effects

Such flow phenomena can be characterized by several principal effects which
constitute the basis for important relationships in the form of non-dimensional
numbers:

e Velocity effects have the phenomena which are function of the rate at

which a body moves in a fluid (e.g. denotation wave around a torpedo
exploded).

e Acceleration effects is associated with the acceleration imparted to fluid

particles by differences in pressure and other causes (e.g. flow around a
propeller blade section).

e Force effects are the application of forces of special nature which is closely

related to accelerative effects (e.g. dynamic lift developed by a planning
form).

e Inertia effects involve the mass density of the fluid, the velocity of the

moving fluid particles, and the necessity for changing their direction (e.g.
dynamic pressure on the blunt face).

e Gravity effects result in the changes in potential energy under the influence

of the gravity, which occur at an interface with gas (e.g. wavemaking).

e Viscous effects are due to the internal resistance of the fluid to deformation

in the shear forces (e.g. flow past a solid surface).

e Elastic effects are due to the compressibility of the fluid (e.g. acoustic

wave traveling through water).

e Surface tension effects appear as the attraction between the surface molecules

of the real fluid (e.g. air bubbles in water).

1.2.3 Characteristics of Ship/Marine Hydrodynamics

e Ship/Marine Hydrodynamic Aspects: Applicable to naval architecture and
ocean engineering
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— Many Separate Topics: Propulsion/steering, behavior in waves of a
moored buoy or oil-drilling platform

e Related Applications of the General Field of Hydrodynamics
— Lifting Surfaces: Propellers, Rudders, Anti-rolling fins, Yacht keels,
Sails
— Equations of Motion: Unsteady ship, Buoy, or Platform motions in

waves, Maneuvering of ships or submarines in non-straight paths.

e Broad Level of Sophistication: From empirical design methodology to the-
oretical research activities (as well as intuition and experiment)

— Diverse Fields of Technology: Fluid mechanics, solid mechanics,
control theory, statistics, random process, data acquisition

e Necessary Background

— Intelligent evaluation and application of empirical procedure
— Introduction to specialized study on the advanced research

— Continuum Mechanics: Force and motion in smooth and continuous
manner

e Complicated Force Mechanisms

— 3 Principal Types: Inertial, Gravitational, Viscous

— Secondary Effects: Surface tension, Elastic, Cavitation

e Physical Parameters: Length, Velocity, Density, Gravity, Viscosity, Pres-
sure

2

— Inertial forces ~ mass x acceleration ~ (pl3) (T) = pU??

(1.10)
— Viscous forces ~ shear stress (,LLZ—Z) X area ~ <,u%> (1) = pUl
(1.11)
— Gravitational forces ~ mass x gravity ~ (pl*)g (1.12)

— Pressure forces ~ pressure x area ~ (p — pg)l” (1.13)
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e Dynamical Similarity

Inertial F Uiz U?
o 2 _ Z _ (Froude No.)? (1.14)
Gravitational Force  pgl?3 gl
Inertial Force  pU%I*  pUl
Viscous Force ~ pUl — p

Gravitational Force  pgl®  pgl?

= Reynolds No. (1.15)

(1.16)

Viscous Force ~ pUl  pU

e Simultaneous scaling is not possible. Scaling dilemma!

e Cavitation: Change of physical state below vapor pressure at very high
speeds

(1.17)

Cavitation No.: |0 =

e Difficulty of Navier-Stokes Equations: System of coupled nonlinear P.D.E.
— Inviscid Assumptions: Mathematical solutions (with free surface ef-
fects).

— Froude’s Hypothesis: Total resistance = frictional + residual resis-
tance.

— Boundary Layer: Viscous effect within thin viscous layer at large
Reynolds number.

— CFD: Numerical simulation by using discretization and approxi-
amtion of governing equations with physical modelling.

1.2.4 Ocean Environment

e Density of Water

— Dependence on temperature and salinity.

