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0
INTRODUCTION

0.1 Decomposition of Velocity Fields

Vortical flows are observed and conceived in nature. A vortex motion is the
rotation of fluid elements. The rotational motion can be characterized by the
vorticity ω = ∇× q where q is the fluid velocity. The vortical flow is said to be
one of fluid region with relatively high vorticity.

Let us consider two partial diffential equations for q:

∇ · q = θ (1)

∇× q = ω (2)

Our problem is to find the velocity field when the local rate of expansion
(or compression) θ and the local vorticity (shearing prosess) ω are specified
throughout the fluid region with appropriate boundary conditions (and/or initial
conditions).
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Ignoring actual application of some boundary conditons, we consider 3 sets
of differential equations:

∇ · uφ = 0

∇× uφ = 0

}
(3)

∇ · uω = 0

∇× uω = ω

}
(4)

∇ · uθ = θ

∇× uθ = 0

}
(5)

Then we may write the solution as a linear superposition of their individual
solutions:

q = uφ + uω + uθ (6)

where uφ is a solenoidal and irrotational component of velocity field, uω its
rotational component, and uθ its non-zero divegence component. Note that the
last one vanishes by the continuity equation (the principle of mass conservation)
in the case of incompressible fluids. 1 The velocity field for an incompressible
fluid has the form:

q = uω + uφ (7)

It is well known in vector analysis that any vector function may be written
as the sum of two vectors of the Helmholtz decomposition form.

q = ∇× A+∇φ, (8)

where A is ‘vector potential (stream function)’ and φ is ‘scalar potential
(velocity potential)’. 2

1In the present course work, we consider only incompressible fluids unless stated otherwise.
2Even in the case of compressible fluids, we have the Helmholtz decomposion form; The non-zero divergence

component uθ can be merged into the scalar potential component ∇φ since uθ is irrotational such that uθ = ∇φθ
in which φθ becomes a solution of the Poisson-type equation.
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0.2 Outline of Course Work

Our workscope is to construct the solution by numerical implementation based
on the vorticity-velocity formulation. The fundamentals in the vorticity-velocity
formulation are presented in Chapter 2 and Chapter 6.

Since the physical interpretation of the vorticity dynamics by Lighthill (1963)
and Batchelor (1967), the vorticity-velocity formulation is one of candidates
for solving Navier-Stokes (N.-S.) equations. The vorticity-velocity formulation
is mathematically natural. The inertia force term in the N.-S. equations can be
expressed as a Helmholtz decomposition form for which vorticity and pressure
become a pair of potentials (Wu & Wu 1993).

The present course work would be focused on the vorticity-velocity formula-
tion for the solution of unsteady incompressible Navier-Stokes equations, with
two different numerical methods in a time domain analysis:

(1) Inviscid flow analysis
The panel method that was well established in the potential flow analysis is
explained extensively in Chapter 3 through Chapter 5, and Appendix A and
Appendix B. For preliminary studies, we will cover a background about
mathematical and fluid basis in Chapter 1 and Chapter 2.

(2) Viscous flow analysis
The overall basic formulation and some results for simple bodies are pre-
sented in Chapter 6 through Chapter 8.

(a) Eulerian finite volume method
An integral approach is used, in conjunction with a finite volume
scheme for solving the vorticity transport equation. The integral ap-
proach reflects the global coupling when imposed the boundary condi-
tion for vorticity at a solid surface. Mathematical identity for a vector
or scalar field is used.

(b) Lagrangian vortex particle method
The main difference would be the discrete (particle) representation
of the vorticity field. The main feature in the numerical scheme is
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of a combination of the particle method and the boundary integral
method (panel method). We also deal with the vortex-in-cell method
as a hybrid method.
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1.1 Introduction

We will be concerned with both scalar and vector functions, in the form of fields
as well as parametric description of curves in space. Because the laws governing
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physical processes are independent of coordinate systems, vector notation is
ideally suited for expressing these laws.

A scalar is often called a zero-order tensor and a vector is a first-order tensor.
In addition to them, we shall use even more complicated quantities called ten-
sors. We will use both dyads, or second-order tensors which have a 3×3 matrix
form and are described by 9 scalar variables. A special third-order tensor called
the alternating tensor εijk will be frequently used in these notes.

1.1.1 Definition of domain

Some terms related to a domain are defined as follows, but we would not use
the mathematical meaning rigorously. 1

(1) Open ball: Set of points x inside ball of radius a centered at the origin,
such that |x| < a.

