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2.1 Introduction

2.1.1 Dimensional Analysis

• Buckingham’s Pi Theorem

– With problems where 3 fundamental units are mass (M ), length (L)
and time (T ), the unknown Q and the significant parameters can be
expressed in terms of these units.

– If the unkown Q depends on N − 1 significant parameters, there will
be a total of N interrelated dimensional quantities including Q.

– The number of independent nondimensional parameters will be re-
duced by the same number. A total of N − 3 nondimensional quanti-
ties must be interrelated.

• Example: Falling Body in a Vacuum

– Vertical position y might depend on time t, mass m, the gravitational
acceleration g.

∗ Vertical position y can not be affected by size and and shape of a
falling body.

– Since neither g nor t contains the units of mass, there is no way of
forming the parameters t,m, g into nondimensional parameters

y

g t2
= C (2.1)

where C is a constant. It is known to be equal to 1/2 from mechanics.

• Example: Pendulum

– Period of a simple pendulum T : pendulum length l, mass m, gravita-
tional acceleration g, maximum angle of its swing motion θ0

– Suitable combination with time units: T (g/l)1/2 = f(θ0)
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– If the maximum swing angle is assumed to be small, then the period
T tends to a finite limit:

T (g/l)1/2 = f(0) (2.2)

where f(0) is known from mechanics to be 2π.

– In terms of frequency (angular velocity) ω = 2π/T , the form is

ω(l/g)1/2 = 2π/f(θ0) ' 2π/f(0) = 1 (2.3)

• Dimensions of Fluid Properties: See Table 2.1.

Table 2.1 Dimensions of fluid properties

Quantities Dimensions Quantities Dimensions

(MLT ) (MLT )

Angle θ None Mass flow rate Q MT−1

Mass m M Strain ε None

Length L, l L Pressure p ML−1T−2

Area A, S L2 Stress τ ML−1T−2

Volume V L3 Surface tension σ MT−2

Time t T Force F MLT−2

Velocity V , q, u LT−1 Moment, Torque M,Q ML2T−2

Acceleration a LT−2 Energy, Work E,W ML2T−2

Angular velocity Ω, α T−1 Power P ML2T−3

Angular acceleration Ω̇, α̇ T−2 Modulus of elasticity E ML−1T−2

Density ρ ML−3 Dynamic viscosity µ ML−1T−1

Momentum L MLT−1 Kinemtaic viscosity ν L2T−1

Angular momentum H ML2T−1 Moment of inertia(area) I L4

Volume flow rate Q L3T−1 Moment of inertia(mass) I ML4

2.1.2 Flow Similarity and Model Studies

• Geometric Similarity
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– Model and prototype have same shape.

– Linear dimensions on model and prototype correspond within con-
stant scale factor.

• Kinematic Similarity

– Velocities at corresponding points on model and prototype differ only
by a constant scale factor.

• Dynamic Similarity

– Forces on model and prototype differ only by a constant scale factor.

• Incomplete Similarity

– Sometimes complete similarity cannot be obtained, but phenomena
may still be successfully modelled.

2.1.3 Nature of Dimensional Analysis: Example

• Drag on a Sphere

– Drag depends on 4 parameters: sphere size, speed, fluid density, fluid
viscosity

F = f(D, V, ρ, µ) (2.4)

– Difficult to know how to set up experiments to determine dependen-
cies

– Difficult to know how to present results (four graphs?)

• Take the dimensional analysis for F = f(D, V, ρ, µ)

F

ρV 2D2
= f1

(
ρV D

µ

)
(2.5)
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– If dynamic similarity
(
ρV D

µ

)
model

=

(
ρV D

µ

)
full scale

is sat-

isfied,(
F

ρV 2D2

)
model

=

(
F

ρV 2D2

)
full scale

would hold. 1

– Only one dependent and one independent variable

– Easy to set up experiments to determine dependency

– Easy to present results (one graph) (See Figure 2.1 )

Figure 2.1 The drag coefficient of a sphere. (From Newman 1977)

2.1.4 Significant Dimensionless Numbers

• Reynolds Number Re =
ρV L

µ
=
V L

ν

• Froude Number Fr =
V√
gL

• Cavitation Number Ca =
p− pv
1
2ρV

2

• Mach Number M =
V

c

1 Movie: Dimensional analysis for drag on sphere
./mmfm_movies/542.mov ./mmfm_movies/540.mov ./mmfm_movies/541.mov

./mmfm_movies/542.mov
./mmfm_movies/540.mov
./mmfm_movies/541.mov
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• Strouhal Number S =
fL

V

• Weber Number We =
ρV 2L

σ

2.1.5 Error Estimates in Uncertainty Analysis

• Error = Measured Value – True Value
True Value: How to know?
Known in calibration systems? (or still unknown?)

Figure 2.2 Definition of bias and precision error.

• Total error = Bias error + Precision error
Bias error (fixed or systematic error) = average of measured values – true
value
Precision error (random error) = measured values – average of measured
values

• Measurement Error and Population

2.1.6 Flow Visualization

• Smoke, Dye 2

2 Movie: 2-D Cavity Flow, Juncture Flow, Finite Cyliner, Airplane Tip Vortex Flow
./mmfm_movies/166.mov ./mmfm_movies/1.mov ./mmfm_movies/468.mov
./mmfm_movies/4275.mov ./mmfm_movies/4292.mov

./mmfm_movies/166.mov
./mmfm_movies/1.mov
./mmfm_movies/468.mov
./mmfm_movies/4275.mov
./mmfm_movies/4292.mov
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Figure 2.3 Probability error estimates.

• Laser: Laser Doppler Velocimetry (LDV), Particle Image Velocimetry
(PIV) 3

– Example: Stereoscopic PIV system for cavitation tunnel at SNU

2.2 Drag Force on a Sphere

2.2.1 Dimensional Analysis

• The drag force D must be a function of the diameter (d), the sphere veloc-
ity (U ), the fluid density (ρ), and the kinematic viscosity (ν):

D = f(d, U, ρ, ν) (2.6)

• Nondimensionalization these 5 parameters yields 2 nondimensional quan-
tities, which can be expressed in the form

D

ρU2d2
= f

(
Ud

ν

)
(2.7)

3 Movie: Concept of PIV system
./mmfm_movies/4582.mov

./mmfm_movies/4582.mov
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Figure 2.4 Typical PIV system for cavitation tunnel.
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where R =
Ud

ν
is the Reynolds number based on the sphere diameter.