* Qreater influence of temperature at a given salinity in a higher
temperature regions.

x Greater effect of salinity in a lower temperature regions.
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1.1 Density variations with temperature (salinity 3.5%). (Adapted from Carlton 1994)

Temperature (°C) 0 5 10 15 20 25 30
Density (kg/m?) || 1028.1 | 1027.7 | 1026.8 | 1025.9 | 1024.7 | 1023.3 | 1021.7

1.2 Density variations with temperature (fresh water). (Adapted from Carlton 1994)

Temperature (°C) 0 4 5 10 15 20 25 30
Density (kg/m?) || 999.8 | 1000 | 999.9 | 999.6 | 999.0 | 998.1 | 996.9 | 995.6

— Increase with depth.
Sea water: p = 1,026 kg/m? at 15°C..

e Salinity = 3.47% at sea surface:

Salinity = 1.80655 x Chlorinity in % (1.18)

e Water Temperature

— From T = 28° (' at equator to 7' = —2° (' near ice in high latitudes.
— Three thermal layers:
*x Upper layer between D = 50m and D = 200 m below surface:

T = 20° C at surface

* Transition layer to D = 1,000m: T' = 8°C" at D = 500 m and
T=5°CatD =1,000m

* Deep ocean region: 7' = 2°C' at D = 4,000 m.
e Viscosity

ou
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1.8 Variation of surface temperature, salinity and density with latitude—average for all

oceans. (From Carlton 1994)
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1.3 Viscosity of sea water with temperature (salinity 3.5%). (Adapted from Carl-

ton 1994)
Temperature (°C) 0 5 10 15 20 25 30
Kinematic Viscosity
x10° (m?/s) 1.8284 | 1.5614 | 1.3538 | 1.1883 | 1.0537 | 0.9425 | 0.8493

1.4 Viscosity of fresh water with temperature. (Adapted from Carlton 1994)

Temperature (°C) 0 5 10 15 20 25 30
Kinematic Viscosity
x10% (m?/s) 1.7867 | 1.5170 | 1.3064 | 1.1390 | 1.0037 | 0.8929 | 0.8009

e Vapour Pressure

1.5 Saturation vapour pressure p, for fresh and sea water. (Adapted from Carlton 1994)

Temperature (°C) 0.01| 5 10 15 20 25 30
Sea Water p,(Pa) 590 | 842 | 1186 | 1646 | 2296 | 3058 | 4097
Fresh Water p,(Pa) || 611 | 872 | 1228 | 1704 | 2377 | 3166 | 4241
e Surface Tension
Air
g B } =
; : - "
? 4 - N -
Water / X =
e 7 S F —
G / Los
N\ a & 7 =

1.10 Molecular explanation of surface tension. (From Carlton 1994)
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1.6 Typical values of surface tension for sea and fresh water with temperature. (Adapted
from Carlton 1994) Note: 1dyne = 1075 Newton.

Temperature (°C') 0 5 10 15 20 25 30
Sea Water (dynes/cm) 76.41 | 75.69 | 74.97 | 74.25 | 73.55 | 72.81 | 72.09
Fresh Water (dynes/cm) || 75.64 | 74.92 | 74.20 | 73.48 | 72.76 | 72.04 | 71.32

e Incompressibility of Water 4

— The elastic force in a fluid 1s

Elastic force ~ pI® ~ p C?[? (1.20)
since the speed of sound C' in a fluid is related to pressure and density:
p
C = =. Then
P

(1.21)

— Mach number: ratio of characteristic fluid velocity in a flow to speed
of sound in the medium:
inertia force  [pU%1? U

== (122

Mach ber M = ——— —  — [ ——
act HEmbet elastic force pC?12  C

where U is the characteristic fluid velocity.

— The average speed of sound in air and water is: Cy; ~ 350m/s,
Cuwater ~ 1,500m /s Therefore the average ratio of the speed of sound
in water to air is Cyater/Cuir ~ 4.

— Because the average water to air density ratio is 1,000, it is ‘harder’ to
move in water and therefore, typically, it is Uy qrer << Ui giving thus
typical values of Mach numbers in the order of:

Mir ~ O(1) = Compressible flow (1.23)
Myater < 1 = Incompressible flow (1.24)

4’ Movie: Shock Flows around Airfoil ‘
./mmfm_movies/545.mov
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— Only 0.4 % change under 100 atmospheric pressure (at 1 km depth in
sea water).

— Note: An incompressible flow does not mean constant density.