(2) Closed ball: Set of points such that |x| 5 a.

(3) Sphere: Set |x| = a.

(4) Disk: 2-dimesional concept of the ball.

(5) Circle: 2-dimensional concept of the sphere.

(6) Open set D: For x ∈ D, some sufficiently small ball centered at x belongs
to D.

(7) Boundary B of open set D: For x 6∈ D, if every open ball centered at x
contains a point of D.

(8) Closure of D: Open set D plus boundary B.

(9) Connected: Each pair of points in D can be connected by a curve lying
entirely in D.

1See, e.g., Stakgold, I. (1979), Green’s Functions and Boundary Value Problems, John Wiley & Sons Inc. and
Aris, R. (1962), Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice Hall, p 44.
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(10) Domain: Open connected set, such as an open ball. The union of two
disjoint open balls is not a domain.

(11) Simply connected domain: Any all closed curves in domain D can be
shrunk into a point in D without leaving D. The curves are called ‘re-
ducible’. For example, domain between concentric spheres is simply con-
nected, but donut-shaped domain is not.

(12) Region: Domain plus all or part of boundary. Sometimes, the terms ‘do-
main’ and ‘region’ are used without distinction.

(13) Closed surface: A surface which lies within a bounded region of space and
has an inside and an outside. The Klein bottle shown in Figure 1.1 has no
inside or outside. Also there are some surfaces that do not have two sides.
The Mobius strip is the known example of these surfaces.

(14) Smooth surface: A part of a surface is called ‘smooth’ if the normal to
the surface varies continuously over that part. Some surfaces are made up
of a number of subregions which are smooth and are called ‘piecewise
smooth’.

Figure 1.1 Types of surfaces: (a) a smooth closed surface; (b) a piecewise smooth surface;
(c) a surface that is not simple connected; (d) a surface that is not closed: Klein bottle; (e) a
hemisphere: (f) Mobius strip. From Aris (1962), p. 45.
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1.1.2 Fundamental function analysis

A scalar field f is defined in a regionD of two- or three-dimensional space with
the property that the value of f varies from point to point in D. Some concepts
and analysis for scalar functions are listed below.

(1) If lim
x→c

f(x) = f(c), the function f(x) is said to be continuous at the point
x = c.

(2) The base of natural logarithm is denoted by e, where e = lim
n→±∞

(
1 +

1

n

)n
= 2.7182818285 · · · . One often writes ln(x) for loge x.

(3) By using the Euler formula eiθ = cos θ + i sin θ, the real sine and cosine
function can be combined into a single function.

(4) A definite integral of a function f(x) which exists on the interval a ≤ x ≤
b, can be defined by the limiting process in the sense of Riemann sum:
namely, ∫ b

a

f(x) dx = lim
N→∞

N∑
i=1

f

(
a+ i

b− a
N

)
b− a
N

(1.1)

(5) For function of one variable, the rule for change of variable in a definite
integral is ∫ x2

x1

f(x) dx =

∫ u2

u1

f(x(u))
dx

du
du (1.2)

where we assume f(x) and f(x(u)) are continuous in the range of inte-
gration and x = x(u) is continuous and its derivative is continuous for
u1 ≤ u ≤ u2.

(6) For functions of two variables, the integral becomes∫
Sxy

f(x, y) dx dy =

∫
Suv

f(x(u, v), y(u, v)) |J | du dv, (1.3)

where Jacobian J ≡ ∂(x, y)

∂(u, v)
=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.
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(7) For f(x, t) and
∂f

∂t
in a region Sxt, a(t) ≤ x ≤ b(t), t1 ≤ t ≤ t2,

d

dt

∫ b(t)

a(t)

f(x, t) dx = f [b(t), t] b′(t)− f [a(t), t] a′(t) +

∫ b(t)

a(t)

∂f

∂t
dx

(1.4)
This relationship is called Leibnitz’s rule. The corresponding expression
for the integral over a two or three dimensional region is called Reynolds
transport theorem, which will be derived later.