• The drag coefficient CD can be written in a more conventional form:

D
1
2 ρU

2S
= CD(R) (2.8)

where S = πd2/4 is the frontal area of the sphere.

Figure 2.5 The drag coefficient of a sphere. (From Newman 1977)

2.2.2 Pressure Drag Variation with Reynolds Numbers

• For moderate Reynolds number (103 ∼ 3×105), the dominant contribution
to the drag force is due to separation, which occurs near the midplane of
the sphere.

– A substantial pressure difference between the forebody and afterbody
contributes to the drag force:

Drag ∼ Projected(Frontal) area× (ps−p∞) =

(
1

2
ρU 2

)
S CD (2.9)
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Figure 2.6 The drag coefficient of a sphere for moderate Reynolds number.

Figure 2.7 Wake of a sphere for moderate Reynolds number.
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• At a critical Reynolds number (3× 105), the boundary layer becomes tur-
bulent, and the increase of momentum convection delays separation.

Figure 2.8 The drag coefficient of a sphere at critical Reynolds number.

– The separated wake region is diminished and the drag is reduced dra-
matically.

– Example: Golf ball and Turbulence simulator 4

2.3 Viscous Drag on a Flat Plate

2.3.1 Dimensional Analysis for Frictional Drag

• Consider a flat plate of length l, breadth B, and negligible thickness, mov-
ing with velocity U in the longitudinal direction parallel to its length di-

4 Movie: Laminar(without trip wire) and turbulent wake(with trip wire) of a sphere
./mmfm_movies/spheredragcombo2.mov

./mmfm_movies/spheredragcombo2.mov
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Figure 2.9 Wake of a sphere at critical Reynolds number.

Figure 2.10 Wake of a sphere at critical Reynolds number.
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mension.

• The drag coefficient is expressed as

D
1
2ρU

2S
= CD(R,B/l) (2.10)

where S is the surface area of the plate.

• For Reynolds numbers on O(105 ∼ 1010), the drag coefficient is insensi-
tive to the ratio B/l.

• Experimentally determined frictional-drag coefficients CF for various flat
plates are fitted with the semi empirical equation determined by Schoen-
herr (refer to p. 115 of Newman (1977) for details):

0.242/
√
CF = log10(RCF ) (2.11)

– Validity of dimensional analysis is confirmed by the collapse of data
from diverse experiments both in water and air.

Figure 2.11 Schoenherr’s flat-plate frictional drag coefficient. (From Newman 1977)

2.3.2 Transition Range of Reynolds Numbers
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• In the transition range of Reynolds numbers (105 ∼ 106), there is a scatter
data. 5

Figure 2.12 Transition from laminar to turbulent flow for a flat plate drag coefficient. (From
Newman 1977)

– The flow changes from a smooth laminar regime to the turbulent
regime.

– An important mechanism that triggers turbulence is the smoothness of
the body surface.

– The drag of rough plates shifts to the turbulent value at lower Reynolds
number.

– For very smooth plates, laminar flow can be maintained longer.

• The consequence is to increase the momentum defect of the boundary layer
and the resulting frictional drag on the flat plate.

– Note: Opposite to the effects noted for a sphere where the dramatic
decrease in drag is significant. (See Figure 2.8 )

– The frictional drag coefficient isO(1/100) of magnitude less than that
of the drag coefficient for a sphere: the importance of streamlined
body shape.

5 Movie: Transition from laminar to turbulent flow
./mmfm_movies/5021.mov

./mmfm_movies/5021.mov
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2.4 Viscous Drag on General Bodies

2.4.1 Infeasible Tests of Geosims

• The drag on general bodies can be determined from tests of geosims, if
Reynolds number for model and full-scale bodies is the same.

– However it is difficult to find liquids less viscous than water.

– The ratio of model velocity to full-scale velocity must be inversely
proportional to the ratio of the lengths.

– (Example) Let us consider a ship of 100 m length, moving at 10 m/s.
If a 10 m model is to be tested in water at the same Reynolds number,
it must move with a velocity of 100 m/s. Not feasible in conventional
facilities!

2.4.2 Frictional Drag and Pressure Drag

• Usually the total drag is separated into 2 components, frictional drag and
pressure drag: longitudinal components of forces acting on a body due to
tangential shear stresses and normal pressure stresses, respectively.

– Assumption 1: The frictional drag due to the tangential shear stress
is affected by the Reynolds number only, and is equal to that of a flat
plate of equal area and Reynolds number.

Df = i ·
∫

surface
τ t dS (2.12)

– Assumption 2: The pressure drag (also called the form drag) depends
on the form of body. For a streamlined body, the pressure drag is
independent of Reynolds number over the range where boundary layer
is thin, typically for Re > 105.

Dp = i ·
∫

surface
(−p)n dS (2.13)
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– If the body has sharp edges not aligned with the flow, separation will
occur at these edges irrespectively of Reynolds number.

– For example, a circular disc or a flat plate moving normal to the flow
will experience separation at the periphery. 6

Figure 2.13 Flow over a flat plate normal to inflow. (From Fox, McDonald & Pritchard 2004)

• With these assumptions, the total drag coefficient can be written in the
form CD(R) = CF (R) + CP .

• For bodies with thickness-length ratio less than 0.2. the frictional drag is
dominant.

• Conflicting roles of transition to turbulence: decrease of drag for bluff bod-
ies and increase of drag for fined bodies.

• Contributions of frictional drag and pressure drag to total drag as a function
of thickness-length ratio.

