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2.1 Introduction

2.1 Introduction

2.1.1 Dimensional Analysis

e Buckingham’s Pi Theorem

— With problems where 3 fundamental units are mass (M), length (L)
and time (7"), the unknown () and the significant parameters can be
expressed in terms of these units.

— If the unkown () depends on N — 1 significant parameters, there will
be a total of /V interrelated dimensional quantities including Q).

— The number of independent nondimensional parameters will be re-
duced by the same number. A total of N — 3 nondimensional quanti-
ties must be interrelated.

e Example: Falling Body in a Vacuum
— Vertical position y might depend on time ¢, mass m, the gravitational

acceleration g.

* Vertical position ¢ can not be affected by size and and shape of a
falling body.

— Since neither g nor ¢ contains the units of mass, there is no way of
forming the parameters ¢, m, g into nondimensional parameters

Y
—— = 2.1
p @.1)

where (' is a constant. It is known to be equal to 1/2 from mechanics.
e Example: Pendulum

— Period of a simple pendulum 7": pendulum length /, mass m, gravita-
tional acceleration g, maximum angle of its swing motion 6

— Suitable combination with time units: T'(g/1)"/? = f(6y)
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— If the maximum swing angle is assumed to be small, then the period

T tends to a finite limit:

T(g/1)'* = £(0) (2.2)
where f(0) is known from mechanics to be 2.
— In terms of frequency (angular velocity) w = 27 /T, the form is
w(l/g)'? = 2m/ f(6) ~ 27/ f(0) = 1 (2.3)
e Dimensions of Fluid Properties: See Table 2.1.
2.1 Dimensions of fluid properties
Quantities Dimensions Quantities Dimensions
(MLT) (MLT)
Angle 6 | None Mass flow rate Q| MT!
Mass m | M Strain € | None
Length L,l| L Pressure p| ML™1T—2
Area A S | L? Stress T | ML71T-2
Volume V| L3 Surface tension o | MT?
Time t| T Force F | MLT?
Velocity V,qu| LT Moment, Torque M.Q| MLT
Acceleration a| LT2 Energy, Work E,W | ML*T—2
Angular velocity Qa| Tt Power P | ML*T—3
Angular acceleration Q& | T2 Modulus of elasticity E | ML'T?2
Density p| ML™3 Dynamic viscosity w| MLT1
Momentum L| MLT! Kinemtaic viscosity v | L*T1
Angular momentum H | ML*T! Moment of inertia(area) I|L*
Volume flow rate Q| L3T1 Moment of inertia(mass) I | MLA

2.1.2 Flow Similarity and Model Studies

e Geometric Similarity
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— Model and prototype have same shape.

— Linear dimensions on model and prototype correspond within con-
stant scale factor.

e Kinematic Similarity

— Velocities at corresponding points on model and prototype differ only
by a constant scale factor.

e Dynamic Similarity

— Forces on model and prototype differ only by a constant scale factor.

e | Incomplete Similarity

— Sometimes complete similarity cannot be obtained, but phenomena
may still be successfully modelled.

2.1.3 Nature of Dimensional Analysis: Example

e Drag on a Sphere

— Drag depends on 4 parameters: sphere size, speed, fluid density, fluid

viscosity
F=f(D,V,p, ) (2.4)

— Difficult to know how to set up experiments to determine dependen-

cies

— Difficult to know how to present results (four graphs?)

e Take the dimensional analysis for F' = f(D,V, p, )

Fo pV D
I
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D
— If dynamic similarity (ﬁ) = (
: K/ model
1sfied,

55 o = (7757)
—_— = —— would hold. !
(PVZD ? ) model pV2D? ) 11 scale

— Only one dependent and one independent variable

pV D

) 18 sat-
K-/ full scale

— Easy to set up experiments to determine dependency

— Easy to present results (one graph) (See Figure 2.1 )
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2.1 The drag coefficient of a sphere. (From Newman 1977)

2.1.4 Significant Dimensionless Numbers

VL VL
e Reynolds Number Re = pre_ro

J v

e Froude Number F'r = L

Vil

e Cavitation Number Ca = w
3PV

e Mach Number M = K
c

1‘ Movie: Dimensional analysis for drag on sphere ‘

./mmfm_movies/542.mov ./mmfm_movies/540.mov ./mmfm_movies/541.mov



./mmfm_movies/542.mov
./mmfm_movies/540.mov
./mmfm_movies/541.mov
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L

e Strouhal Number S = fv
27,

e Weber Number We = v

o

2.1.5 Error Estimates in Uncertainty Analysis

e Error = Measured Value — True Value
True Value: How to know?
Known in calibration systems? (or still unknown?)

Range of
True va\h:e . _ precision error
- —e A e
| | Measurand
- ¢ e
Bias error Average of
measured values

2.2 Definition of bias and precision error.

e Total error = Bias error + Precision error

Bias error (fixed or systematic error) = average of measured values — true

value

Precision error (random error) = measured values — average of measured

values

e Measurement Error and Population

2.1.6 Flow Visualization

e Smoke, Dye 2

2‘ Movie: 2-D Cavity Flow, Juncture Flow, Finite Cyliner, Airplane Tip Vortex Flow ‘

./mmfm_movies/166.mov ./mmfm_movies/1l.mov ./mmfm_movies/468.mov

./mmfm_movies/4275.mov ./mmfm_movies/4292.mov


./mmfm_movies/166.mov
./mmfm_movies/1.mov
./mmfm_movies/468.mov
./mmfm_movies/4275.mov
./mmfm_movies/4292.mov
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fix) Probability density  Population mean u

— Measurement population

— Bias error §

b Tiotatl ETPOT S = e [

—— Random error
]
i
]
1

Meazurement X
Trise value value Xx

2.3 Probability error estimates.

e Laser: Laser Doppler Velocimetry (LDV), Particle Image Velocimetry
(PIV) 3

— Example: Stereoscopic PIV system for cavitation tunnel at SNU

2.2 Drag Force on a Sphere

2.2.1 Dimensional Analysis

e The drag force D must be a function of the diameter (d), the sphere veloc-
ity (U), the fluid density (p), and the kinematic viscosity (v):

D= f(d,U,p,v) (2.6)

e Nondimensionalization these 5 parameters yields 2 nondimensional quan-
tities, which can be expressed in the form

D Ud
P (—) @7

3 Movie: Concept of PIV system ‘

./mmfm_movies/4582.mov


./mmfm_movies/4582.mov

2.2 Drag Force on a Sphere

47

Tunnel control

Test

Section

Laser sheet

Dynamometer t
{ 7
< i P
Encoder 4 7 / K
Camera
Flow direction
'
Encoder
processor
7 7
Y 2 Head Laser
Synchronizer —
! y
Frame
Computer
grabber

Object Plane

Lascr Shect

2.4 Typical PIV system for cavitation tunnel.

Len,
3




48

MODEL TESTING

14

e The drag coefficient C'p can be written in a more conventional form:

D

m = CD(R)

where S = md? /4 is the frontal area of the sphere.
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2.5 The drag coefficient of a sphere. (From Newman 1977)

2.2.2 Pressure Drag Variation with Reynolds Numbers

contributes to the drag force:

U :
where R = — is the Reynolds number based on the sphere diameter.

(2.8)

e For moderate Reynolds number (10% ~ 3 x 10°), the dominant contribution

to the drag force is due to separation, which occurs near the midplane of
the sphere.