1.3 Mathematical Prerequisites: Vector Analysis

1.3.1 Fundamental Function Analysis

o If lim ¢(z) = ¢(c), the function ¢(z) is said to be continuous at the point

T—C
r = C.

e The base of natural logarithm e,

n—o0

1 n
e = lim (1 + —) = 2.7182818285 - - - . (1.25)
n

0

Euler formula: ¢ = cosf + isin 6

Hyperbolic sine and cosine functions:

el —e * e’ +e "

sinhz = —5 coshx = T (1.26)

e A definite integral in the sense of Riemann sum:

b N

, b—a\b—a
af(x)dx:]\}g%o;f<a+z N ) N (1.27)
e The rule for change of variable :
) U da:,
/ f(x) de = / f(:r:(u))d— du (1.28)
T Uy u

The integral for functions of two variables

//Qxy f(x,y) dedy = //qu f(x(u,v),y(u,v)) |J| dudv, (1.29)
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d(z,y) Oxrdy Oz dy

d(u,v) Oudv v du’

e Leibnitz’s rule in 1-D :

where Jacobian J =

A Y
— x,t) dr =
dt (l(t)

b(t)
FB060 ~ Fla® 00 + [ G ds

The Reynolds’ Transport Theorem for 2-D and 3-D region.

e Tensor notation in 3D space

— Range convention:

— Summation convention:

aibi:albl+a2b2+a3b3 (i:1,2,3)

(1.30)

(1.31)

(1.32)

— For example, a; = x;; n; denotes three equations, one for each i =

1,2, 3 and 7 is the dummy index.
e Tensors.

— A scalar is called a zero-order tensor.

— A vector 1s a first-order tensor.

— Dyads are second-order tensors: a 3 x 3 matrix form. (e.g. stress ten-

SOr)

— The alternating tensor ¢;;;, is a special third-order tensor.

1.3.2 Vector Calculus

e The simplest vector: line vectors.

A line vector is transformed from one coordinate system to another.
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e Consider two Cartesian coordinate systems rotated with respect to one an-

other.

— a1, as1, a3 the direction cosines of the x) axis, with respect to the

X1, Ta, T3 axes, respectively.

— Transform between 2 coordinates in a summation notation:

/ .
x; = E aj;x; 1=1,2,3
3

r; = E aij:v; 1= 1,2,3
j=1

e A vector 1s defined as :

3

/ .
u; = g aju; ©=1,2,3
j=1

— Example (a) Velocity of a point, dz; /dt.

dz, d dz;
at E;aﬂxj - Zaﬂ dt

— Example (b) Gradient of a scalar function, du/0x;.
Let w; = Ou/0x;; and w, = Ju /0.

e Unit base vectors: 1,7, and k.
For curvilinear coordinate systems, e, €5, and es.

e Any vector g as the sum of its components :

g:a1§+agi+a3@.

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)
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The position vector z :

r=wityj+zk

The distance of z from the origin as r = |z| = /22 + 32 + 22.

e Tensor notation:
Example) Kronecker delta:

Example) Alternating tensor of permutation symbol:

ejr =0 if any ¢,j,k equal
e =1 if (ijk) = (123),(231), (312)
e =—1 if (ijk) = (132),(213),(321)

The basic formulas :

0ii = 3, 5ij Uklmi — Wkimy, 5ij €ijk — 0,
€ijk €kim = 0i1 Ojm — Oim Oji,  €ijk €ijk = 6,

€ijk €1jk = 2 0i].

e Scalar product:

a-b=ab cos(a-b)

or,
a-b=ai;b; + as by + agzbs

of,
a-b=4d;5a;b; = a;b;, (summation convention)

e Vector product:
c=axb, w=absin(a,b).

In a form of tensor-notation, a X b = €;;i. a; by.

(1.39)

(1.40)

(1.41)

(1.42)
(1.43)
(1.44)

(1.45)

(1.46)

(1.47)

(1.48)
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e Scalar triple product:
a-(bxc)=a;ejnbjcy (1.49)
a-bxc=axb-c=b-cxa etc. (1.50)
e Vector triple product:
ax(bxc)=(a-c)b—(a-b)c (1.51)

1.€.,

ax (bxc) = emiar€jrpbjc

= (Omj Otk — Ok O15) a1 bj ¢,

= apbjcr —ajbjcy. (1.52)
The basic formula :
ax(bxe)+bx(cxa)+ecx(axd) =0 (1.53)
e Gradient: |
Vuzxyg%)ngundb’ (1.54)

where S is the area enclosing the volume V', dS is the element of area, and

n 1s the unit vector normal to the surface.
In limit,

COu . Ou ou
VU—Z%—{—la—y—Fﬁa
ou
8:1;,7

Symbol: Vu, grad u, or

e Divergence:

(1.55)

(1.56)

