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3.1 Description of Fluid Motion

3.1.1 Definition of Fluid Particle

• Although one of our assumption on a fluid is that it is a continuum and does
not consist of discrete particles, we introduce the term “fluid particles,”
such as, “velocity of a particle,” etc, to identify simply an infinitesimal
portion or sample of the fluid by mathematically tagging it. 1

• There are two common ways of representing equations to describe a fluid
flow. 2

3.1.2 Lagrangian Description: Path Lines

• We may take the tag to be the initial position, denoted by ξ(a, b, c). Let
a, b, c denote the coordinates of any fluid particle at the time t = 0.

• Let x, y, z denote the coordinates of the same particle at time t. Then
the flow geometry is completely specified if we know x = x(a, b, c, t),
y = y(a, b, c, t), z = z(a, b, c, t). These give the trajectories of various
particles.

• The pathline of a particle is the curve x = x(ξ, t), where x is the posi-
tion vector. 3 The velocity is q(a, b, c, t) = ∂x/∂t and the acceleration is
∂q/∂t = ∂2x/∂t2.

1 Movie: Fluid particles: Velocity vector, Block & cylinder
./mmfm_movies/Vectors2.mov ./mmfm_movies/1_06re1000_block.mov

2 Movie: Flat plate(Lagrangian frame & Eulerian frame)
./mmfm_movies/impflws_cntrstd.mov

3 Movie: Pathline (Smoke over roof)
./mmfm_movies/722.mov ./mmfm_movies/721.mov

./mmfm_movies/Vectors2.mov
./mmfm_movies/1_06re1000_block.mov
./mmfm_movies/impflws_cntrstd.mov
./mmfm_movies/722.mov
./mmfm_movies/721.mov
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• Any other physical quantities would be given by a function, say, f =

f(a, b, c, t). This description is called Lagrangian, material, or convective
description of motion.

3.1.3 Eulerian Description

• Instead of following individual particles as above, in Eulerian description
we fix our attention on a point in space, x, y, z. Consider any property of
the fluid, for example, the density ρ, and calculate its differential:

ρ = ρ(x, y, z, t) (3.1)

dρ =
∂ρ

∂x
dx+

∂ρ

∂y
dy +

∂ρ

∂z
dz +

∂ρ

∂t
dt

= dx · ∇ρ+
∂ρ

∂t
dt (3.2)

• For any given particle as it moves along, dx, dy, dz are not independent;
in fact, dx = u dt, dy = v dt, and dz = w dt, i.e., dx = q dt, where
q(x, y, z, t) is the velocity.
Thus, the rate of change of the density of a particle is

dρ

dt
=
∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
=
∂ρ

∂t
+ q · ∇ρ (3.3)

3.1.3.1 Local derivative

• The time rate of change of a flow quantity at a fixed point x is given by

∂

∂t

∣∣∣∣
x=const

(3.4)

The flow is then called steady if the first term vanishes, that is, it does not
vary with time. 4

4 Movie: Block(Unsteady pressure)
./mmfm_movies/thoung_02.mov

./mmfm_movies/thoung_02.mov
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3.1.3.2 Material derivative

• We use the symbol
D

Dt
for this type of derivative, sometimes called the

“convective or material derivative”:

D

Dt
≡ ∂

∂t
+ q · ∇ (3.5)

• The time rate of change of a flow quantity following a particle is given by

∂

∂t

∣∣∣∣
ξ=const

≡ D

Dt
(3.6)

• The velocity of a particle is the material derivative of the position vector
of the particle:

q∗(ξ, t) =
∂x

∂t

∣∣∣∣
ξ

=
Dx

Dt
= q(x, t) (3.7)

• This can be applied to any fluid property including vector properties. The
acceleration of a particle, for example, is

Dq

Dt
≡
∂q

∂t
+ q · ∇q (3.8)

• A similar description for the evolution of the material line element 5 is

D(dξ)

Dt
= dq = dxj

∂q

∂xj
= dx · ∇q. (3.9)

• If F (x, t) is some property of the flow field, then

∂F

∂t

∣∣∣∣
ξ

=
∂F

∂t

∣∣∣∣
x

+ q · ∇F (3.10)

5A material line is a line composed of the same fluid particles in a moving fluid. Similarly a material surface
and a material volume are, respectively, a surface and a volume composed of the same particles. A material surface
may be a bounding surface and every impenetrable bounding surface must be a material surface.
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3.1.4 Particle Tracing Lines

In the previous section, the material and spatial descriptions of the flow were
described. Below we list some additional prerequisites about particle tracing
lines. 6

3.1.4.1 Streamlines 7

• A streamline is defined as a line everywhere parallel to velocity q. Namely,
the tangent of the streamline at each point is parallel to the fluid velocity
at that point.