— A substantial pressure difference between the forebody and afterbody

1
Drag ~ Projected(Frontal) area X (ps — pso) = | =pU 2) S Cp (2.9)
8 2
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2.6 The drag coefficient of a sphere for moderate Reynolds number.

Laminar boundary layer

Lamink bouﬂd&f}' layEI

agnation pt > Wake
o Width ~ Diameter

N\

Region of a relatively
high pressure, ps

Wake of free-stream
pressure, p

2.7 Wake of a sphere for moderate Reynolds number.
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e At a critical Reynolds number (3 x 10°), the boundary layer becomes tur-
bulent, and the increase of momentum convection delays separation.
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2.8 The drag coefficient of a sphere at critical Reynolds number.

— The separated wake region is diminished and the drag is reduced dra-
matically.

— Example: Golf ball and Turbulence simulator #

2.3 Viscous Drag on a Flat Plate

2.3.1 Dimensional Analysis for Frictional Drag

e Consider a flat plate of length [, breadth B, and negligible thickness, mov-
ing with velocity U in the longitudinal direction parallel to its length di-

4‘ Movie: Laminar(without trip wire) and turbulent wake(with trip wire) of a sphere ‘

./mmfm_movies/spheredragcombo?2.mov



./mmfm_movies/spheredragcombo2.mov
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mension.

e The drag coefficient is expressed as

D

2

where S is the surface area of the plate.

e For Reynolds numbers on O(10° ~ 10'), the drag coefficient is insensi-
tive to the ratio B/I.

e Experimentally determined frictional-drag coefficients C'r for various flat
plates are fitted with the semi empirical equation determined by Schoen-
herr (refer to p. 115 of Newman (1977) for details):

0.242/1/Cr = log,o(R CF) 2.11)

— Validity of dimensional analysis is confirmed by the collapse of data
from diverse experiments both in water and air.

020
010
009 /s
=
K ~_ :
08 % LWL "&..,,.ﬂm' 0.242
G 009 g b B0 P 2 ey === = L0G,, (RCp)
004 e e s e N
— F G LA b Lol Sl 1. TURBULENT (SCHOENHERR)
oe3 Cp+ 1328R v 5 — 3 e
LAMINAR (BLASIUS) P
QUE Pl \
00l
’ 9
0ot 10° 10 10 10 10

REYNOLDS NUMBER E’Vi
23
Schoenherr’s flat-plate frictional drag coefficient, compared with various experimental results and the Blasius boundary-layer
theory. Note that transition occurs between R = 10% and 2 x 10¢, depending on the plate roughness and ambient turbulence. For
references to the experimental data see Todd (1967), figure 3.

2.11 Schoenherr’s flat-plate frictional drag coefficient. (From Newman 1977)

2.3.2 Transition Range of Reynolds Numbers
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e In the transition range of Reynolds numbers (10° ~ 10°), there is a scatter
data. >

020

IO

o
0ot
006
C_" 005

0.242
-“-; *L0G,, (RCL)

003 TURBULENT (SCHOENHERR)

ooz

001

REYNOLDS NUMBER ”?“

23

Schoenherr’s flat-plate frictional drag coefficient, compared with various experimental results and the Blasius boundary-layer
theory. Note that transition occurs between R = 105 and 2 x 105, depending on the plate roughness and ambient turbulence. For
references to the experimental data see Todd (1967), figure 3.

2.12 Transition from laminar to turbulent flow for a flat plate drag coefficient. (From
Newman 1977)

— The flow changes from a smooth laminar regime to the turbulent
regime.

— An important mechanism that triggers turbulence is the smoothness of
the body surface.

— The drag of rough plates shifts to the turbulent value at lower Reynolds
number.

— For very smooth plates, laminar flow can be maintained longer.

e The consequence is to increase the momentum defect of the boundary layer
and the resulting frictional drag on the flat plate.

— Note: Opposite to the effects noted for a sphere where the dramatic
decrease in drag is significant. (See Figure 2.8 )

— The frictional drag coefficient is O(1/100) of magnitude less than that
of the drag coefficient for a sphere: the importance of streamlined
body shape.

5‘ Movie: Transition from laminar to turbulent flow ‘
./mmfm_movies/5021.mov



./mmfm_movies/5021.mov
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2.4 Viscous Drag on General Bodies

2.4.1 Infeasible Tests of Geosims

e The drag on general bodies can be determined from tests of geosims, if
Reynolds number for model and full-scale bodies is the same.
— However it is difficult to find liquids less viscous than water.

— The ratio of model velocity to full-scale velocity must be inversely
proportional to the ratio of the lengths.

— (Example) Let us consider a ship of 100 m length, moving at 10 m/s.
If a 10 m model is to be tested in water at the same Reynolds number,
it must move with a velocity of 100 m/s. Not feasible in conventional
facilities!

2.4.2 Frictional Drag and Pressure Drag

e Usually the total drag is separated into 2 components, frictional drag and

pressure drag: longitudinal components of forces acting on a body due to

tangential shear stresses and normal pressure stresses, respectively.

— Assumption 1: The frictional drag due to the tangential shear stress
is affected by the Reynolds number only, and is equal to that of a flat
plate of equal area and Reynolds number.

Df:g'-/ TtdS (2.12)
surface

— Assumption 2: The pressure drag (also called the form drag) depends

on the form of body. For a streamlined body, the pressure drag is
independent of Reynolds number over the range where boundary layer
is thin, typically for Re > 10°.

D,=i- / (—p)ndS (2.13)
surface
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— If the body has sharp edges not aligned with the flow, separation will
occur at these edges irrespectively of Reynolds number.

— For example, a circular disc or a flat plate moving normal to the flow
will experience separation at the periphery. ©

2.13 Flow over a flat plate normal to inflow. (From Fox, McDonald & Pritchard 2004)

e With these assumptions, the total drag coefficient can be written in the
form CD(R) = CF(R) + Chp.

e For bodies with thickness-length ratio less than 0.2. the frictional drag is
dominant.

e Conflicting roles of transition to turbulence: decrease of drag for bluff bod-
ies and increase of drag for fined bodies.

e Contributions of frictional drag and pressure drag to total drag as a function
of thickness-length ratio.

e Variation of drag coefficients of a cylinder and a sphere with Reynolds

number. ’

%Note: C. Mimeau, I. Mortazavi and G.-H. Cottet (2014), “Passive Flow Control Around a Semi-Circular
Cylinder Using Porous Coatings,” International Journal of Flow Control, 6, 43-50. On a ground vehicle, the
outside mirrors, due to their spanwise position, indeed generate a non-negligible wake which interferes with the
flow past car sides. They are responsible of up to 10% of the total vehicle drag but they only represent 0.5% of the
total projected surface.

7‘ Movie: Cylinder(CFD), Cylinder(Visualization), Sphere(Laminar & Turbulent)
./mmfm_movies/Cylinder.mov ./mmfm_movies/146.mov
./mmfm_movies/spheredragcombo?2 .mov



./mmfm_movies/Cylinder.mov
./mmfm_movies/146.mov
./mmfm_movies/spheredragcombo2.mov
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1.000

0.300

N‘W
ol oo

—l

o° 0030

0.010

2.4

Drag coefficient as a function of Reynolds number for two-dimensional cylin-
ders of maximum thickness-to-length ratio 7//. For the flat plate (z// = 0) the
curve shown is twice the skin-friction coefficient of figure 2.2, and the shaded
areas of this and the circular cylinder indicate the general range of uncertainty
depending on ambient turbulence and roughness of the surface. For the
intermediate cylinders, the precise values of the drag coefficients will depend
on the shape, especially near transition.