• Variation of drag coefficients of a cylinder and a sphere with Reynolds
number. 7

6Note: C. Mimeau, I. Mortazavi and G.-H. Cottet (2014), “Passive Flow Control Around a Semi-Circular
Cylinder Using Porous Coatings,” International Journal of Flow Control, 6, 43-50. On a ground vehicle, the
outside mirrors, due to their spanwise position, indeed generate a non-negligible wake which interferes with the
flow past car sides. They are responsible of up to 10% of the total vehicle drag but they only represent 0.5% of the
total projected surface.

7 Movie: Cylinder(CFD), Cylinder(Visualization), Sphere(Laminar & Turbulent)
./mmfm_movies/Cylinder.mov ./mmfm_movies/146.mov
./mmfm_movies/spheredragcombo2.mov

./mmfm_movies/Cylinder.mov
./mmfm_movies/146.mov
./mmfm_movies/spheredragcombo2.mov
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Figure 2.14 Drag coefficient for two-dimensional cylinders. (From Newman 1977)

Figure 2.15 Drag on a strut: Contributions of frictional drag and pressure drag to total drag
as a function of thickness-length ratio. (From Fox, McDonald & Pritchard 2004)
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Figure 2.16 Drag coefficient for a circular cylinder. (From Fox, McDonald & Pritchard 2004)

Figure 2.17 Drag coefficient for a sphere. (From Fox, McDonald & Pritchard 2004)
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2.5 Hydrofoil Lift and Drag

2.5.1 Lifting Surfaces

• Streamlined planar bodies

– Viscous effects to thin boundary layer

– Characteristic length: chord length (in 3-dimensions, span as well)

– Aspect ratio of span to mean chord,

A = s2/S (2.14)

where s = span; S = planform area (projected area on the plane y = 0)
= (chord) x (span).

Figure 2.18 Three-dimensional lifting surface. (From Newman 1977)



2.5 Hydrofoil Lift and Drag 59

• High aspect ratio: 2-D

– 2-dimensional hydrofoil sections experience a drag force D, and lift
force L.

– Linearized thin-foil/wing theory for small angle of attacks

Figure 2.19 Geometry of a hydrofoil section.

• Lift Generation: Kutta Condition

– Potential flow without circulation

– Circulation around foil moves stagnation point back at the trailing
edge(T.E.)

• Dimensional analysis for drag and lift forces with 5 parameters of plan-
form ares S, velocity U , angle of attack α, fluid density ρ, and kinematic
viscosity ν:

L
1
2ρU

2S
= CL(R,α),

D
1
2ρU

2S
= CD(R,α) (2.15)

where l is used to define the Reynolds number R = Ul/ν.
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Figure 2.20 Flow past a hydrofoil section. (From Newman 1977)

Figure 2.21 Flow past a foil without circulation. (From Newman 1977)

Figure 2.22 Assumed flow past a foil with circulation. (From Newman 1977)
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2.5.2 Lift and Drag on Hydrofoil

• For hydrofoils with large aspect ratio (i.e., large span relative to chord),
the total 3-D force can be estimated by integration of the sectional lift and
drag along span.

• Lift coefficient is assumed to depend only on the angle of attack, and to be
independent of the Reynolds number:

– For small angles of attack, the lift coefficient is insensitive to the
Reynolds number and increases in a linear manner with angle of at-
tack.

– As the angle of attack increases, the streamlined effect of diminishes
and stall occurs with a dramatic reduction in the lift coefficient.

– The stall position is sensitive to the Reynolds number, ambient turbu-
lence, roughness of surface.

Figure 2.23 Lift coefficient for a two-dimensional hydrofoil. (From Newman 1977)
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• Lift Characteristics of Hydrofoils 8

Figure 2.24 Lift characteristics of hydrofoils. (From Fox, McDonald & Pritchard 2004)

• The drag is assumed to be separated into 2 components: the frictional drag
of a flat plate at zero angle of attack accounting for the Reynolds number
dependence, and the pressure drag depending only on the angle of attack:

CD(R,α) = CF (R) + CP (α) (2.16)

8 Movie: Lift Characteristics of Hydrofoils, CFD
./mmfm_movies/air_foil_00_deg.mov ./mmfm_movies/air_foil_05_deg.mov
./mmfm_movies/air_foil_10_deg.mov ./mmfm_movies/air_foil_15_deg.mov
./mmfm_movies/air_foil_20_deg.mov ./mmfm_movies/air_foil_25_deg.mov
./mmfm_movies/air_foil_60_deg.mov ./mmfm_movies/Airfoil1.mov
./mmfm_movies/kunio_flow.mov

./mmfm_movies/air_foil_00_deg.mov
./mmfm_movies/air_foil_05_deg.mov
./mmfm_movies/air_foil_10_deg.mov
./mmfm_movies/air_foil_15_deg.mov
./mmfm_movies/air_foil_20_deg.mov
./mmfm_movies/air_foil_25_deg.mov
./mmfm_movies/air_foil_60_deg.mov
./mmfm_movies/Airfoil1.mov
./mmfm_movies/kunio_flow.mov


2.6 Screw Propeller 63

– For small positive or negative angles of attack where the lift force is
small, the drag coefficient is insensitive to the Reynolds number and
takes a value comparable to the flat plate frictional drag coefficient.

– As the stall approached, the drag goes up remarkably and very sensi-
tive to the Reynolds number.

– The magnitude of the drag is much smaller than the lift .

2.5.3 Remarks: Induced Drag for 3-D Lifting Surfaces

• Induced velocity by trailing vortex system 9

• Downwash effect :

– Effective angle of attack:

αeffective = α− αinduced (2.17)

– Additional induced drag component:

D = Df +Dp + Dinduced (2.18)

– Drag components for lifting bodies:

Total drag = Profile drag + Induced drag
= Frictional drag + Pressure drag + Induced drag

2.6 Screw Propeller

• Characteristics of Marine Propellers

– Complex Geometry: low aspect ratio, skewed/raked geom, boss, com-
pound devices

9 Movie: Wing tip vortex of a plane and a car
./mmfm_movies/wingtip_vortex.mov ./mmfm_movies/3629.mov
./mmfm_movies/3618.mov