(1.57)
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Symbol: V - v, div v, or E)vi.
@xi
o Curl: |
nyzlim—j{ﬂxde (1.58)
V—0 S
(%3 (91)2 . (91}1 61]3 . 81}2 (%1
=| = - = —_—— — —— |k (1.59
VX ((9y 52>2+(8z 8x>‘l+<8x 8y>_( )
or,
i J k
o o0 0
=| — =— = 1.60
Vxe or Oy 0z (1.60)
(%] (%) U3
(%k
Symbol: curl v, V X v, or €.
8:@
e Laplacian :
Pu  Pu  u
2=V - = 1.61
VusV-(Vu) 8x2+8y2+822 (1.61)
The Laplacian of a vector function
VP =i Vi + j Vv + k Vo3 (1.62)
e Differential operator: dr -V
du=dr -Vu (1.63)

where 7 is the position vector and dr is any directed line element.
— This means that du is the increment of u corresponding to a position
increment dr.

— In rectangular Cartesian coordinates,

ou ou ou
du—%dana—ydy#—%dz—(d[-V)u (1.64)
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— Similarly, for a vector function v(z, y, 2),

dv = idvi+j dvg+k dug

0 0
= (da:——|—dy—+dz—z> (2v1+J vo+ kv3)

= (dr-V)u
— The symbol V is a vector operator:

v:.a

+J 0 +k 0

L — — —.
- Ox J oy — 0z
1.3.3 Expansion Formulas

e ¢: any differentiable scalar function of x, y, 2.
u, v, w: any such vector functions.

V- (pu)=u-Vo+¢V-u

Vx(ou) = (Vo) xu+oV xu

V-uxw)=w-Vxv—v-Vxuw

e The position vector: x = r1i+ 22 J + 23 k.

(1.65)

(1.66)

(1.67)

(1.68)
(1.69)
(1.70)
(1.71)
(1.72)
(1.73)
(1.74)

Magnitude of the position vector r = |z| = /- = and a constant vector

a:

Vr=z/r
V-x=3

(1.75)
(1.76)
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V-(r"z)=(n+3)r"
Vx('"z)=0
VA(r") = n(n + 1) r" 2
V(axz)=0
Vig-z)=a
Vx(axz)=2a
V:-(axVr)=0

VX (ra)=(xxa)r

1.3.4 Divergence Theorem (Gauss Theorem)

e Consider the surface integral j{ unds.

S
If the volume V is subdivided into small volume V;,

undS = y{ugdS
frruis=32,

fundS:/VudV.
S; Vi

Definition of the gradient, eq. (1.54),

fugdS:/VudV
S 1%

In the limit,

(1.77)
(1.78)
(1.79)
(1.80)
(1.81)
(1.82)
(1.83)
(1.84)
(1.85)
(1.86)
(1.87)

(1.88)

(1.89)
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e Use the definitions of the divergence and curl,

f@-de:/V-de
S \%4
%QXQdSz/VXQdV
S \%

flannis= [ (vepav

General form:

e An example,

/qudv / - (Vu) aV
j{n VudS = }I{—dS

where Ju/0n is the directed derivative in the outward direction.

1.3.5 Stokes’ Theorem

e From our definitions for Vu and V x v

1
E-Vwagiy-dz

(1.90)

(1.91)

(1.92)

(1.93)

(1.94)

(1.95)

where S denotes a very small surface element in the fluid, C' is the small

contour that forms the boundary of S, and n is a unit normal to .S.

e The transformation theorems relate certain surface integrals to contour in-
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tegrals:
/Qx VudS = j{udf (1.96)
S C
/@-VXde = —/(@XV)-QCZS
S S
= j{y-df (1.97)
C

The unified form of Stokes’ theorem :

/S(@xv)*fdszjfdg*f (1.98)

9

1.3.6 Dyadic Products

e The dyadic product: a special form of second-order tensor u v :

(

—

(v-w

= _'ﬂ)

v) -

- (u

=
=
Il
IS

(1.99)

=
<
N—
Il
~
IS

e The gradient of a vector, Vv, in the Navier-Stokes equations:
If the vector v is a velocity resolved into a symmetric and antisymmetric
form:

(Ve + Vul) + (Vo — V7))

N~ —

def(v) + %rot(g) (1.100)

— A second-order tensor to be a 3 X 3 matrix.
— The superscript 1" stand for transpose of the matrix.

— The first term causes stress: (i) normal strain rate and (ii) shear strain
rate.