2.14 Drag coefficient for two-dimensional cylinders. (From Newman 1977)

Drag

%pt'z (Frontal area)

Cp

- -

i = thickness

¥

Total drag

skin-friction
[ drag

Fressure drag

0 0.1 0.2 0.3 0.4 Q.

(83 |

2.15 Drag on a strut: Contributions of frictional drag and pressure drag to total drag
as a function of thickness-length ratio. (From Fox, McDonald & Pritchard 2004)
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2.16 Drag coefficient for a circular cylinder. (From Fox, McDonald & Pritchard 2004)
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2.17 Drag coefficient for a sphere. (From Fox, McDonald & Pritchard 2004)
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2.5 Hydrofoil Lift and Drag

2.5.1 Lifting Surfaces

e Streamlined planar bodies

— Viscous effects to thin boundary layer
— Characteristic length: chord length (in 3-dimensions, span as well)

— Aspect ratio of span to mean chord,
A=5%/S (2.14)

where s = span; .S = planform area (projected area on the plane y = 0)
= (chord) x (span).

2.18 Three-dimensional lifting surface. (From Newman 1977)
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e High aspect ratio: 2-D

— 2-dimensional hydrofoil sections experience a drag force D, and lift
force L.

— Linearized thin-foil/wing theory for small angle of attacks

amount of camber

chord line _
\ mean camber hine

U

angle of attack

2.19 Geometry of a hydrofoil section.

e Lift Generation: Kutta Condition

— Potential flow without circulation

— Circulation around foil moves stagnation point back at the trailing
edge(T.E.)

e Dimensional analysis for drag and lift forces with 5 parameters of plan-
form ares S, velocity U, angle of attack «, fluid density p, and kinematic
viscosity v:

L D
— = ———=Cp(R, 2.15

where [ is used to define the Reynolds number R = Ul /v.
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_-..IIIIIIIM%M}%%;QQ

"_j‘; angle of attack
—= U

i, il T

e chord

25

Flow past a hydrofoil section. The angle of attack « is generally defined with
respect to the ‘‘nose-tail line,”” between the center of the minimum radius of
curvature of the leading edge and the sharp trailing edge. L and D denote the
lift and drag components of the total force F, and are defined respectively to
be perpendicular and parallel to the free-stream velocity vector.

2.20 Flow past a hydrofoil section. (From Newman 1977)

2.22 Assumed flow past a foil with circulation. (From Newman 1977)
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2.5.2 Lift and Drag on Hydrofoil

e For hydrofoils with large aspect ratio (i.e., large span relative to chord),
the total 3-D force can be estimated by integration of the sectional lift and

drag along span.

e Lift coefficient is assumed to depend only on the angle of attack, and to be
independent of the Reynolds number:

— For small angles of attack, the lift coefficient is insensitive to the

Reynolds number and increases in

— As the angle of attack increases, the streamlined effect of diminishes
and stall occurs with a dramatic reduction in the lift coefficient.

— The stall position is sensitive to the Reynolds number, ambient turbu-

lence, roughness of surface.

a, DEGREES —=

2.6
Lift coefficient (16) for a two-dimensional hydrofoil. The results here are for
the NACA 63-412 section which is shown in figure 2.5. The dashed curve

(— — —) shows the behavior at stall for a foil with artificial roughness near
the leading edge, for R = 6 x 10¢. (Adapted from Abbott and von Doenhoff
1959)

2.23 Lift coefficient for a two-dimensional hydrofoil. (From Newman 1977)
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e Lift Characteristics of Hydrofoils 8
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IBTNVS 2.24 Lift characteristics of hydrofoils. (From Fox, McDonald & Pritchard 2004)

e The drag is assumed to be separated into 2 components: the frictional drag

of a flat plate at zero angle of attack accounting for the Reynolds number
dependence, and the pressure drag depending only on the angle of attack:

CD(R, CY) = CF(R) + Cp(Oé) (2.16)

8‘ Movie: Lift Characteristics of Hydrofoils, CFD ‘

./mmfm_movies/air_foil_00_deg.
./mmfm_movies/air_foil_ 10_deg.
./mmfm_movies/air_ foil_ 20_deg.
./mmfm_movies/air_foil 60_deg.
./mmfm_movies/kunio_flow.mov

mov
mov
mov
mov

./mmfm_movies/air_foil_05_deg.mov
./mmfm_movies/air_foil_15_deg.mov
./mmfm_movies/air_foil_25_deg.mov
./mmfm_movies/Airfoill.mov



./mmfm_movies/air_foil_00_deg.mov
./mmfm_movies/air_foil_05_deg.mov
./mmfm_movies/air_foil_10_deg.mov
./mmfm_movies/air_foil_15_deg.mov
./mmfm_movies/air_foil_20_deg.mov
./mmfm_movies/air_foil_25_deg.mov
./mmfm_movies/air_foil_60_deg.mov
./mmfm_movies/Airfoil1.mov
./mmfm_movies/kunio_flow.mov
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— For small positive or negative angles of attack where the lift force is
small, the drag coefficient is insensitive to the Reynolds number and
takes a value comparable to the flat plate frictional drag coefficient.

— As the stall approached, the drag goes up remarkably and very sensi-
tive to the Reynolds number.

2.5.3 Remarks: Induced Drag for 3-D Lifting Surfaces

e Induced velocity by trailing vortex system °

e Downwash effect :

— Effective angle of attack:

Qeffective = &

~ Qinduced 2.17)

— Additional induced drag component:

D = Df + Dp + Dinduced (2.18)

— Drag components for lifting bodies:

Total drag = Profile drag + Induced drag

Frictional drag + Pressure drag + Induced drag

2.6 Screw Propeller

e Characteristics of Marine Propellers

— Complex Geometry: low aspect ratio, skewed/raked geom, boss, com-
pound devices

9‘ Movie: Wing tip vortex of a plane and a car ‘
/mmfm_movies/wingtip_vortex.mov ./mmfm_movies/3629.mov
./mmfm_movies/3618.mov



./mmfm_movies/wingtip_vortex.mov
./mmfm_movies/3629.mov
./mmfm_movies/3618.mov

64

MODEL TESTING

020
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CE
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005 [
0.000 : '
-20 -0 0 10 20
a,DEGREES —>
2.7
Drag coefficient (17) for the NACA 63-412 section as described in figure 2.6.
(Adapted from Abbott and von Doenhoff 1959)

2.25 Drag coefficient for a two-dimensional hydrofoil. (From Newman 1977)
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2.26 Trailing vortex system of a wing. (From Fox, McDonald & Pritchard 2004)
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ton 1994)

2.27 Downwash distribution for trailing vortex system on a wing. (From Carl-
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2.28 Derivation of induced drag on a wing. (From Carlton 1994)