• We can produce a streamline by taking a short time exposure picture of a
flow for which numerous particles have been tagged. We try to trace out
curves on the photograph such that each curve is tangent to the velocity
vector at a point.

• Let the fluid velocity be denoted by the vector q; then q = q(x, y, z, t) =

(u, v, w). Differential equations for streamlines are

dx

u
=
dy

v
=
dz

w
. (3.11)

• If x(σ) (where σ is the parameter) describes the position vector of a stream-

line, then
dx

dσ
is tangent to a streamline and parallel to the velocity at x(σ).

Hence we can express the differential equation for streamlines in terms of
the parameter σ:

dx

dσ
× q(x(σ), t) = 0, or

dx

dσ
= q(x(σ), t) (3.12)

6 Movie: Particle tracing lines (Smoke over roof), Timeline (Tunnel flow)
./mmfm_movies/roof_ypth_yovr.mov ./mmfm_movies/timelines.mov

7 Movie: Streamline, (Smoke over roof)
./mmfm_movies/724.mov ./mmfm_movies/723.mov

./mmfm_movies/roof_ypth_yovr.mov
./mmfm_movies/timelines.mov
./mmfm_movies/724.mov
./mmfm_movies/723.mov
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3.1.4.2 Streaklines

• At time t, a streakline through a fixed point y is the curve traced out by
particles each of which have gone through y since time t0 < t. (Typically
t0 = 0).

• Physically we construct a streakline by making (or tagging) all particles
that pass a point, e.g., by continuously emitting dye at that point. The dye
trail marks the streakline.

• A particle is on the streakline at time of observation t if it had been at y at
time s where s lies in the inteval t0 ≤ s ≤ t. The material coordinates fo
the particle that went through y at s are ξ = ξ(y, s). At time t, the particle
is at the spatial position

x = x
(
ξ(y, s), t

)
(3.13)

where y and t are to be assigned and s varies from t0 to t to trace out the
streakline.

• For steady flows, a pathline, a streamline and a streakline coincide.

3.1.5 Example of Particle Tracing Lines

3.1.5.1 Velocity field

• The concepts of various flow lines may be illustrated by the 2-D case for
which the particle velocity is considered to be

q∗(ξ, t) = ξ1 i+ ξ2 e
t j (3.14)

• This means that at the initial time t0 = 0 the particle velocity is equal to
the position vector: q∗(ξ, 0) = ξ, and as time proceeds from t = 0, the
horizontal component of the velocity remains unchanged but the vertical
velocity component grows exponentially with time.
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• Typical particle tracing lines of the flow patterns are illustrated in Fig-
ure 3.1 .

Figure 3.1 Example of various flow lines. (a) streamlines at t = 0 and t > 0; (b) path lines;
(c) streaklines. (From Aris 1962, p. 82)

3.1.5.2 Pathlines

• The pathline of the particle that was initially at ξ is the curve

x = ξ +

∫ t

0

q∗(ξ, t) dt = ξ1(1 + t) i+ ξ2 e
t j (3.15)

• Spatial coordinates and material coordinates can be related:

x1 = ξ1(1 + t), x2 = ξ2 e
t (3.16)

This is the parametric representation of the pathline.

• Eliminate the parameter t from the equation to find the pathline in the
(x1, x2) plane:

x2 = ξ2 e
(x1/ξ1−1) (3.17)
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• The inverse of the pathline is the relation obtained by solving for ξ(x, t)

ξ =
x1

(1 + t)
i+

x2

et
j (3.18)

• With the inverse of the pathlines known, the spatial description of the ve-
locity vector can be constructed:

q(x, t) = q∗(ξ(x, t), t)

=
x1

(1 + t)
i+

x2

et
et j

=
x1

(1 + t)
i+ x2 j (3.19)

• If the spatial description of the velocity vector were given, the differential
equation of the particle pathline would be

∂x
(
ξ, t
)

∂t
= q

(
x(ξ, t), t

)
(3.20)

and, if solved, would give the same expressions as above.