(8) Dirac delta functions
Dirac delta function is defined as the sense of generalized functions:∫ ∞

−∞
δ(t) dt = 1 (1.5)

Also, the derivative of the unit-step function:

dU(t)

dt
= δ(t) (1.6)

The definite integral of Dirac delta function:

∫ b

a

δ(t) dt =

{
1 if a < 0 < b

0 otherwise
(1.7)

Dirac delta function is combined with a regular function:∫ b

a

g(t) δ(t) dt = g(0)

∫ b

a

δ(t) dt (1.8)

(9) Fourier transforms
For f(x) periodic with period 2L, then f(x) can be expressed in a Fourier
Series

f(x) =
a0

2
+
∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
(1.9)



1.2 Vector Calculus 11

where

an =
1

L

∫ 2L

0

f(x) cos
(nπx
L

)
dx, bn =

1

L

∫ 2L

0

f(x) sin
(nπx
L

)
dx

(1.10)

The Fourier transform of a function and its inverse transform:

F (ω) =

∫ ∞
−∞

f(t) e−iωt dt (1.11)

f(t) =
1

2π

∫ ∞
−∞

F (ω) eiωt dω (1.12)

(10) The Laplace transform:

F (s) =

∫ ∞
0

f(t) e−st dt (1.13)

f(t) =
1

2πi

∫ a+i∞

a−i∞
F (s) est ds (1.14)

1.2 Vector Calculus

1.2.1 Definition of vector quantity

The simplest physical vector quantity is a line vector, that is, a linear displace-
ment.

Now we investigate how a line vector is transformed from one coordinate
system to another. Vector quantities are those that transform the same way in-
dependent of coordinate systems taken.

Consider two rectangular Cartesian coordinate systems rotated with respect
to one another. Let a11, a21, a31 denote the direction cosines of the x′1 axis, with
respect to the x1, x2, x3 axes, respectively. Let a12, a22, a32 denote those of x′2,
and a13, a23, a33 those of x′3. 2

2aij represents the cosine of the angle between the xi and x′j axes.
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Figure 1.2 Two Cartesian coordinate systems rotated with respect to one another. From
Aris (1962), p. 9.

Then, to find the coordinates of a point P (x, y, z) in the primed system, note
that in moving a distance x1 along the x1 axis you move a11 x1 along x′1, a12 x1

along x′2, and a13 x1 along x′3; etc. Hence, the new coordinates of P are

x′1 = a11 x1 + a21 x2 + a31 x3

x′2 = a12 x1 + a22 x2 + a32 x3 (1.15)

x′3 = a13 x1 + a23 x2 + a33 x3

Also, if we transform from x′1, x
′
2, x
′
3 to x1, x2, x3 by a similar calculation,

we find

x1 = a11 x
′
1 + a12 x

′
2 + a13 x

′
3

x2 = a21 x
′
1 + a22 x

′
2 + a23 x

′
3 (1.16)

x3 = a31 x
′
1 + a32 x

′
2 + a33 x

′
3

Then we express Eqs. (1.15) and (1.16) in a summation notation:

x′i =
3∑
j=1

aji xj for i = 1, 2, 3 (1.17)

xi =
3∑
j=1

aij x
′
j for i = 1, 2, 3 (1.18)
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A vector is defined as a set of three numbers u1, u2, u3, referred to a coordi-
nate system x1, x2, x3, having the property that when transferred to the x′1, x

′
2, x
′
3

system the corresponding quantities are given by

u′i =
3∑
j=1

aji uj for i = 1, 2, 3 (1.19)

This is really the same as our earlier definition in terms of a line vector,
because Eqs. (1.17) and (1.18) are the transformation formulas for a line vector.

It is clear that, to test whether a physical quantity is a vector quantity, one
must have a definition that permits examination of its transformation formula.
Let us consider two simple examples.

(1) First, consider velocity of a point P (x1, x2, x3). The components of this

quantity along the three axes are
dx1

dt
,
dx2

dt
, and

dx3

dt
. Calculating the ve-

locity in the primed system, we find

dx′i
dt

=
d

dt

3∑
j=1

aji xj =
3∑
j=1

aji
dxj
dt
. (1.20)

This has exactly the form required by Eq. (1.19). Hence the velocity of a
point is a vector quantity.

(2) Next, consider the set of numbers
∂u

∂xi
where u is a scalar function

u(x1, x2, x3). We see how
∂u

∂x′i
is expressed in terms of

∂u

∂xi
:

∂u

∂x′i
=

3∑
j=1

∂u

∂xj

∂xj
∂x′i

=
3∑
j=1

∂u

∂xj
aji from Eq. (1.18). (1.21)

Hence
∂u

∂xi
is a vector. It is actually a gradient of the scalar function.
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1.2.2 Symbol of vectors

In these notes, we denote vectors by underlined symbols and scalar numbers
by ordinary symbols. In particular, let us define three unit vectors, i, j, and
k, each having unit magnitude and being directed along x, y, and z axes of
a rectangular cartesian coordinate system respectively. For general curvilinear
coordinate systems, we denote the corresponding unit base vectors as e1, e2, and
e3.