— Complicated Non-uniform Onset Flow: turbulence, unsteadiness, op-
eration

— Mutual Interaction: cavitation, hydroelasticity, free surface, hull, rud-
der

e Propeller Geometry

— Propeller coordinate system

— 3 coordinate systems: (1) Cartesian (2) Cylindrical (3) Helical coor-
dinate system

e Propeller Open Water Test: Non-dimensional Numbers

VL VL
Reynolds number R = pe_ (2.19)
1] v
Froude number F, = L (2.20)
" VL '

Cavitation number C, — 52— (2.21)
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2.29 Propeller coordinate system.
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VERTICALLY UP

A

AFT

E1 - c[;c—0.51

7 To PORTSIDE

I3TIYd 2.30 Propeller blade geometry in 3 coordinate systems.
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e 3-D Perspective and 2-D view of a propeller blade section: Hydrodynamic
forces

2.31 Perspective view of a propeller and its shaft. (From Newman 1977)

e Open Water Characteristics: Advance ratio ./, Thrust/Torque coefficient
K7, Kg, Propeller efficiency np

U
= — 2.22
J — (2.22)
T
Kp(J) = S (2.23)
Kq(J) = pnng’ (2.24)
ur J Kr
= = —— 2.25
L 2mn@) 2w Kg ( )

e Components of Marine Propulsion System
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2Tnr

RESULTANT
INFLOW

10TV 2.32 2-D view of a propeller blade section. (From Newman 1977)

X Pa
ho
Dynamometer
(Propeller thrust and pa— L1 1
torque) /

2.33 Experimental setup for propeller open water test in towing tank.
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P Indcated

P Effective

P Delivered

E2t=(intermediate shaft)

Z2v= wWlolZ (intermediate shaft bearing)
ze@e|&(propeller shaft)

Aftmost BIO1E (Aftmost bearing)

ABISY (stern tube)

HE U0 (stern tube bearing)
RZ JlotS(rope guard)
23| (propel ler)
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ENGINE
! / —CH=E R= C-b
' | ; N —t
Intermediate Shaft Bearing | umoes Ji ~ Nk !
< B.L — _r;ir’ B | A .
i Propeller Shaft and i P ol t]—
Propeller Repair Intermediate Shaft ,J\ p ,Sé(L\ , 6 (L
Stern Tube Sealing ® @@ @0

2.34 Components of a typical marine propulsion system. (& *]: 4453 2004)

2.7 Drag on a Ship Hull

e In dimensional analysis, 6 dimensional quantities can be reduced to 3
nondimensional numbers.

D

5 = Co(R.F) (2.26)
2

where S is the wetted surface area of hull, and the Froude number F,, =
U/(gl)'/? represents the effect of gravity.

e It is impossible to scale simultaneously both the Reynolds and Froude
numbers.

e The residual drag is defined as, without the Froude’s hypothesis,

Cr(R, F,) = Cp(R, F,) — Cr(R) (2.27)

e Decomposition of Ship Resistance

e Froude’s hypothesis The drag can be expressed as sum of a frictional drag
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1.1 Total resistance

Added resistance Calm water resistance Asrodmanue
i wave | IRAEANCE
| |
Reudual resstance Skin fnction resstance
| {Ecqpavalent fiar plate)

|
Form effect on sk fnction

Pressure resistance Friction resistance
I |
Wave resisnnce Viscous presnue renstance
| |
I ] |
Wave makmg resisiance I VWave breaking resistance Viscous

2.35 Decomposition of ship resistance.

Total resistance

Pressure resistance Skin friction
resistance
L I i
Wake making Naked hull Appendage
resistance skin friction skin friction
| resistance resistance
r 1 ] | |
Basic Bulbous bow Transom Viscous I
hull form wave making immersion form I
wave making contribution resistance resistance | I
resistance [ | 1 | I
I 1 l | ! |
L% ! * t % i 1 { s
b b
Wave making resistance Viscous resistance

2.36 Components of ship resistance. (From Carlton 1994)




2.7 Drag on a Ship Hull

Gl
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} Ci(Pasy) calculared
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2.37 Froude’s hypothesis for prediction of resistance of a full-scale ship. (From MIT
website 2004)

depending on Reynolds number, plus a residual drag depending on Froude
number.

Cp(R,F) = Cp(R) + Cr(F) (2.28)

— Froude’s hypothesis is an approximation to assume that the resulting
Cr 1s independent of the Reynolds number.

— Extrapolator of model results to obtain full-scale resistance coeffi-
cients.

(CD)ship - (CD)model - (OF)model + (CF)ship (2.29)

— Calculation of model and full-scale frictional drag
e Experimental validation of Froude’s hypothesis

— Geosim models (length [ =4 ~ 30 ft and full-scale drag mea-
surements for several values of Froude number
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Frictional drag coefficients or extrapolators. The ATTC and ITTC lines are
those recommended by the American and International Towing Tank Con-
ferences; the former is identical to the Schoenherr line. (From Todd 1967;
reproduced by permission of the Society of Naval Architects and Marine

2.38 Calculation of model and full scale frictional drag coefficients. (From New-

man 1977)
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2.11
Total drag coefficients of the Lucy Ashton and several geosim models of the same vessel (from Troost and Zakay 1951). The
faired curves represent constant values of the Froude number and, if Froude’s hypothesis were strictly valid, these would be

parallel with spacing independent of the Reynolds number. Note that, even for this small full-scale vessel (58 m long), there is a
large gap between the largest model results and the full-scale results.

2.39 Total drag coefficients of geosim models. (From Newman 1977)
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— The curves of constant values of Froude number are not strictly par-
allel to Schoenherr line of frictional drag, but Froude’s hypothesis is
acceptable to a considerable extent in correlating the resistance of sev-
eral geosims.

¢ ——— ; TR
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— e
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2.40 Total drag coefficients of geosim models: Validation check on Froude hypothe-
sis. (From Newman 1977)

— The low Froude number asymptotic tendency is indicated by coales-
cence of the results for full-scale speeds of 4 5 knots. At these speeds,
the wave resistance is negligible and the principal contribution to the
residual drag is viscous form drag. The viscous form drag is not con-
stant but decreases increasing Reynolds number.

— Suggestion: (1) The form drag should be assumed proportional to the
friction drag or (2) the frictional drag curve should be more steeply
sloped than the Schoenherr line (ATTC line): e.g. Hughes line/ITTC
line.

— The viscous form drag coefficient increases with decreasing Reynolds
number. The residual drag coefficient curves display the opposite ten-
dency.
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2.41 Total drag coefficients of geosim models: Viscous form drag. (From New-
man 1977)

— Both the wave drag and form drag depend separately on Reynolds
number. These effects are small for the larger models.

e Extrapolation using form factor k

2.8 Propeller-Hull Interactions

e Individual analysis of hull and propeller, and interactions

e Self-propulsion factors: Wake fraction(wr), thrust deduction factor(¢), and
relative rotative efficiency(npr)

Vs

wp=1- - (2.30)

Rr=(1—)T 2.31)
(Kq)ow

= =/ 2.32

MR (Ko)sr (2.32)

Vi=nDJ (2.33)
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IBTNVY 2.42 Frictional drag coefficients. (From Newman 1977)
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2.43 Total drag coefficients of geosim models: Larger models effect. (From New-

man 1977)

Cps =(1+K5)Cp5 +C,,

v

A\ i

Determination of form factor &
(Ex) Prohaska method

v

From model resistance tests

Calculation by formula
of frictional drag line

2.44 Extrapolation using form factor k.
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— Quasi-propulsive efficiency

RV (1-t)VEKr  (1-1%)
= 2rn @ 2mn D (Kg)sp (1 —wr

N —T
v \

= e < Qazc‘: < 33 Sy

—= g e

PR (2.34)

N A

= =

EerrEoTive T

Vet YA o
MR R )

o =N eaNd )

2.45 Schematic diagram of propeller-hull interaction. (From Brockett 1988)

2.8.1 Propeller and Ship Powering

e Shaft Power, SHP or Brake Power, BHP

— Power output at the prime mover is higher than delivered power.