3.1.5.3 Streamlines

• We can also use the spatial description of the velocity field to the find the
position vector of a streamline, x(σ, t):

∂x

∂σ

∣∣∣∣
t

= q (x(σ), t))

=
x1(σ)

(1 + t)
i+ x2(σ) j (3.21)

From which we obtain

x1(σ) = c1 e
σ/(1+t) (3.22)

x2 = c2 e
σ (3.23)
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• If we eliminate the parameter σ from these two equations, then in the
(x1, x2) plane the streamlines are the curves:

x2 = c2 (x1/c1)
(1+t) (3.24)

Note that x2 = k x1 at t = 0.

3.1.5.4 Streaklines

• The streaklines are determined by finding the material coordinates of a
particle that was a spatial position y at some time s. We use the inverse
relations for the pathline to define the relationship:

ξ =
y1

(1 + s)
i+

y2

es
j (3.25)

• Hence the streakline is

x(s) =
y1

(1 + s)
(1 + t) i+

y2

es
et j (3.26)

• At s = t, these relations give x = y, so that is the location of the particle
just passing through the spatial point y.

• At s = 0, the particle that was previously at y for t = 0 is to be found.
To find the streakline definition for any time, we solve the i component for
the relationship between s and the other variables:

s =

(
y1

x1

)
(1 + t)− 1 (3.27)

and from the second equation:

x2 = y2 e
t−(1+t)(y1/x1)+1 (3.28)

• Thus for any particular time t this equation gives the equation of the streak-
line through the point y.
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3.2 Conservation of Mass: Continuity Equation

3.2.1 Material Volume Approach

• Consider an arbitrary volume V (t) enclosed in a material surface S(t).
A material surface is always composed of the same fluid particles. As the
volume moves through space it experiences deformation although the mass
within the volume remains constant.

Figure 3.2 Material surface of interface between two fluids.

• The mass enclosed within V (t) is given by, in an integral form for density
ρ, ∫

V (t)

ρ dV (3.29)

where the integration is over the region of space occupied by V at time t.

• Since the mass of the material volume is constant, the time derivation of
this expression is zero:

d

dt

∫
V (t)

ρ dV = 0 (3.30)

• Using the (Reynolds) transport theorem, one obtains∫
V (t)

[
∂ρ

∂t
+∇ · (ρ q)

]
dV = 0. (3.31)
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• This is the integral form of the continuity equation. Since the volume taken
is arbitrary, the integrand must be zero at all points within V :

∂ρ

∂t
+∇ · (ρ q) = 0. (3.32)

• This is the spatial or Eulerian description of the continuity equation. The
above derivation of the continuity equation was from the system analysis
point of view for which the mass within a deformable bounding surface is
constant.

3.2.2 Control Volume Approach

• Meanwhile, it is common to also use control volume analysis, for which
one consider an arbitrary fixed volume V enclosed in a surface S. Let n
be the outward unit normal vector.

• The mass of fluid in V is
∫
V

ρ dV = m, say. If m increases it means that

fluid has entered through S:

dm

dt
= −

∫
S

ρ n · q dS (3.33)

and by the “divergence theorem”, this surface integral is equal to

−
∫
V

∇ · (ρ q) dV, (3.34)

• V being a fixed volume, we can write

dm

dt
=

∫
V

∂ρ

∂t
dV (3.35)

Hence, for arbitrary choice of V , we have∫
V

∂ρ

∂t
dV = −

∫
V

∇ · (ρ q) dV. (3.36)
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• The control volume (CV) approach implies that

[Rate of change of mass inside the control volume]

+ [Net rate of mass flux out through the control surface]

= 0, (3.37)

∂

∂t

∫
CV

ρ dV +

∮
CS

ρ q · n dS = 0 (3.38)

On the right side of the control volume x +
dx

2
, the density, the x- com-

Figure 3.3 Differential control volume in Cartesian coordinates. (From Fox, McDonald &
Pritchard 2004)

ponent of the velocity, and the mass flux are, respectively,

ρ(x+dx/2) = ρ+

(
∂ρ

∂x

)
dx

2
(3.39)

u(x+dx/2) = u+

(
∂u

∂x

)
dx

2
(3.40)

m(x+dx/2) =
[
ρ(x+dx/2)