We can write an expression for any vector a as the sum of its components;
i.e.

a = a1 i+ a2 j + a3 k. (1.22)

For instance, the position vector x, denoting the displacement of any point from
the origin, is 3

x = x i+ y j + z k. (1.23)

In this case we write the distance of x from the origin as r ≡ |x| ≡
√
x2 + y2 + z2.

We also denote the distance between two position vectors by r.

Let the three coordinates of a rectangular Cartesian system be called x1, x2,

and x3. Then, for a vector whose corresponding components are a1, a2, and a3,
we write simply an instead of writing down all components and unit vectors,
where the subscript is understood to take the values 1, 2, and 3. Thus a vector is
recognized by the presence of a subscript; a scalar by the absence of a subscript.
This notation of vector (tensor) analysis is the simplest one when we perform
vector operations with the least memory work.

1.2.3 Basic unit tensors

In general, in a 3-dimensional space a tensor of order (rank) m has 3m compo-
nents,

τij···k ei ej · · · ek for i, j, · · · k = 1, 2, 3 (1.24)

3r is also used for x herein.
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1.2.3.1 Kronecker delta tensor

The most useful tensor of order 2 is the unit tensor, denoting by doubly-
underlined upper-cased bold face:

I = δij ei ej (1.25)

with Kronecker delta δij being defined by

δij = 1 if i = j; δij = 0 if i 6= j (1.26)

The contraction (inner product) of 2 unit tensors gives

I · I = δij δjk = δik = I (1.27)

The double contraction of 2 unit tensors (denoted by a colon) gives

I : I = δij δji = δii = d (1.28)

where d is the dimension of the space that we dealt with; e.g., d = 3 in 3-
dimesions.

1.2.3.2 Permutation tensor

As another example, the important tensor of order 3 is the permutation (alter-
nating) tensor:

E = εijk ei ej ek (1.29)

where εijk are the Cartesian components of permutation symbol:

εijk = 0 if any i, j, k equal
εijk = 1 if (ijk) = (123), (231), (312)

εijk = −1 if (ijk) = (132), (213), (321).

 (1.30)
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1.2.3.3 Multiplication of basic tensors

We can easily see that the following formulas for δij and εijk holds from their
definitions:

δii = 3, (1.31)

δij uklmi = uklmj, (1.32)

δij εijk = 0, (1.33)

The permutation tensor is used for cross (vector) product of vectors. If we
need more than one cross products, the multiplication of two permutation ten-
sors is involved. Let us start with the rule of vector product: 4

εijk = ei · (ej × ek) =

∣∣∣∣∣∣∣
ei · e1 ei · e2 ei · e3

ej · e1 ej · e2 ej · e3

ek · e1 ek · e2 ek · e3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3

∣∣∣∣∣∣∣ (1.34)

From Eq. (1.34), the product of two permutation tensors is written as

εijk εmnl =

∣∣∣∣∣∣∣
 δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3


 δm1 δm2 δm3

δn1 δn2 δn3

δl1 δl2 δl3


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
δim δin δil
δjm δjn δjl
δkm δkn δkl

∣∣∣∣∣∣∣
(1.35)

Contraction with respect to k, l (i.e., k = l) yields

εijk εmnk = δim δjn − δin δjm (1.36)

Making the contraction with respect to j, n and continuing again give

εijk εmjk = δim δjj − δij δjm = 3 δim − δim = 2 δim (1.37)

εijk εijk = 2 δii = 6 (1.38)

4We will follow the procedure in the text, Wu, J.-Z, Ma, H.-Y. and Zhou, M.-D. (2006), Vorticity and Vortex
Dynamics, Springer, pp. 697–698.
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The corresponding formulas in a 2-dimensional space are given by

εij3 εmn3 =

∣∣∣∣∣ δim δin
δjm δjn

∣∣∣∣∣ = δim δjn − δin δjm (1.39)

εij3 εmj3 = δim δjj − δij δjm = 2 δim − δim = δim (1.40)

εij3 εij3 = 2 (1.41)