— It is usually called shaft power (Pg or SHP) for gas turbines and brake
power(FPp or BHP) for diesel engines.

— Occasionally Pgs is the power immediately fore of the stern tube bear-
ing, and Pp is the power right at the prime mover.

e Delivered Power, DHP
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2.46 Thrust identity condition between open-water propeller test and self-propulsion
test. (From Newman 1977) (Note: Here Us = V4, Unmodel = ViModel and U = V)

P Indcated

'?Brake __-‘l. i

P Effective

P Delivered
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Intermediate Shafl Bearing

Propeller Shaft and
Intermediate Shaft

.

Stern Tube Sealing

CICRCIORCRS]

E21&(intermediate shaft)

E2vE vloi (intermediate shaft bearing)
a2 &(propel ler shaft)

Aftmost BIO1& (Aftmost bearing)

AE Y (stern tube)

2EFE W0 (stern tube bearing)

(@ == J0t=(rope guard)
ZZ2@2 (propel ler)
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I 3Ty 2.47 Components of a typical marine propulsion system. (& *]: A4 53 2004)

= o
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Vv
Poe
R g=RrV
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Va
1 - I\ P
e
Pr=TVa Po

2.48 Schematic diagram of propeller and ship powering.

— Pp or DHP is power delivered to the propeller by the prime mover.
Pp = 2mnQp (2.35)

where n = revolutions per second of shaft or propeller and () p = torque
delivered to the propeller.

— Propeller converts rotating power to thrust power.
e Thrust Power, THP

— Propeller is producing thrust 7" at a speed of advance V.
Pr=TV, (2.36)

where T' # Ry, Vi # V.

— Useful power output of the propeller is called the thrust power Pr or
THP.

e Effective Power, EHP

— Pp or EHP is power needed to tow ship at a given speed in calm water
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or power to overcome total resistance force Ry at ship speed V.

Pp = RrV (2.37)

where Ry is total resistance and V' is ship speed.

_ . P
e Shaft Transmission Efficiency, ng = FD
S
— Occasionally, more than one transmission (or mechanical) efficiencies
are defined.
— the overall transmission efficiency will then be the product of the in-

dividual components.

n=-0.98
e Geared Drives Reduction Prime
Gear Mover
« Electric Drives n,, =~ 0.89
n=-0.96 n=~0.96 n=~0.97
Main Power Vi
Propulsion Distribution SN |  Prime
Motor I ey " Mover

OIS 2.49 Transmission efficiency of mechanical drives and electric drives.

e Propeller Efficiency

— Power conversion between Pp and Pr is the major loss in power.
— Depending on where the propeller torque is measured,

* Efficiency of propeller behind the ship, 7p:

Pr TV 4
— — 2.38
nB Py~ 2705 (2.38)
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where ()5 = Torque required by the propeller to deliver 7" and V4
behind the ship.

* Efficiency of propeller in open water, 7:

Pr TVy
— — 2.39
=B Os (2.39)

where )y = Torque required by the propeller to deliver 7" and V4
in open water.

e Relative Rotating Efficiency, ngr

np = 28 @ (2.40)
n  @p
— Itis not a “true” efficiency (not a ratio of powers).
— It can be greater than one. Usual values around one.
e Hull Efficiency, ngy
P RpV
== = 241
=B Ty, (2.41)

— A measure of hull form (stern) design to suit propulsor arrangement.
— It does not involve power conversion, so it is not a “true” efficiency.

— It can be greater than one, usual numbers around 1.05.

e Overall Efficiency (Propulsive Efficiency), np

Pe Pz _Pr_Pp

X — X — =N nNBNs =N MRS (2.42)

L R

— While ng depends on mechanical efficiencies, 1y, 9 and nr depend
on hydrodynamics, where 7 is the major loss in power.

— The powering problem is how to maximize 7p in design stage.
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2.9 Unsteady Force on an Accelerating Body

e Development of unsteady flows '

1. Symmetrical attached flow: ideal flow behavior
Increase of viscous effects: growth of boundary layer
Wake separates downstream

Two symmetric vortices: grow in strength

Shedding vortex unstable

NNk

Alternating shedding vortex

e In the case of a body accelerated impulsively from a state of rest, the hy-
drodynamic force F'(¢) will vary with time.

e Force in the direction opposite to the body motion:

ﬁ = Cp(R,Ut/l) (2.43)
e Case 1: Large values of time
— Steady-state drag coefficient
Cr(R,Ut/l) ~ Cp(R) for Ut/l > 1 (2.44)

e Case 2: Small time (Initial stage of rapid acceleration) !

— Inertia force dominates viscous force: inviscid limit of high Reynolds
number

Cr(R,Ut/l) ~ Cp(oo, Ut/l) for Ut/l < 1 (2.45)

10’ Movie: Unsteady flows of impulsive started circular cylinder(Exp.) ‘

./mmfm_movies/2_05005.mov

“’ Movie: Initial stage of impulsive started circular cylinder(CFD) ‘

./mmfm_movies/Cyl.mov


./mmfm_movies/2_05005.mov
./mmfm_movies/Cyl.mov
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2.14

Imitial stages of the flow past a circular cylinder which is accelerated impul-
sively from a state of rest to constant velocity. (From Prandtl 1927)

2.50 Development of unsteady flows about an impulsively started circular cylinder.

(From Newman 1977)
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2.9.1 Added Mass
e Initial Stage: Viscous forces are negligible, the hydrodynamic force:
F = —1m1 U (246)

where U denotes the acceleration.  Force coefficient:

mi U

C Ut/l) = ——
F(OO7 /) %pUQZQ

(2.47)

e Relative magnitudes of viscous force and added mass force are, since the
added mass is proportional to [3,

Cr(R,00) LpUPCp(R)  U?

: X =
CF(OO,Ut/l) mllU Ul

(2.48)

— The parameter U?/ Ul is small during the period of acceleration and
large subsequently.

e Gradual transition of the force coefficient

— Added-mass forces will dominate initially and viscous forces subse-
quently.

2.10 Vortex Shedding

e Karman Vortex Street 2

— Oscillatory shedding of vortices into the wake in a staggered configu-
ration as predicted from a stability analysis.
— The small-scale vortices lie between the separation having the initial

instability and the initial formation of large-scale Karman vortex.

e Phenomena of Vortex Shedding in Nature

12’ Movie: Vortex shedding of circular cylinder wake ‘

./mmfm_movies/Cylinder.mov


./mmfm_movies/Cylinder.mov
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20
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2.15

Force coefficient for a circular cylinder accelerated from an initial state of rest
to a constant velocity U, based on experiments of Sarpkaya (1966).