] [
u(x+dx/2)

]
dy dz

=

{
ρ u+

[
ρ

(
∂u

∂x

)
+ u

(
∂ρ

∂x

)]
dx

2
+O

[
(dx)2

]}
dy dz

=

{
ρ u+

[
∂(ρu)

∂x

]
dx

2
+O

[
(dx)2

]}
dy dz (3.41)
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On the left side of the control volume x−dx
2

, the density, the x- component
of the velocity, and the mass flux are, respectively,

ρ(x−dx/2) = ρ−
(
∂ρ

∂x

)
dx

2
(3.42)

u(x−dx/2) = u−
(
∂u

∂x

)
dx

2
(3.43)

m(x−dx/2) = −
[
ρ(x−dx/2)

] [
u(x−dx/2)

]
dy dz

= −
{
ρ u−

[
ρ

(
∂u

∂x

)
− u

(
∂ρ

∂x

)]
dx

2
+O

[
(dx)2

]}
dy dz

= −
{
ρ u−

[
∂(ρ u)

∂x

]
dx

2
+O

[
(dx)2

]}
dy dz (3.44)

Add the mass fluxes out through the right and the left side, and neglect the
higher order terms to have

m(x+dx/2) +m(x−dx/2) =

[
∂(ρ u)

∂x

]
dx dy dz (3.45)

Similarly, on the top and the bottom sides and on the front and the back
sides, respectively,

m(y+dy/2) +m(y−dy/2) =

[
∂(ρ v)

∂y

]
dy dz dx (3.46)

m(z+dz/2) +m(z−dz/2) =

[
∂(ρw)

∂z

]
dz dx dy (3.47)

The net rate of mass flux out through the control surface (6 sides of the
differential control volume) is∮

CS

ρ q · n dS =

[
∂(ρ u)

∂x
+
∂(ρ v)

∂y
+
∂(ρw)

∂z

]
dx dy dz (3.48)

The rate of change of mass inside the differential control volume

∂

∂t

∫
CV

ρ dV =
∂ρ

∂t
dx dy dz (3.49)
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• The only way that these integrals can be equal for any and every choice of
V is that their integrands be equal; thus we obtain the General Equation of
Continuity:

∂ρ

∂t
+∇ · (ρ q) = 0 (3.50)

3.2.3 Special Cases: Steady Motion and Incompressible Flow

• Noting that∇ · (ρ q) = q · ∇ρ+ ρ∇ · q, this equation can be expressed, in
an alternative form, as

Dρ

Dt
+ ρ∇ · q = 0 (3.51)

• There are two important special cases:

(1) Steady motion
Since, for steady motion, all partial derivatives ∂( )/∂t vanish,
Eq. (3.50) becomes

∇ · (ρ q) = 0 (3.52)

(2) Incompressible flow
If the density of every particle is constant, Dρ/Dt = 0, and Eq. (3.51)
gives us

∇ · q = 0 or
∂qi
∂xi

= 0 (3.53)

Vector fields with this property are called solenoidal. Most of our
work will deal with incompressible fluid.
It is to be noted that this is correct whether the fluid is steady or not,
and moreover it applies to the case of an inhomogeneous fluid, such
as a stratified liquid, in which ρ varies throughout the fluid, provided
each particle is incompressible.

• Continuity Equation in Cylindrical Coordinate System:

∂ρ

∂t
+

1

r

∂ (ρ r qr)

∂r
+

1

r

∂(ρ qθ)

∂θ
+
∂(ρ qz)

∂z
= 0 (3.54)

For incompressible fluids, it reduces to
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Figure 3.4 Differential control volume in cylindrical coordinates. (From Fox, McDonald &
Pritchard 2004)

∇ · q =
1

r

∂ (r qr)

∂r
+

1

r

∂qθ
∂θ

+
∂qz
∂z

= 0 (3.55)

and, for steady flow,

∇ · (ρ q) =
1

r

∂ (ρ r qr)

∂r
+

1

r

∂(ρ qθ)

∂θ
+
∂(ρ qz)

∂z
= 0 (3.56)