./mmfm_movies/wingtip_vortex.mov
./mmfm_movies/3629.mov
./mmfm_movies/3618.mov
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Figure 2.25 Drag coefficient for a two-dimensional hydrofoil. (From Newman 1977)
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Figure 2.26 Trailing vortex system of a wing. (From Fox, McDonald & Pritchard 2004)

Figure 2.27 Downwash distribution for trailing vortex system on a wing. (From Carl-
ton 1994)
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Figure 2.28 Derivation of induced drag on a wing. (From Carlton 1994)

– Complicated Non-uniform Onset Flow: turbulence, unsteadiness, op-
eration

– Mutual Interaction: cavitation, hydroelasticity, free surface, hull, rud-
der

• Propeller Geometry

– Propeller coordinate system

– 3 coordinate systems: (1) Cartesian (2) Cylindrical (3) Helical coor-
dinate system

• Propeller Open Water Test: Non-dimensional Numbers

Reynolds number R =
ρV L

µ
=
V L

ν
(2.19)

Froude number Fn =
V√
gL

(2.20)

Cavitation number Ca =
p− pv
1
2 ρ V

2
(2.21)
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Figure 2.29 Propeller coordinate system.



68 MODEL TESTING

Figure 2.30 Propeller blade geometry in 3 coordinate systems.
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• 3-D Perspective and 2-D view of a propeller blade section: Hydrodynamic
forces

Figure 2.31 Perspective view of a propeller and its shaft. (From Newman 1977)

• Open Water Characteristics: Advance ratio J , Thrust/Torque coefficient
KT , KQ, Propeller efficiency ηP

J =
U

nd
(2.22)

KT (J) =
T

ρn2 d4
(2.23)

KQ(J) =
Q

ρn2 d5
(2.24)

ηP =
UT

2πnQ
=

J

2π

KT

KQ
(2.25)

• Components of Marine Propulsion System
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Figure 2.32 2-D view of a propeller blade section. (From Newman 1977)

Figure 2.33 Experimental setup for propeller open water test in towing tank.
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Figure 2.34 Components of a typical marine propulsion system. (출처: 삼성중공업 2004)

2.7 Drag on a Ship Hull

• In dimensional analysis, 6 dimensional quantities can be reduced to 3
nondimensional numbers.

D
1
2 ρU

2S
= CD(R,Fn) (2.26)

where S is the wetted surface area of hull, and the Froude number Fn =

U/(gl)1/2 represents the effect of gravity.

• It is impossible to scale simultaneously both the Reynolds and Froude
numbers.

• The residual drag is defined as, without the Froude’s hypothesis,

CR(R,Fn) = CD(R,Fn)− CF (R) (2.27)

• Decomposition of Ship Resistance

• Froude’s hypothesis The drag can be expressed as sum of a frictional drag
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Figure 2.35 Decomposition of ship resistance.

Figure 2.36 Components of ship resistance. (From Carlton 1994)
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Figure 2.37 Froude’s hypothesis for prediction of resistance of a full-scale ship. (From MIT
website 2004)

depending on Reynolds number, plus a residual drag depending on Froude
number.

CD(R,F ) = CF (R) + CR(F ) (2.28)

– Froude’s hypothesis is an approximation to assume that the resulting
CR is independent of the Reynolds number.

– Extrapolator of model results to obtain full-scale resistance coeffi-
cients.

(CD)ship = (CD)model − (CF )model + (CF )ship (2.29)

– Calculation of model and full-scale frictional drag

• Experimental validation of Froude’s hypothesis

– Geosim models (length l = 4 ∼ 30 ft and full-scale drag mea-
surements for several values of Froude number (full-scale speed
U = 4 ∼ 15 knots).
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Figure 2.38 Calculation of model and full scale frictional drag coefficients. (From New-
man 1977)
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Figure 2.39 Total drag coefficients of geosim models. (From Newman 1977)
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– The curves of constant values of Froude number are not strictly par-
allel to Schoenherr line of frictional drag, but Froude’s hypothesis is
acceptable to a considerable extent in correlating the resistance of sev-
eral geosims.

Figure 2.40 Total drag coefficients of geosim models: Validation check on Froude hypothe-
sis. (From Newman 1977)

– The low Froude number asymptotic tendency is indicated by coales-
cence of the results for full-scale speeds of 4 5 knots. At these speeds,
the wave resistance is negligible and the principal contribution to the
residual drag is viscous form drag. The viscous form drag is not con-
stant but decreases increasing Reynolds number.

– Suggestion: (1) The form drag should be assumed proportional to the
friction drag or (2) the frictional drag curve should be more steeply
sloped than the Schoenherr line (ATTC line): e.g. Hughes line/ITTC
line.

– The viscous form drag coefficient increases with decreasing Reynolds
number. The residual drag coefficient curves display the opposite ten-
dency.
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Figure 2.41 Total drag coefficients of geosim models: Viscous form drag. (From New-
man 1977)

– Both the wave drag and form drag depend separately on Reynolds
number. These effects are small for the larger models.

• Extrapolation using form factor k

2.8 Propeller-Hull Interactions

• Individual analysis of hull and propeller, and interactions

• Self-propulsion factors: Wake fraction(wT ), thrust deduction factor(t), and
relative rotative efficiency(ηR)

wT = 1− VA
V

(2.30)

RT = (1− t)T (2.31)

ηR =
(KQ)OW
(KQ)SP

(2.32)

VA = nD J (2.33)
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Figure 2.42 Frictional drag coefficients. (From Newman 1977)



2.8 Propeller-Hull Interactions 79

Figure 2.43 Total drag coefficients of geosim models: Larger models effect. (From New-
man 1977)

Figure 2.44 Extrapolation using form factor k.
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– Quasi-propulsive efficiency

η =
RT V

2πnQ
=

(1− t)V KT

2πnD (KQ)SP
=

(1− t)
(1− wT )

ηP ηR (2.34)

Figure 2.45 Schematic diagram of propeller-hull interaction. (From Brockett 1988)

2.8.1 Propeller and Ship Powering

• Shaft Power, SHP or Brake Power, BHP

– Power output at the prime mover is higher than delivered power.

– It is usually called shaft power (PS or SHP) for gas turbines and brake
power(PB or BHP) for diesel engines.