1.2.3.4 Example of permutation tensor

A special example of the permutation tensor can be observed in definition of
vorticity: 5

ω = ωi = ∇× q = εijk
∂qk
∂xj

= εijk
1

2

(
∂qk
∂xj
− ∂qj
∂xk

)
=

1

2
εijk Ωjk (1.42)

where Ωjk ≡
(
∂qk
∂xj
− ∂qj
∂xk

)
is a spin(rotational) tensor. Also it is easily seen

that, by multiplying the above equation by εlmi and using Eq. (1.34),

εlmi ωi = εlmi
1

2
εijk Ωjk =

1

2
(δlj δmk − δlk δjm) Ωjk =

1

2
(Ωlm − Ωml) = Ωlm

(1.43)
from which we have

Ωij = εijk ωk. (1.44)

The inner product of a vector a and an antisymmetric tensor Ω becomes

a · Ω = ai εijk ωk = ω × a, Ω · a = εijk ωk aj = a× ω. (1.45)

If the relative velocity v of any two points is Ω ·xwhere x is the relative position
vector of the two points, then the motion is due to a rigid body rotation. Here Ω

relates to the angular velocity.

5See Aris, R. (1962), Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice Hall, p. 25 and
Wu, J.-Z, Ma, H.-Y. and Zhou, M.-D. (2006), Vorticity and Vortex Dynamics, Springer, p. 698.
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Similarly, we also have

∇ · Ω =
∂

∂xi
(εijk ωk) = −∇× ω. (1.46)

Such relations between vorticity ω and the spin tensor Ω are useful to deduce
the physical interpretation in vortex dynamics that will be described in more
detail in Chapter 6.

1.2.4 Multiplication of vectors

1.2.4.1 Scalar product

The scalar product of two vectors a and b is defined as the scalar number given
by the product of their scalar magnitudes and the cosine of the angle between
them: a · b = a b cos(a · b) or a · b = a1 b1 + a2 b2 + a3 b3. According to the
notation of Kronecker delta tensors, it becomes a · b = δij ai bj = ai bi, where
summation convention has been used.

1.2.4.2 Vector product

The vector product of two vectors a and b is defined as a vector whose direction
is perpendicular to both a and b and whose magnitude is the product of their
magnitudes and the sine of the angle between them; i. e., c = a × b; w =

a b sin(a, b).

To determine the expression for a× b in terms of Cartesian components, we
may write by cyclic substitution of subscripts as an aid to memory; in a form of
tensor-notation, a× b = εijk aj bk.

1.2.4.3 Scalar triple product

The scalar triple product, a·(b×c), is a scalar number having a value equal to the
volume of the parallelepiped erected on a, b, and c. This may be expressed as,
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using the alternating tensor, a ·(b×c) = ai εijk bj ck. Obviously, the parentheses
used here are unnecessary and we see a · b× c = a× b · c = b · c× a etc.

1.2.4.4 Vector triple product

The vector triple product, a × (b × c), is expressed in terms of components in
the plane of b and c:

a× (b× c) = (a · c) b− (a · b) c (1.47)

This can be easily verified by using the basic formula for the alternating tensor
listed above:

a× (b× c) = εmli al εijk bj ck = (δmj δlk − δmk δlj) al bj ck = ak bj ck − aj bj ck.
(1.48)

Combining the above results one finds

a× (b× c) + b× (c× a) + c× (a× b) = 0 (1.49)

1.2.5 Vector derivatives

1.2.5.1 Gradient: ∇u

Consider a scalar function u = u(x, y, z) that is differentiable and has continu-
ous derivatives. Let us define the gradient of u at x, y, z as the limiting value of
a certain surface integral over a surface surrounding the point x, y, z, as follows

∇u ≡ lim
4V→0

1

4V

∮
S

u n dS (1.50)

where S is the area enclosing the volume4V , dS is the element of area, and n
is the unit vector normal to the surface at each point of the surface integration.
6

6
∫
S

· · · dS and
∮
S

· · · dS are the symbolism to indicate that the integration is over, respectively, an open surface

and a closed surface.
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Now we can take 4V very small, in the form of a cube, say, with sides
4x,4y,4z. Then, neglecting second-order quantities, 4V = 4x4y4z,
and ∫

S

u n dS ≈ −u i4y4z − u j4x4z − u k4x4y

+

(
u+

∂u

∂x
4x
)
i4y4z +

(
u+

∂u

∂y
4y
)
j4x4z

+

(
u+

∂u

∂z
4z
)
k4x4y (1.51)

≈
{
∂u

∂x
i+

∂u

∂u
j +

∂u

∂z
k

}
V (1.52)

Hence, in limit,

∇u = i
∂u

∂x
+ j

∂u

∂y
+ k

∂u

∂z
(1.53)

We recognize this as the vector. Another symbol often used for ∇u is grad u.