2.51 Force coefficient for an impulsively started circular cylinder. (From New-
man 1977)

. Instability fh

MR e i ~\

small-scale vortices ~ Rl
f

Vs
- Karman
[ ) v vortex
\ .
CP N
Formation fb: transition wave frequency
Region

fs: fundamental shedding frequency

IOTNVS 2.52 Karman vortex street.
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S107E05059

2.53 Karman vortex street in nature. Cloud formation caused by steady wind down-
stream of an island (Madeira) at 2.4km height above the island.

e Lateral lift force and shedding frequency

Lift

Velocity U force
e,
- =
-
- 3
- 2
¢

2 ‘/
[
'

2.54 Lateral lift force and shedding frequency.

— Nondimensional magnitude of the lift force and shedding frequency:
13

1
Lmax/§PU2l = Cr(R),| |[l/U=S5(R) (2.49)

where Lmax denotes the maximum value of the lift force per unit
length along the cylinder, and S is the Strouhal number. For circular
cylinders, C7, is typically 0.5.

— For Reynolds numbers in the laminar regime (i.e., for low Reynolds
numbers) for circular cylinders, the Strouhal number S is about
0.20 ~ 0.22.

13| Movie: Vortex shedding of circular cylinder wake(Re=200) |
./mmfm_movies/Cy1200.mov



./mmfm_movies/Cyl200.mov
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2.55 Strouhal number for a circular cylinder at low Reynolds numbers.

— For moderate and high Reynolds numbers (102 < R < 107), the
Strouhal number is approximated by S = 0.23/Cp.

e Hydroelastic resonance: Lift force induces vibration !

4

— The well-known [ock-in phenomena between the Strouhal frequency

and the structural mode of vibration of the body.

— This VIV (Vortex Induced Vibration) problems may occur on cables,

risers, pilings and other fixed structures in a current. '

14‘ Movie: Vortex shedding of freely oscillating circular cylinder

./mmfm_movies/free_cylinder2.mov

15‘ Movie: Tacoma bridge ‘

./mmfm_movies/tnb.mov


./mmfm_movies/free_cylinder2.mov
./mmfm_movies/tnb.mov

2.11 Vortex Shedding
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IOt 2.56 Drag coefficient and Strouhal number for a circular cylinder at moderate and
high Reynolds numbers. Note: Experiments are available for very high Reynolds numbers.
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2.57 Lock-in phenomena between the lateral lift force and vortex-shedding frequency.
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2.58 Example of VIV (Vortex Induced Vibration) phenomena: Collapse of the Tacoma
bridge.
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2.11 Water Waves

2.11.1 Dispersion Relation of a Progressive Wave in Infinite Depth

e Periodic progressive wave system is characterized by amplitude A, wave-
length \ , period 7" (or frequency w = 27 /T")

e Phase velocity: V, = w/k = w)\/27

— n(x,t) = Acos(kx — wt +€) with e = phase
— Wave number k = 27/\ = w/V,

!‘_L A -
| | —-=V
A h

2.1

Sketch of a periodic progressive wave in a fluid of mean depth A. Note that A
is the wavelength, 4 the wave amplitude, and the wave translates with phase
velocity ¥V, in the direction shown by this vector.

2.59 Sketch of a periodic progressive wave in a fluid of mean depth h. (From New-
man 1977)

e Wave period 7" must be a function of amplitude A, wavelength \ , density
p , gravitational acceleration g, and depth h.

e Frequency w and phase velocity V), can be replaced by period 7" and wave-
length A .

e The density of fluid p is only one parameter containing units of mass, so
that the parameter p can be deleted from the dimensional analysis.
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e Five dimensional parameters (7', A\, A, g, h) remain and a nondimensional
form for period 7' is

T(g/N)"* = fF(A/X h/N) (2.50)

where nondimensional amplitude ratio A/ is analogous to the maximum
pendulum swing angle 6, in pendulum .

e If the wave amplitude is sufficiently small compared to the wavelength, a
linearized result is

T(g/N)Y% ~ £(0,h/N)| for A/N < 1 (2.51)

e If fluid depth is very large compared to the wavelength (as in deep ocean),
the form is

T(g/N)Y? ~ f(A/X\, 00)| for A\/h < 1 (2.52)

e For small amplitude waves in deep water, i.e., A/A < 1 and A\/h < 1,

T(g/\)Y? ~ £(0,00) = constant (2.53)

where constant (C) cannot be determined from dimensional analysis.
From a more complicated analysis, '® we have C' = (27)"/? and conse-

16By using the potential flow analysis (inviscid irrotational flow analysis), we have the linearized result for plane
progressive waves in deep water: (see Newman (1977), Chapter 6 for details)

A
o= 92 ky sin(kz — wt). (2.54)
w
. . . . .. 0% 0 . .
With the velocity potential ¢, the linearized free surface boundary condition e + ga— = 0 is applied to have
Y
w? = gk, from which the constant C' = (27)'/2 can be derived. The corresponding velocity field u = (u, v) is,
then,
0 0
u= 9% _ wAer cos(kx — wt), v = 9% _ wAer sin(kx — wt). (2.55)
ox dy

An instantaneous velocity field is depicted in Figure 2.60 .
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quently
T(g/N)'* = (2m)'?
= (2m/w)(g/N)"? = (2m)'/2
21 1/2
~- ()
— = gk (2.56)
The phase velocity

Vy, (Ew/k=NT) = g/w
or = (g/k)"/?
or = (gr/2m)"/? (2.57)

e Period 7' is proportional to A'/2 and from V,, = A\/T , the phase velocity

_ 9 _ N
vp_\/;_ - (2.58)

— Dispersive relation: water waves of different wavelengths or periods

V}, is proportional to A\'/2:

will propagate at different phase velocities. See Table 2.2 for example.

2.2 Dispersive relation of deep water ocean waves

Wavelength | Phase Velocity
A Vi
30 m 24 km/h
150 m 56 km/h
300 m 80 km/h

— Long waves will travel faster than short waves, and a spectrum of
waves will constantly change its appearance.

— The monochromatic wave system is an exception because only one
wavelength is present.
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e Velocity field for plane progressive waves in deep water

_— Vp
- / I\___M N -
o ! N < V J N -
-> 7 1 =\ « v { N =>
5 2 4 K « ¢ N N >
Y A 2 L3 € "4 ¥ N >
Y a 2 " € [ * E ] >
o a T 3w 2T
2 2
(Kx-wt)
6.1
Velocity field of a plane progressive wave in deep water. The phase velocity
and fluid velocity vectors are to the same scale. This example corresponds to
the case 4/A = 1/20.

2.60 Velocity field of a plane progressive wave in deep water. (From Newman 1977)

2.11.2 Secondary Effects: Viscosity, Air, Surface tension, Nonlinear Ef-

fects

e The water viscosity exerts a small dissipative effect, typical water waves
can travel for hundreds or thousands of wavelengths.
A non-dimensional viscosity ratio:

Viscous Force VA g A v
Gravitational Force ~ pgA3  gA2  ¢l/2)3/2
~ 3x 107" for A = lm (for example)

(2.59)

e Air effects can be ignored on water waves since the air density is about
1/800 of the water density.

a0 (107 (2.60)
Pwater

Exception is the process by which ocean waves are generated by the wind.
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e Surface Tension effects

— Surface tension is due to the inter molecular forces attraction forces
in the fluid: Surface tension o = Tension force/Length = Surface en-
ergy/Area. For a water-air interface, it is about 0.07 Newton/m. !