– Occasionally PS is the power immediately fore of the stern tube bear-
ing, and PB is the power right at the prime mover.

• Delivered Power, DHP
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Figure 2.46 Thrust identity condition between open-water propeller test and self-propulsion
test. (From Newman 1977) (Note: Here UA = VA, UModel = VModel and U = V .)

Figure 2.47 Components of a typical marine propulsion system. (출처: 삼성중공업 2004)
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Figure 2.48 Schematic diagram of propeller and ship powering.

– PD or DHP is power delivered to the propeller by the prime mover.

PD = 2πnQD (2.35)

where n = revolutions per second of shaft or propeller andQD = torque
delivered to the propeller.

– Propeller converts rotating power to thrust power.

• Thrust Power, THP

– Propeller is producing thrust T at a speed of advance VA.

PT = TVA (2.36)

where T 6= RT , VA 6= V .

– Useful power output of the propeller is called the thrust power PT or
THP.

• Effective Power, EHP

– PE or EHP is power needed to tow ship at a given speed in calm water
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or power to overcome total resistance force RT at ship speed V .

PE = RTV (2.37)

where RT is total resistance and V is ship speed.

• Shaft Transmission Efficiency, ηS =
PD
PS

– Occasionally, more than one transmission (or mechanical) efficiencies
are defined.

– the overall transmission efficiency will then be the product of the in-
dividual components.

Figure 2.49 Transmission efficiency of mechanical drives and electric drives.

• Propeller Efficiency

– Power conversion between PD and PT is the major loss in power.

– Depending on where the propeller torque is measured,

∗ Efficiency of propeller behind the ship, ηB:

ηB =
PT
PD

=
TVA

2πnQB
(2.38)
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where QB = Torque required by the propeller to deliver T and VA
behind the ship.

∗ Efficiency of propeller in open water, η0:

η0 =
PT
PD

=
T VA

2πnQ0
(2.39)

where Q0 = Torque required by the propeller to deliver T and VA
in open water.

• Relative Rotating Efficiency, ηR

ηR =
ηB
η0

=
Q0

QB
(2.40)

– It is not a “true” efficiency (not a ratio of powers).

– It can be greater than one. Usual values around one.

• Hull Efficiency, ηH
ηH =

PE
PT

=
RT V

T VA
(2.41)

– A measure of hull form (stern) design to suit propulsor arrangement.

– It does not involve power conversion, so it is not a “true” efficiency.

– It can be greater than one, usual numbers around 1.05.

• Overall Efficiency (Propulsive Efficiency), ηP

ηP =
PE
PS

=
PE
PT
× PT
PD
× PD
PS

= ηH ηB ηS = ηH η0 ηR ηS (2.42)

– While ηS depends on mechanical efficiencies, ηH , η0 and ηR depend
on hydrodynamics, where η0 is the major loss in power.

– The powering problem is how to maximize ηP in design stage.
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2.9 Unsteady Force on an Accelerating Body

• Development of unsteady flows 10

1. Symmetrical attached flow: ideal flow behavior
2. Increase of viscous effects: growth of boundary layer
3. Wake separates downstream
4. Two symmetric vortices: grow in strength
5. Shedding vortex unstable
6. Alternating shedding vortex

• In the case of a body accelerated impulsively from a state of rest, the hy-
drodynamic force F (t) will vary with time.

• Force in the direction opposite to the body motion:

F
1
2 ρU

2 l2
= CF (R,Ut/l) (2.43)

• Case 1: Large values of time

– Steady-state drag coefficient

CF (R,Ut/l) ' CD(R) for Ut/l � 1 (2.44)

• Case 2: Small time (Initial stage of rapid acceleration) 11

– Inertia force dominates viscous force: inviscid limit of high Reynolds
number

CF (R,Ut/l) ' CD(∞, Ut/l) for Ut/l � 1 (2.45)

10 Movie: Unsteady flows of impulsive started circular cylinder(Exp.)
./mmfm_movies/2_05005.mov

11 Movie: Initial stage of impulsive started circular cylinder(CFD)
./mmfm_movies/Cyl.mov

./mmfm_movies/2_05005.mov
./mmfm_movies/Cyl.mov
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Figure 2.50 Development of unsteady flows about an impulsively started circular cylinder.
(From Newman 1977)
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2.9.1 Added Mass

• Initial Stage: Viscous forces are negligible, the hydrodynamic force:

F = −m11 U̇ (2.46)

where U̇ denotes the acceleration. Force coefficient:

CF (∞, U t/l) =
m11 U̇

1
2 ρU

2l2
(2.47)

• Relative magnitudes of viscous force and added mass force are, since the
added mass is proportional to l3,

CF (R,∞)

CF (∞, U t/l)
=

1
2 ρU

2l2CD(R)

m11 U̇
∝ U 2

U̇ l
(2.48)

– The parameter U 2/U̇l is small during the period of acceleration and
large subsequently.

• Gradual transition of the force coefficient

– Added-mass forces will dominate initially and viscous forces subse-
quently.

2.10 Vortex Shedding

• Karman Vortex Street 12

– Oscillatory shedding of vortices into the wake in a staggered configu-
ration as predicted from a stability analysis.

– The small-scale vortices lie between the separation having the initial
instability and the initial formation of large-scale Karman vortex.

• Phenomena of Vortex Shedding in Nature
12 Movie: Vortex shedding of circular cylinder wake

./mmfm_movies/Cylinder.mov

./mmfm_movies/Cylinder.mov
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Figure 2.51 Force coefficient for an impulsively started circular cylinder. (From New-
man 1977)

Figure 2.52 Karman vortex street.
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Figure 2.53 Karman vortex street in nature. Cloud formation caused by steady wind down-
stream of an island (Madeira) at 2.4km height above the island.

• Lateral lift force and shedding frequency

Figure 2.54 Lateral lift force and shedding frequency.

– Nondimensional magnitude of the lift force and shedding frequency:
13

Lmax/
1

2
ρU2 l = CL(R), f l/U = S(R) (2.49)

where Lmax denotes the maximum value of the lift force per unit
length along the cylinder, and S is the Strouhal number. For circular
cylinders, CL is typically 0.5.