In a form of tensor notation, it is
∂u

∂xi
.

1.2.5.2 Divergence: ∇ · v

Consider now a vector function, v = v(x, y, z) ≡ v1 i + v2 j + v3 k, where
v1, v2, and v3 are all scalar functions of x, y, z, having continuous derivatives.
We define

∇ · v = lim
4V→0

1

4V

∮
S

n · v dS (1.54)

Now, by calculating for a small cubical volume, you can easily confirm the
following equality:

∇ · v =
∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z
(1.55)

Another symbol used for∇ · v is div v. In a form of tensor notation, it is
∂vi
∂xi

.
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1.2.5.3 Curl: ∇× v

We define the curl of a vector

∇× v ≡ lim
4V→0

1

4V

∮
S

n× v dS (1.56)

and find, by considering a small cube, that

∇× v =

(
∂v3

∂y
− ∂v2

∂z

)
i+

(
∂v1

∂z
− ∂v3

∂x

)
j +

(
∂v2

∂x
− ∂v1

∂y

)
k (1.57)

or, to assist the memory, purely symbolically we write

∇× v =

∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

v1 v2 v3

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.58)

Another symbol used for curl v is ∇ × v. In a form of tensor notation, it is

εijk
∂vk
∂xj

.

1.2.5.4 Laplacian: ∇2u

The Laplacian of a scalar function u(x, y, z) is defined as

∇2u ≡ ∇ · (∇u) =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
(1.59)

By analogy, the Laplacian of a vector function is the vector whose rectangular
Cartesian components are the Laplacian of the vector’s corresponding compo-
nents 7

∇2v = i ∇2v1 + j ∇2v2 + k ∇2v3 (1.60)

7 We must do more work to find its expression in a non-Cartesian system.
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1.2.5.5 Differential operator: ∇

From the original definition of grad u, we can deduce that the differential du is
given by the formula, in rectangular Cartesian coordinates,

du =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz = d` · ∇u (1.61)

where d` is any directed line (vector) element. This means that du is the incre-
ment of u corresponding to a position increment d`.

Similarly, for a vector function v(x, y, z),

dv ≡ i dv1 + j dv2 + k dv3

=

(
dx

∂

∂x
+ dy

∂

∂y
+ dz

∂

∂z

) (
i v1 + j v2 + k v3

)
= d` · ∇v (1.62)

In all of the formulas above, we consider the symbol ∇ as representing

a vector operator i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
. If you treat this operator as a vector,

with the appropriate vector-multiplication signs, you get the right result. Equa-
tions (1.61) and (1.62) are independent of the choice of coordinate system. As
will be seen later on, the expressions for div, grad, curl, etc. in a more general
curvilinear system do not bear much resemblance to one another.

1.2.5.6 Directed derivative

Equations (1.61) and (1.62) lead immediately to the formulas for the directed
derivative in the direction of a given vector s ≡ s1 i+ s2 j + s3 k in rectangular
Cartesian coordinate:

∂u

∂s
= es · ∇u (1.63)

∂v

∂s
= es · ∇v (1.64)
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Again we have defined a new vector operator: es ·∇ =
s1

s

∂

∂x
+
s2

s

∂

∂y
+
s3

s

∂

∂z
,

where s is the magnitude of s.

1.2.6 Expansion formulas

The following formulas are of general utility. Let φ denote any differentiable
scalar function of x, y, z, and u, v and w any such vector functions.