3.3 Vorticity and Circulation

3.3.1 Definition of Vorticity

• The vector function ∇ × q, where q(x, y, z, t) is the velocity of the fluid,
is called the vorticity. Its components are occasionally represented by the
symbols ξ, η, ζ; namely, in rectangular Cartesian coordinates

ξ =
∂w

∂y
− ∂v

∂z
, η =

∂u

∂z
− ∂w

∂x
, ζ =

∂v

∂x
− ∂u

∂y
(3.57)

• To give a physical feature of the meaning of vorticity, it is often said that
∇ × q is twice the angular-velocity vector of the fluid particle. Since the
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particle is being deformed continually, perhaps we should say the average
angular velocity at a point.

• Viscous Shearing and Vorticity at Boundary 8

Figure 3.5 Viscous shearing and vorticity generation by no-slip boundary condition at wall
boundary. (From Wu & Wu 1993)

3.3.2 Vortex Line and Vortex Tube

• A vortex line is a curve which is tangent at each point to the vorticity at
the point. It is analogous to the stream line. Its differential equation is
dx/ξ = dy/η = dz/ζ where the Cartesian component of ω are ξ, η, ζ .

• Since the divergence of any curl of a vector must be zero, a continuity
equation∇·ω for ω must be invoked especially in the case that the vorticity
field is itself to be sought with independence of the velocity field.

• The condition ∇ · ω = 0 can be thought of as meaning that vortex lines
do not begin nor end in the fluid. We call a tube whose walls are made up
of vortex lines a vortex tube. (The analogous tube made up of streamlines
would be called a stream tube.)

8 Movie: Vortical flows
./mmfm_movies/laser_vortex.mov ./mmfm_movies/smoke_ring.mov

./mmfm_movies/laser_vortex.mov
./mmfm_movies/smoke_ring.mov
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3.3.3 Circulation and Vorticity Flux

• We classify flows as irrotational and rotational, depending on whether∇×
q is or is not everywhere zero.

• The line integral

Γ =

∮
C

q · d` (3.58)

where q is the fluid velocity, taken about any closed curve C in space, is
called the circulation about the contour C.

• By Stokes’ theorem, it is clear that the circulation and vorticity are related,
for

Γ =

∮
C

q · d` =

∫
S

n · ∇ × q dS =

∫
S

n · ω dS (3.59)

The transformation is only permissible, of course, when q is finite and has

Figure 3.6 Line and surface integrals for Stokes’ theorem. (From Sears 1970)

continuous partial derivatives at each point of S; we may encounter some
cases where certain singularities have to be excluded from such processes.

• Obviously, if the flow is wholly irrotational, Γ will be zero for every con-
tour. In any case, Γ is zero if C encloses only irrotational portions of the
flow.
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3.3.4 Vortex Strength

• Consider the application of Stokes’ theorem to a cross-section of the vortex
tube: ∫

Σ

n · ω dS = Γ = constant along tube (3.60)

Thus the average vorticity in the cross-section varies inversely as the

Figure 3.7 Circulation about a vortex tube. (From Sears 1970)

cross- sectional area. The vorticity becomes very small if the tube spreads
out. This is the result of viscosity, for example; the vorticity is dissipated
over a wide region.

• Suppose, on the other hand, that the tube is necked down; this makes the
vorticity large. In the extreme case, we imagine that the tube is contracted
to a line. Then the vorticity at this line becomes infinite, but the circulation
is still the same, Γ. This is called a vortex filament, or briefly a “vortex”,
and Γ is its strength.

• It is a kind of mathematical approximation to the case where all the vortic-
ity is confined to a tube of relatively small cross-section, as often occurs in
nature – for example in a tornado. Outside the core of a tornado, the air is
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Figure 3.8 Vortex filament approximation of a vortex tube. (From Sears 1970)

in practically irrotational motion. 9

• The irrotational concentric flow represents the case of a long, straight vor-
tex filament; the singularity at the center is the filament, and there the vor-
ticity is infinite, as predicted. Clearly, a vortex tube or filament, consisting
of vortex lines, cannot begin nor end in the fluid. It can double back on
itself in a ring or terminate at a boundary of the fluid.

9 Movie: Tornado
./mmfm_movies/Tornado.mov

./mmfm_movies/Tornado.mov
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