– For Reynolds numbers in the laminar regime (i.e., for low Reynolds
numbers) for circular cylinders, the Strouhal number S is about
0.20 ∼ 0.22.

13 Movie: Vortex shedding of circular cylinder wake(Re=200)
./mmfm_movies/Cyl200.mov

./mmfm_movies/Cyl200.mov
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Figure 2.55 Strouhal number for a circular cylinder at low Reynolds numbers.

– For moderate and high Reynolds numbers (102 < R < 107), the
Strouhal number is approximated by S = 0.23/CD.

• Hydroelastic resonance: Lift force induces vibration 14

– The well-known lock-in phenomena between the Strouhal frequency
and the structural mode of vibration of the body.

– This VIV (Vortex Induced Vibration) problems may occur on cables,
risers, pilings and other fixed structures in a current. 15

14 Movie: Vortex shedding of freely oscillating circular cylinder
./mmfm_movies/free_cylinder2.mov

15 Movie: Tacoma bridge
./mmfm_movies/tnb.mov

./mmfm_movies/free_cylinder2.mov
./mmfm_movies/tnb.mov
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Figure 2.56 Drag coefficient and Strouhal number for a circular cylinder at moderate and
high Reynolds numbers. Note: Experiments are available for very high Reynolds numbers.

Figure 2.57 Lock-in phenomena between the lateral lift force and vortex-shedding frequency.
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Figure 2.58 Example of VIV(Vortex Induced Vibration) phenomena: Collapse of the Tacoma
bridge.
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2.11 Water Waves

2.11.1 Dispersion Relation of a Progressive Wave in Infinite Depth

• Periodic progressive wave system is characterized by amplitude A, wave-
length λ , period T (or frequency ω = 2π/T )

• Phase velocity: Vp ≡ ω/k ≡ ωλ/2π

– η(x, t) = A cos(kx− ωt+ ε) with ε = phase

– Wave number k ≡ 2π/λ = ω/Vp

Figure 2.59 Sketch of a periodic progressive wave in a fluid of mean depth h. (From New-
man 1977)

• Wave period T must be a function of amplitude A, wavelength λ , density
ρ , gravitational acceleration g, and depth h.

• Frequency ω and phase velocity Vp can be replaced by period T and wave-
length λ .

• The density of fluid ρ is only one parameter containing units of mass, so
that the parameter ρ can be deleted from the dimensional analysis.
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• Five dimensional parameters (T, λ,A, g, h) remain and a nondimensional
form for period T is

T (g/λ)1/2 = f(A/λ, h/λ) (2.50)

where nondimensional amplitude ratio A/λ is analogous to the maximum
pendulum swing angle θ0 in pendulum .

• If the wave amplitude is sufficiently small compared to the wavelength, a
linearized result is

T (g/λ)1/2 ' f(0, h/λ) for A/λ� 1 (2.51)

• If fluid depth is very large compared to the wavelength (as in deep ocean),
the form is

T (g/λ)1/2 ' f(A/λ,∞) for λ/h� 1 (2.52)

• For small amplitude waves in deep water, i.e., A/λ� 1 and λ/h� 1,

T (g/λ)1/2 ' f(0,∞) = constant (2.53)

where constant (C) cannot be determined from dimensional analysis.
From a more complicated analysis, 16 we have C = (2π)1/2 and conse-

16By using the potential flow analysis (inviscid irrotational flow analysis), we have the linearized result for plane
progressive waves in deep water: (see Newman (1977), Chapter 6 for details)

φ =
gA

ω
eky sin(kx− ωt). (2.54)

With the velocity potential φ, the linearized free surface boundary condition
∂2φ

∂t2
+ g

∂φ

∂y
= 0 is applied to have

ω2 = gk, from which the constant C = (2π)1/2 can be derived. The corresponding velocity field u = (u, v) is,
then,

u =
∂φ

∂x
= ωAeky cos(kx− ωt), v =

∂φ

∂y
= ωAeky sin(kx− ωt). (2.55)

An instantaneous velocity field is depicted in Figure 2.60 .
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quently

T (g/λ)1/2 = (2π)1/2

=⇒ (2π/ω)(g/λ)1/2 = (2π)1/2

=⇒ ω =

(
2πg

λ

)1/2

=⇒ ω2 = gk (2.56)

The phase velocity

Vp (≡ ω/k ≡ λ/T ) = g/ω

or = (g/k)1/2

or = (gλ/2π)1/2 (2.57)

• Period T is proportional to λ1/2 and from Vp ≡ λ/T , the phase velocity
Vp is proportional to λ1/2:

Vp =

√
g

k
=

√
λg

2π
(2.58)

– Dispersive relation: water waves of different wavelengths or periods
will propagate at different phase velocities. See Table 2.2 for example.

Table 2.2 Dispersive relation of deep water ocean waves

Wavelength Phase Velocity

λ Vp

30 m 24 km/h

150 m 56 km/h

300 m 80 km/h

– Long waves will travel faster than short waves, and a spectrum of
waves will constantly change its appearance.

– The monochromatic wave system is an exception because only one
wavelength is present.
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• Velocity field for plane progressive waves in deep water

Figure 2.60 Velocity field of a plane progressive wave in deep water. (From Newman 1977)

2.11.2 Secondary Effects: Viscosity, Air, Surface tension, Nonlinear Ef-
fects

• The water viscosity exerts a small dissipative effect, typical water waves
can travel for hundreds or thousands of wavelengths.
A non-dimensional viscosity ratio:

Viscous Force
Gravitational Force

=
µVp λ

ρ g λ3
=
ν
√
g λ

g λ2
=

ν

g1/2 λ3/2
(2.59)

' 3× 10−7 for λ = 1m (for example)

• Air effects can be ignored on water waves since the air density is about
1/800 of the water density.