— On an interface surface between two fluids (i.e., stratified fluids), the
continuity of the stress:

| 11
(T — T<0>) 0| —+— 2.61

where T' is the stress tensor, n is the unit normal vector, R, and Rs are
the principal radii of curvature of the interface.

— When the two fluids are stationary, only the pressure terms:

. 1 1
n- (p(z) _ p(O)) =0 (E + R_2) (2.62)

— (Example) Two stationary fluids in 2-dimensions At the interface of
two fluids, surface tension implies in a pressure jump across the inter-
face from force equilibrium:

cos (?) (Ap)(Rdf) = 20sin (%8)

— (1)(&p)(RdO) =20 (g) — Ap= % (2.63)

We have used cos (?) ~ 1 and sin <%> ~ (%) for df < 1.

— (Example) For a stationary spherical bubble,

P —pl? =20/R (2.64)

— A suitable nondimensional parameter is related to Weber number, e.g.,

17’ Movie: Surface tension ‘
./mmfm_movies/5171.mov



./mmfm_movies/5171.mov
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2.61 Surface tension for two stationary fluids in 2-dimensions.

plr, 1) (FIELD POINT)
BUBBLE
WALL
PRyt u,
F‘l = SR, 4¢
(A] SPHERICAL BUBELE IN (B) FORCE DIAGRAM
AN UNBOUNDED LIQUID FOR A THIN FILM

2.62 Surface tension for a stationary spherical bubble.
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for water waves:

Surface Tension Forces o\

= - A2 2.65
Gravitational Force pgA3 a/(pgA°) ( )
~ O (10—6) for A = 1m and o = 0.07 N/m (for example)

— Surface tension effects are negligible for long waves. However, the ef-
fects must be included in flow analysis involved in the shortest waves
or micro-bubbles. '8

e Nonlinear effects

— Steepest wave slope: 1/7, Max. crest angle: 120°.

30° : Z YR
| I 0.19\
| |
p———— — - — = —— — - r———--1-
! !
- A ' >

2.63 The “steepest wave” profile of nonlinear waves. (From Newman 1977)

— Wave profile

1 17
n=A cos(k:x—wt)+§kA2 Ccos 2(k:x—wt)+ﬂk3A4 cos 2(kx—wt)+- - -

(2.66)

18 Movie: Water drop in cup; Water Strider on surface

./mmfm_movies/5444 .mov ./mmfm_movies/strider.mov


./mmfm_movies/5444.mov
./mmfm_movies/strider.mov
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2.3 Relative effect of nonlinear waves

Wave Slope | Ratio of the second term (nonlinear term) in Eq. (2.66)

to the first term(linear term)

24/ skA
1/80 0.0196
1/40 0.0393
1/20 0.0785

2.11.3 Solutions for Finite Depth

e The solution of the linearized potential flow problem for a plane progres-
sive wave in finite depth: '°

_ gAcosh{k(y+h)}

¢ w cosh(kh)

sin(kx — wt). (2.67)

The corresponding velocity field u = (u, v) is, then,

0¢  wAk cosh{k(y+h)}
or w cosh(kh)
09  wAK sinh {k(y + h)}
Oy  w cosh(kh)

cos(kr — wt), (2.68)

sin(kz — wt). (2.69)

An instantaneous velocity field for plane progressive waves in finite depth
1s shown in Figure 2.64 and Figure 2.65 (a).

e With this solution for ¢, the linearized free surface boundary condition

19Like the case of a plane progressive waves in deep water, we have the linearized result. See Newman (1977),
Chapter 6 for details.
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82
%2

ot dy

dispersion relatlon 1s an implicit equation:

= 0 is again applied to derive the dispersion relation. 2° This

k tanh(kh) = w?/g = V, = w/k = [(g/k) tanh(kR)]"*  (2.73)

The ratio of the phase velocity to the infinite-depth limit V},/V}, _ is plotted
in Figure 2.66 , together with the depth-wavelength ratio h/\.

R L=, 1A
P e
—> Vel ) AN e ¥ N —
—_— Pl A ~ <« &« v N g h
- = + - e & v > —
0 a T 377 2T
( Kx- (ut)
6.2

Velocity field of a plane progressive wave in finite depth. The phase velocity
and fluid velocity vectors are to the same scale. This example corresponds to
the case A/A = 1/20 and A/h = 1/5.

2.64 Velocity field of a plane progressive wave in finite depth. (From Newman 1977)

2.11.4 Shallow Water Limit

e While the waves for infinite (even finite) water depth are dispersive, the
shallow-water limit is nondispersive.

V, ~ (gh)"/* for kh < 1 (2.74)

20For a fixed value of w for all depths, i.e., w = w, we have

- — R _op 2.
w g koo o == p 71'>\Oo (2.70)
W wA \% A
v S S 2.71
PR T o Voo Moo ( )
w? = w2 gk tanh(kh) = gkoo

—
A 27h Ao
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6.7

Particle trajectories in a plane progressive wave (a), a partial reflected wave
(b), and a standing wave (c). These correspond respectively to a reflection
coefficient of 0, 0.38, and 1.0 in equation (56). Note that the reflection coef-
ficient can be measured from the maximum and minimum of the envelope,
using (56). These photographs are based on time exposures, and are repro-
duced from a more extensive series of observations made by Ruellan and
Wallet (1950).

2.65 Particle trajectories of a plane progressive wave in finite depth. (From New-
man 1977)
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6.3
Phase velocity, wavelength, and depth ratios of a plane progressive wave.

The deep-water limiting values ¥ . and 1., can be determined from equation
(18).

I3Tuiid 2.66 Phase velocity, wave length, and depth ratios of a plane progressive wave in
finite depth. (From Newman 1977)



104 MODEL TESTING

PE——————
ROSUN TN NN N\

“ ““““

6.4

Sequence of photographs, taken through the transparent side of a wave tank,
showing the propagation of plane progressive waves into shallow water. The
water is darkened with dye, and the waves are generated by an oscillating
vertical wedge at the left side of the tank. Each wave crest is connected in suc-
cessive photographs by gray diagonal lines, which advance in time with the
phase velocity. Both the phase velocity and wavelength are reduced as the
waves propagate toward the shallow end of the tank. The interval between
successive photographs is 0.25 s, and the wave period is 0.4s. The water depth
is 0.11 m at the left end, decreasing to zero at the right. Nonlinear distortion
occurs when the depth is comparable to the wave height.

2.67 Propagation of plane progressive waves into shallow water. (From New-
man 1977)

e Example: Speed of a Tsunami (Propagation of the Indian Ocean Tsunami
of 26 December 2004)

— The wave length is order of 200 km and the water depth is order of 5
km, so that the shallow water limit can be applied.

— The wave speed would be about 200 m/s (720 km/hr) in average sense.

— At this speed it took only about 15 minutes to reach the nearest Suma-
tran coast and 28 minutes the city of Banda Aceh.
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2.68 Propagation of the Indian Ocean Tsunami of 26 December 2004. (From Garri-
son 2007)

6.8

Wave group resulting from the superposition of two nearly equal plane
waves as in (60). The individual waves travel with the phase velocity, while
the envelope travels with the group velocity (61).