∇ · (φu) = u · ∇φ+ φ∇ · u (1.65)

∇× (φu) = (∇φ)× u+ φ∇× u (1.66)

∇ · (v × w) = w · ∇ × v − v · ∇ × w (1.67)

∇× (v × w) = w · ∇v + v∇ · w − w∇ · v − v · ∇w (1.68)

∇(v · w) = v · ∇w + w · ∇v + v × (∇× w) + w × (∇× v) (1.69)

∇ · (∇× v) = 0 (1.70)

∇× (∇φ) = 0 (1.71)

∇× (∇× v) = ∇(∇ · v)−∇2v (1.72)

Operation on the position vector x = x1 i+ x2 j + x3 k whose magnitude is
denoted by r = |x| = √x · x, with a constant vector a, is illustrated as follows:

∇r = x/r (1.73)

∇ · x = 3 (1.74)

∇× x = 0 (1.75)

∇rn = n rn−2 x (1.76)

∇ · (rn x) = (n+ 3) rn (1.77)

∇× (rn x) = 0 (1.78)

∇2(rn) = n(n+ 1) rn−2 (1.79)
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∇ · (a× x) = 0 (1.80)

∇(a · x) = a (1.81)

∇× (a× x) = 2 a (1.82)

∇ · (a×∇r) = 0 (1.83)

∇ · (r a) = (x · a)/r (1.84)

∇× (r a) = (x× a)/r (1.85)

1.3 Integral Theorems

1.3.1 Divergence theorem

Let u and v denote arbitrary scalar and vector functions of x, y, z as before.
These are assumed to be defined, continuous, and single-valued in a certain
region of space, and, moreover, that their first derivatives with respect to x, y,
and z satisfy the same requirements.

Now consider the surface integral
∮
S

u n dS, carried over any closed surface

S within the region, enclosing a volume V , where n is the unit normal vector
directed outward. It is clear that, if the volume V is subdivided into small vol-

ume Vi, this integral equals the sum of all the integrals
∮
Si

u n dS taken over the

small surfaces Si. Since integration over neighboring elements will cancel one
another, and only the integration over the outside will remain:∮

S

u n dS =
∑∮

Si

u n dS (1.86)

But, in the limit, the surface integral over the small surface become∇u dV , ac-
cording to our definition of the gradient, Eq. (1.50), and the summation becomes
a volume integration: ∮

S

u n dS =

∫
V

∇u dV (1.87)
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In particular, if u = const., Eq. (1.87) becomes∮
S

n dS = 0. (1.88)

It means that the integral of vectorial surface element over a closed surface must
vanish.

If u is taken as a negative of static pressure acting on a body submerged fully
into a fluid (i.e., u = −p = ρgz, where z is vertically upward coordinate), the
force acting on the body is

F =

∮
S

(−p) n dS =

∫
V

∇(ρ g z) dV =

∫
V

(ρ g k) dV = ρ g V k (1.89)

This relation is well known as the Archimedes principle for buoyancy force of
a submerged body.

By entirely analogous reasoning, using the definitions of the divergence and
curl, we have ∮

S

n · v dS =

∫
V

∇ · v dV (1.90)

and ∮
S

n× v dS =

∫
V

∇× v dV (1.91)

Equation (1.90) is known as the divergence theorem, or Gauss theorem. If we
take v as fluid velocity, Eqs. (1.90) and (1.91) become, respectively,∮

S

n · v dS =

∫
V

θ dV (1.92)

and ∮
S

n× v dS =

∫
V

ω dV (1.93)

These equations show that the velocity components over boundary are directly
related with the field distribution of expansion (or compressing process) and
vorticity in fluid region.
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The three types of the theorem above can be unified by a general form:∮
S

(n ∗ f) dS =

∫
V

(∇ ∗ f) dV (1.94)

where ∗ denotes one of differential operator, scalar product and vector product,
and f is a scalar or vector function depending on the choice.

As an example, take f = ∇u to yield∫
V

∇2u dV =

∫
V

∇ · (∇u) dV =

∮
S

n · ∇u dS =

∮
S

∂u

∂n
dS (1.95)

where ∂u/∂n is the directed derivative in the outward direction as defined in
Eq (1.63).

1.3.2 Stokes theorem

Let us apply Eq. (1.50) for definition of∇u to a very small volume element of a
thin disk with uniform height4h and base area4S. Its volume then becomes
4S 4h. Consider the product of ∇u with the outward unit normal vector to
the upper surface nu. Then it is not difficult to prove that,

nu ×∇u ≈ nu ×
1

4V

∮
S

u n dS ≈ 1

4S

∮
C

u d` (1.96)

where C is the small contour that forms the boundary of4S. The line integral
in Eq. (1.96) is taken in the direction that would advance a right-hand screw in
the n direction.