ρair
ρwater

∼ O
(
10−3

)
(2.60)

Exception is the process by which ocean waves are generated by the wind.
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• Surface Tension effects

– Surface tension is due to the inter molecular forces attraction forces
in the fluid: Surface tension σ = Tension force/Length = Surface en-
ergy/Area. For a water-air interface, it is about 0.07 Newton/m. 17

– On an interface surface between two fluids (i.e., stratified fluids), the
continuity of the stress:

n ·
(
T (i) − T (o)

)
= σ

(
1

R1
+

1

R2

)
n (2.61)

where T is the stress tensor, n is the unit normal vector, R1 and R2 are
the principal radii of curvature of the interface.

– When the two fluids are stationary, only the pressure terms:

n ·
(
p(i) − p(o)

)
= σ

(
1

R1
+

1

R2

)
(2.62)

– (Example) Two stationary fluids in 2-dimensions At the interface of
two fluids, surface tension implies in a pressure jump across the inter-
face from force equilibrium:

cos

(
dθ

2

)
(4p)(Rdθ) = 2 σ sin

(
dθ

2

)
=⇒ (1)(4p)(Rdθ) = 2 σ

(
dθ

2

)
=⇒4p =

σ

R
(2.63)

We have used cos

(
dθ

2

)
≈ 1 and sin

(
dθ

2

)
≈
(
dθ

2

)
for dθ � 1.

– (Example) For a stationary spherical bubble,

p(i) − p(o) = 2σ/R (2.64)

– A suitable nondimensional parameter is related to Weber number, e.g.,
17 Movie: Surface tension

./mmfm_movies/5171.mov

./mmfm_movies/5171.mov
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Figure 2.61 Surface tension for two stationary fluids in 2-dimensions.

Figure 2.62 Surface tension for a stationary spherical bubble.
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for water waves:

Surface Tension Forces
Gravitational Force

=
σλ

ρ g λ3
= σ/(ρ g λ2) (2.65)

∼ O
(
10−6

)
for λ = 1m and σ = 0.07N/m (for example)

– Surface tension effects are negligible for long waves. However, the ef-
fects must be included in flow analysis involved in the shortest waves
or micro-bubbles. 18

• Nonlinear effects

– Steepest wave slope: 1 / 7, Max. crest angle: 1200.

Figure 2.63 The “steepest wave” profile of nonlinear waves. (From Newman 1977)

– Wave profile

η = A cos(kx−ωt)+1

2
kA2 cos 2(kx−ωt)+17

24
k3A4 cos 2(kx−ωt)+· · ·

(2.66)

18 Movie: Water drop in cup; Water Strider on surface
./mmfm_movies/5444.mov ./mmfm_movies/strider.mov

./mmfm_movies/5444.mov
./mmfm_movies/strider.mov
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Table 2.3 Relative effect of nonlinear waves

Wave Slope Ratio of the second term (nonlinear term) in Eq. (2.66)

to the first term(linear term)

2A/λ 1
2
kA

1/80 0.0196

1/40 0.0393

1/20 0.0785

2.11.3 Solutions for Finite Depth

• The solution of the linearized potential flow problem for a plane progres-
sive wave in finite depth: 19

φ =
gA

ω

cosh {k(y + h)}
cosh(kh)

sin(kx− ωt). (2.67)

The corresponding velocity field u = (u, v) is, then,

u =
∂φ

∂x
=
ωAk

ω

cosh {k(y + h)}
cosh(kh)

cos(kx− ωt), (2.68)

v =
∂φ

∂y
=
ωAk

ω

sinh {k(y + h)}
cosh(kh)

sin(kx− ωt). (2.69)

An instantaneous velocity field for plane progressive waves in finite depth
is shown in Figure 2.64 and Figure 2.65 (a).

• With this solution for φ, the linearized free surface boundary condition

19Like the case of a plane progressive waves in deep water, we have the linearized result. See Newman (1977),
Chapter 6 for details.
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∂2φ

∂t2
+ g

∂φ

∂y
= 0 is again applied to derive the dispersion relation. 20 This

dispersion relation is an implicit equation:

k tanh(kh) = ω2/g =⇒ Vp = ω/k = [(g/k) tanh(kh)]1/2 (2.73)

The ratio of the phase velocity to the infinite-depth limit Vp/Vp∞ is plotted
in Figure 2.66 , together with the depth-wavelength ratio h/λ.

Figure 2.64 Velocity field of a plane progressive wave in finite depth. (From Newman 1977)

2.11.4 Shallow Water Limit

• While the waves for infinite (even finite) water depth are dispersive, the
shallow-water limit is nondispersive.

Vp ' (gh)1/2 for kh� 1 (2.74)
20For a fixed value of ω for all depths, i.e., ω = ω∞, we have

ω2 = g k∞ =
2πg

λ∞
=⇒ ω2h

g
= 2π

h

λ∞
(2.70)

Vp =
ω

k
=
ω λ

2π
=⇒ Vp

Vp∞
=

λ

λ∞
(2.71)

ω2 = ω2
∞ =⇒ g k tanh(kh) = gk∞

=⇒ λ

λ∞
= tanh

(
2πh

λ∞

λ∞
λ

)
(2.72)
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Figure 2.65 Particle trajectories of a plane progressive wave in finite depth. (From New-
man 1977)
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Figure 2.66 Phase velocity, wave length, and depth ratios of a plane progressive wave in
finite depth. (From Newman 1977)
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Figure 2.67 Propagation of plane progressive waves into shallow water. (From New-
man 1977)

• Example: Speed of a Tsunami (Propagation of the Indian Ocean Tsunami
of 26 December 2004)

– The wave length is order of 200 km and the water depth is order of 5
km, so that the shallow water limit can be applied.

– The wave speed would be about 200 m/s (720 km/hr) in average sense.