— The second term: rigid body rotation of a fluid element.
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1.3.7 Reynolds Transport Theorem

e The rate of change of an integral taken over a volume moving through a

field F(z,t) ]
ﬁ/X/F@ﬁdV (1.101)
V(t)

The path of points in V(t):
x = x(6,t) (1.102)

where ¢ is the initial point of z.

e The Reynolds transport theorem

o el

or

_///de // —dV—I—//ﬂ.(yF)dS (1.104)
(0

— Here v is the velocity of the point z, and n is the outward unit vector

normal to the boundary S(?).

— The first integral is the rate of change in volume, and the second inte-
gral is the rate of change associated with motion of surface bounding
volume.

— Similar to Leibnitz’s rule for 1-dimensional region:

b(t)
i/ f(z,t) doe =

/@) a{ dx + f[b(1), ] V'(t) — fla(t), 1] d'(t)  (1.105)
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1.3.7.1 Example of the Reynolds transport theorem in 1-D

e Consider an integral with a(t) =t + 1, b(t) = 2t + 2, F(x,t) = xt, and
2(€1) =L+ &

b(t) di(t) d b(t)
I(t :/ F(z,t) dx, —:—/ F(xz,t) dx (1.106)
0= Fend GE=g | e
: e
C=9o X=A =>
0 S, i
1 l ST B3 =
| Alo) be)
= | _
‘ C RS oy
G e
§:{ 5;2 " 4
Q) b(i
THS =3 4
S = 3=2
A(2) b(2)

1.11 Sequential change of the interval of the integral (1.106).

X

1 from the given relation x(&,t) = £t + &,

e Lagrangian variable { = ;

then the integrand
F*(&,t) = (&t + &)t (1.107)
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e Velocity and divergence of velocity:

0
v(&,t) = - =&i = v in Lagrangian manner
Ot [¢_const.
(1.108)
v(z,t) = t—f 1 i1 =03 in Eulerian manner (1.109)
1 0
Voulat) = = a_:; in 1-dimensions (1.110)
e Chain rule (i.e., Jacobian)
ox :
— =t+ 1= J (Jacobian) (1.111)
73
e The time derivative of the integral
dI(t) d [0
— = — F(x,t)d
i o)y Tt
d "0 %,
= = o F*(&,t) a—z dé (by change of variable)
d b(0)
= = {(Et+ )t} J dE (with Jacobian)
a(0)
MO a{(et + &)t} dJ
= 5 J+ {(Et+ )t} m d§
a(0) ¢=const. <
(1.112)

where | A |is equivalent to

0J = 0 (8:1:) 0 (89&) (interchanging the differential order)

ot~ at\oc)  oe\ot
ov*  Ovox ,
= 9 " 920t (by chain rule)

1
= (Vo)) — (H—l) (t+1) (1.113)
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e Rearranging the terms of the integrand and then converting the integral
with respect to the variable £ into one with respecto to the original variable

xr, we have
B D+ 5 t) (t+1)d
dt /a(()) 6t(x )+ 8t ¢—const. 8x ) I‘ t + 1 + ) §
8_F VF FV-.v
ot
- 7 d
/a(t) 875 +v ( )] T
- F)| d
/a(t) 3t + oo 8 (U )] i
b(t) o
/a(t) ot ot [v (x’t)] x=b(t) [U (l' t)] x=a(t)
b(t) aF
B / 5 Qo+ Fo(0), 1] V(t) = Fla(?), 1] '(1) (1.114)
a(t)

1.3.8 Moving Coordinate Systems

e Two coordinate systems:
The position vector 2’ in the space-fixed system is related to the position
vector z in the moving system:

Z=z+R (1.115)

where R is the distance vector between the origins of two coordinate sys-
tems.

e The derivative(d’ /dt) observed in the space-fixed system and the derivative(d/dt)
observed in the moving system:

d d
—=—40Ox 1.11
dt dt * (1.116)

where {2 is the angular velocity of the moving system.
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X

1.12 Moving coordinate system.

e The velocity vectors in the two coordinate systems:
¢d=q+Qxz+R (1.117)

where R represents the translation velocity of the moving frame.

e Acceleration vectors ¢ in the space-fixed system :

d’z’ ) ..
=g mat 20Xt X+ Qx (@xz)+ R (1118)

a

— The first term : the acceleration viewed in the moving system.
— The second term: the Coriolis acceleration.

— The fourth term: the generalized centripetal acceleration, since
19 x (2 x 2)| = Q%2 sin(Q, x) (1.119)

— For the self-rotation of earth with constant angular speed, its effect (a
form of gradient of a scalar function) is already included in gravita-
tional acceleration values.
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