2.69 Wave group resulting from the superposition of two nearly equal plane waves.
(From Newman 1977)



106 MODEL TESTING

2.11.5 Superposition of Waves: Group Velocity

e The individual waves travel with the phase velocity, while the envelope
travels with the group velocity V:

dw  dw 1 kh
V=———=(-4+—7—1|V 2.75
97 6k dk (2 + sinh(2kh)> b ( )

0 | > 2 3
wh
—_— —e
d
1 1 | L 1 ]
0.0 0.1 0.2 0.3 0.9 0.5
h o
Ao

2.70 Phase velocity and group velocity ratios for a plane progressive wave as a func-
tion of the water depth. (From Newman 1977)
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6.10

Sequence of photographs showing a plane progressive wave system advancing
into calm water. The water is darkened with dye, and the lower half of the
water depth is not shown. The wave energy is contained within the heavy
diagonal lines, and propagates with the group velocity. (The boundaries of
the wave group diffuse slowly with time, due to dispersion.) The position of
one wave crest is connected in successive photographs by the light line,
which advances with the phase velocity. Each wave crest moves with the
phase velocity, equal to twice the group velocity of the boundaries. Thus each
wave crest vanishes at the front end and, after the wavemaker is turned off,
arises from calm water at the back. The interval between successive photo-
graphs is 0.25 s and the wave period is 0.36 s. The wavelength is 0.23 m and
the water depth is 0.11m,

3Tyl 2.71 Sequence of photograpghs showing the phase velocity and the group velocity
for a plane progressive wave system advancing into calm water. (From Newman 1977)
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2.11.6 Wave Force on a Stationary Body
e Unsteady wave force F' on a restrained body
— Magnitude depends on 9 dimensional quantities
F:f(pmgaV)Av)\aB)h)l?t) (276)
— Nondimensional force with 7 parameters
F
5= Cp(A/XN BN U/ B, R, wt) (2.77)
Pyg

Here wave frequency w(= 27/T) is related to g, A, h, and A by
T(g/N"? = fF(A/A R/

e In model test the Reynolds number can not be scaled properly, since it
follows that R o {3/2, namely,

1 ll/zAs/z 3/2

e Relative magnitude of viscous forces and inertial forces as in the impul-
sively started cylinder problems before,

Cr(R,00)  5pU*Cp(R)

U%/U 1 2.79
Cr(oo, Ut/]) U / (2.79)

With U replaced by wA and the fluid acceleration U by w?A, the ratio of
viscous forces to inertial forces is

U?/UL=AJl (2.80)

e Let us consider 3 cases:

— Case of a large structure or a ship where the ratio A/l is small.
— Case of a small body where the ratio A/! is large.

— The intermediate case where the ratio A/ is of order one.
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(1) Case of Large Structure (small A/l)

e Viscous force is negligible. Additionally, if wave amplitude A is assumed
to be small compared to the wavelength A\ and depth £, then the linearized
fluid motion is sinusoidal in time:

Crp = Cpocos (wt + ¢) (2.81)

where € is a phase angle, C'r a force coefficient, and both depend on A/,
[/, and 3 but not on time.

e Decomposition into velocity and acceleration parts:
Cr=CyU+CyU (2.82)

where C'y; and C, are apparent mass and apparent damping coefficients,

respectively.

e For body that is small compared with wavelength, [/\ < 1, i.e., if A <
I < A\ then Cyy = (my1 +pV)/(pgl?), Cyq=0,and thus

Fo~(my+pV)U (2.83)

(2) Case of Small Structure (large A /1)

e Viscous force is dominant, and acts in the same direction as the fluid ve-
locity:

1
F=3 plPU |U|Cp(R) (2.84)

e For bluff bodies, viscous drag coefficient is not sensitive to the Reynolds
number.

(3) Intermediate Case (A/l ~ O(1))

e Viscous and inertial effects are of comparable magnitude. Morison’s for-
mula

1
F=(mu1+pV)U+ 3 plPU |U|Cp(R) (2.85)
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2.11.7 Body Motions in Waves

e For heave motion of an unrestrained (freely floating) body in waves, nondi-
mensional form with physical parameters:

y/A = fF(A/Nh/NI/N, B, R,wt,m/pl?) (2.86)

— Since the body mass m is equal to the displaced mass of water m =
p X (volume), the last parameter is equal to (volume)/ 3.

— The mass parameter is deleted since it is independent of length scale
for a prescribed body shape.

— Again, the Reynolds number cannot be scaled properly. Its depen-
dence is a key source of fundamental problems for model testing.

e If the viscosity is neglected, and thus deleting the Reynolds number pa-
rameter R:

y/A= f(A/Nh/NI/N B wi) (2.87)

e If the wave amplitude is small compared to the wavelength and depth
(namely, if A/A\ < 1 and A/h < 1), nonlinear effects can be then ne-
glected.

The linearized approximation gives

y/A = fO0,h/NU/N B wt) = fo(h/A /X, B) cos(wt +€)  (2.88)

where for a prescribed body shape, the amplitude f, and phase angle
depend only on A/, [/\ and 5.

e In deep water, there is no dependence on depth ratio i/ \.

y/A = foloo,l/\, B)cos(wt + €) (2.89)

e For axisymmetric bodies, the heave response is independent of the angle

of incidence [.
y/A = fo(oo,l/N) cos(wt + €) (2.90)



2.11 Water Waves

111

e The heave-amplitude ratio for a slender spar buoy of draft 7" in deep water
where the draft 7" corresponds to the length scale [ (see Figure 2.72):
(a) In the limit of A\/T > 1, fy — 1.
* Very small body moves with the same velocity as the fluid.
(b) In the limit of \/T < 1, fy — 0.
(c) At wavelength of \/T =~ 6,

* A sharp resonance occurs, analogous to the motion of weakly-
damped oscillator.

* This severe resonant motion is a consequence of vertical slender-
ness.

2.11.8 Ship Motions in Waves

e Additional physical parameter: ship speed U

— Corresponding Froude number: F,, = U/(g1)"/2.

e Viscous effects are negligible and wave amplitude is assumed to be small
for linearization.

e Heave-amplitude ratio
y/A = fy (h/)\, /), B, U/(gZ)W) cos(wt + €) (2.91)

e Typical Roll and Pitch Response

— Froude number F,, = 0.23.
— Ship speed: U = 25 knots.
— Roll response is similar to the spar buoy response.

— For stern quartering sea, the peak values of roll response appear due
to continuously tracing (following) waves with ship.
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s | Correction l 4
for added T
mass <

¢ Without

™\ hydrodynamic
\ forces

\ correction

2.16

Heave response of a slender spar buoy in regular waves, from Adee and Bai
(1970). The ordinate is the ratio of heave amplitude to wave amplitude, and
the buoy is a circular cylinder, with a conical bottom, as shown to scale in the
sketch. The dashed line is a theoretical prediction that neglects the hydro-
dynamic forces due to the motions of the body. The solid line includes a cor-
rection for the added mass. The circles denote experimental measurements.

2.72 Heave response of slender spar buoy in regular waves. (From Newman 1977)
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2.73 Ship motions in 6 degrees of freedom. (From Newman 1977)
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2.17

Roll and pitch response of a 319 m ship at 25 knots. The motions are non-
dimensionalized in terms of the maximum wave slope 274/ A. (From Wachnik
and Zarnick 1965; reproduced by permission of the Society of Naval
Architects and Marine Engineers)

2.74 Roll and pitch response of a 319 m ship. (From Newman 1977)
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