– At this speed it took only about 15 minutes to reach the nearest Suma-
tran coast and 28 minutes the city of Banda Aceh.
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Figure 2.68 Propagation of the Indian Ocean Tsunami of 26 December 2004. (From Garri-
son 2007)

Figure 2.69 Wave group resulting from the superposition of two nearly equal plane waves.
(From Newman 1977)
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2.11.5 Superposition of Waves: Group Velocity

• The individual waves travel with the phase velocity, while the envelope
travels with the group velocity Vg:

Vg ≡
δω

δk
=
dω

dk
=

(
1

2
+

kh

sinh(2kh)

)
Vp (2.75)

Figure 2.70 Phase velocity and group velocity ratios for a plane progressive wave as a func-
tion of the water depth. (From Newman 1977)
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Figure 2.71 Sequence of photograpghs showing the phase velocity and the group velocity
for a plane progressive wave system advancing into calm water. (From Newman 1977)
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2.11.6 Wave Force on a Stationary Body

• Unsteady wave force F on a restrained body

– Magnitude depends on 9 dimensional quantities

F = f(ρ, g, ν, A, λ, β, h, l, t) (2.76)

– Nondimensional force with 7 parameters

F

ρ g l3
= CF (A/λ, h/λ, l/λ, β,R, ωt) (2.77)

Here wave frequency ω(≡ 2π/T ) is related to g, A, h, and λ by
T (g/λ)1/2 = f(A/λ, h/λ).

• In model test the Reynolds number can not be scaled properly, since it
follows that R ∝ l3/2, namely,

R = ω A l/ν ∼ 1

λ1/2
A l ∼

(
l

λ

)1/2
A

l
l3/2 ∼ l3/2. (2.78)

• Relative magnitude of viscous forces and inertial forces as in the impul-
sively started cylinder problems before,

CF (R,∞)

CF (∞, U t/l)
=

1
2 ρU

2l2CD(R)

m11 U̇
∝ U 2/U̇ l (2.79)

With U replaced by ωA and the fluid acceleration U̇ by ω2A, the ratio of
viscous forces to inertial forces is

U 2/U̇ l = A/l (2.80)

• Let us consider 3 cases:

– Case of a large structure or a ship where the ratio A/l is small.

– Case of a small body where the ratio A/l is large.

– The intermediate case where the ratio A/l is of order one.



2.11 Water Waves 109

(1) Case of Large Structure (small A/l)

• Viscous force is negligible. Additionally, if wave amplitude A is assumed
to be small compared to the wavelength λ and depth h, then the linearized
fluid motion is sinusoidal in time:

CF = CF0 cos (ω t+ ε) (2.81)

where ε is a phase angle, CF0 a force coefficient, and both depend on h/λ,
l/λ, and β but not on time.

• Decomposition into velocity and acceleration parts:

CF = CM U̇ + Cd U (2.82)

where CM and Cd are apparent mass and apparent damping coefficients,
respectively.

• For body that is small compared with wavelength, l/λ � 1, i.e., if A �
l� λ, then CM = (m11 + ρV)/(ρ g l3), Cd ' 0, and thus

F ' (m11 + ρV) U̇ (2.83)

(2) Case of Small Structure (large A/l)

• Viscous force is dominant, and acts in the same direction as the fluid ve-
locity:

F =
1

2
ρ l2 U |U |CD(R) (2.84)

• For bluff bodies, viscous drag coefficient is not sensitive to the Reynolds
number.

(3) Intermediate Case (A/l ∼ O(1))

• Viscous and inertial effects are of comparable magnitude. Morison’s for-
mula

F = (m11 + ρV) U̇ +
1

2
ρ l2U |U |CD(R) (2.85)
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2.11.7 Body Motions in Waves

• For heave motion of an unrestrained (freely floating) body in waves, nondi-
mensional form with physical parameters:

y/A = f(A/λ, h/λ, l/λ, β,R, ω t,m/ρ l3) (2.86)

– Since the body mass m is equal to the displaced mass of water m =

ρ× (volume), the last parameter is equal to (volume)/l3.

– The mass parameter is deleted since it is independent of length scale
for a prescribed body shape.

– Again, the Reynolds number cannot be scaled properly. Its depen-
dence is a key source of fundamental problems for model testing.

• If the viscosity is neglected, and thus deleting the Reynolds number pa-
rameter R:

y/A = f(A/λ, h/λ, l/λ, β, ω t) (2.87)

• If the wave amplitude is small compared to the wavelength and depth
(namely, if A/λ � 1 and A/h � 1), nonlinear effects can be then ne-
glected.
The linearized approximation gives

y/A = f(0, h/λ, l/λ, β, ω t) = f0(h/λ, l/λ, β) cos(ω t+ ε) (2.88)

where for a prescribed body shape, the amplitude f0 and phase angle ε
depend only on h/λ, l/λ and β.

• In deep water, there is no dependence on depth ratio h/λ.

y/A = f0(∞, l/λ, β) cos(ω t+ ε) (2.89)

• For axisymmetric bodies, the heave response is independent of the angle
of incidence β.

y/A = f0(∞, l/λ) cos(ω t+ ε) (2.90)



2.11 Water Waves 111

• The heave-amplitude ratio for a slender spar buoy of draft T in deep water
where the draft T corresponds to the length scale l (see Figure 2.72 ):

(a) In the limit of λ/T � 1, f0 → 1.

∗ Very small body moves with the same velocity as the fluid.

(b) In the limit of λ/T � 1, f0 → 0.

(c) At wavelength of λ/T ≈ 6,

∗ A sharp resonance occurs, analogous to the motion of weakly-
damped oscillator.

∗ This severe resonant motion is a consequence of vertical slender-
ness.

2.11.8 Ship Motions in Waves

• Additional physical parameter: ship speed U

– Corresponding Froude number: Fn = U/(g l)1/2.

• Viscous effects are negligible and wave amplitude is assumed to be small
for linearization.

• Heave-amplitude ratio

y/A = f0

(
h/λ, l/λ, β, U/(g l)1/2

)
cos(ω t+ ε) (2.91)

• Typical Roll and Pitch Response

– Froude number Fn = 0.23.

– Ship speed: U = 25 knots.

– Roll response is similar to the spar buoy response.

– For stern quartering sea, the peak values of roll response appear due
to continuously tracing (following) waves with ship.
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Figure 2.72 Heave response of slender spar buoy in regular waves. (From Newman 1977)
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Figure 2.73 Ship motions in 6 degrees of freedom. (From Newman 1977)
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Figure 2.74 Roll and pitch response of a 319 m ship. (From Newman 1977)
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