Now consider a volume element with the uniform thin height and an arbitrary
base surface S. If this volume is subdivided into very small volume Vi with the
same height, the above product in an integral sense can be expressed as the sum
of all the integrals taken over the small line integrals:∫

S

n×∇u dS = lim
Vi→0

∑∮
Ci

u d` (1.97)
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Since the line integration over neighboring contour elements will cancel one
another, and only the integration over the outside contour will remain:∫

S

n×∇u dS =

∮
C

u d` (1.98)

With this knowledge, two more important transformation theorems follow:∫
S

n · ∇ × v dS =

∮
C

v · d` (1.99)∫
S

(n×∇)× v dS =

∮
C

d`× v (1.100)

The first of these is known as Stokes theorem. 8

If u is constant, Eq. (1.98) becomes

0 =

∮
C

u d` (1.101)

and if v = x, Eq. (1.100) becomes, since (n×∇)× x = −2n,∫
S

n dS =
1

2

∮
C

x× d`. (1.102)

If we consider v as fluid velocity, we have the well-known relation between
vorticity flux through an open surface and circulation along the boundary of the
surface: ∫

S

n · ω dS =

∮
C

v · d` (1.103)

By analogous reasoning, we have used the relationship,

n · ∇ × v ≈ 1

S

∮
C

v · d` (1.104)

The conditions on u and v are analogous to those imposed above; that is, the
functions and their first derivations must be finite, continuous, and single-valued

8For rigorous proof, see Arfken, G. (1970), Mathematical Methods for Physicists, 2nd ed., Academic Press,
pp. 51–53.
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in the region. The surface S enclosed by the contour C need not be flat; n is
normal to S at every point, and the direction of C is chosen as described above.

The unified form of Stokes theorem may be written by,∫
S

(n×∇) ∗ f dS =

∮
C

d` ∗ f (1.105)

1.3.3 Volume integrals of a vector

Using integration by parts, we can express the integration of f(x) by the mo-
ment of f ′(x): ∫ b

a

f(x) dx = b f(b)− a f(a)−
∫ b

a

x f ′(x) dx (1.106)

In a similar fashion to this one-dimensional formula, a surface or volume inte-
gral can be cast to the integrals of the first moment of the derivative of f plus
boundary integrals.

With d = 2, 3 being the space dimesion and x the position vector, we find
the vector expansion formulas:

∇ · (f x) = f + x (∇ · f) (1.107)

∇ · (x f) = d f + x · ∇f (1.108)

∇(x · f) = f + x · ∇f + x× (∇× f) (1.109)

x× (n× f) = n (f · x)− (n · x) f, (1.110)

From the volume integral for Eq. (1.107), we apply the divergence theorem to
find an identity:∫

V

f dV = −
∫
V

x (∇ · f) dV +

∮
S

x (n · f) dS (1.111)

Another form of Eq. (1.111) can be provided as follows.
First, subtracting Eq. (1.109) from Eq. (1.108) yields

∇ · (x f)−∇(x · f) = (d− 1) f − x× (∇× f) (1.112)
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Now we take volume integrals of this equation and apply the divergence theo-
rem to find another identity, using Eq. (1.110):∫
V

f dV =
1

d− 1

∫
V

x× (∇× f) dV +
1

d− 1

∫
V

{
∇ · (x f)−∇(f · x)

}
dV

=
1

d− 1

∫
V

x× (∇× f) dV +
1

d− 1

∮
S

{
(n · x) f − n (f · x)

}
dS

=
1

d− 1

∫
V

x× (∇× f) dV − 1

d− 1

∮
S

x× (n× f) dS (1.113)

We note that the left-hand side of Eq. (1.112) and Eq. (1.113) is independent of
the choice of the origin of x, so must be the right-hand side.

1.3.3.1 Volume integral of first moment

We can also cast the first vector moment x×f to the second moments of∇×f :

2

∫
V

x× f dV = −
∫
V

x2 (∇× f) dV +

∮
S

x2 n× f dS (1.114)∫
V

x× f dV =

∫
V

x
{
x · (∇× f)

}
dV −

∮
S

{
(n× f) · x

}
x dS (1.115)

3

∫
V

x× f dV =

∫
V

x×
{
x× (∇× f)

}
dV −

∮
S

x×
{
x× (n× f)

}
dS

(1.116)

To derive Eq. (1.114) and Eq. (1.115), we have used the following relations and
then applied the divergence theorem:

∇× (x2f) = ∇(x2)× f + x2∇× f
= 2 x× f + x2∇× f (1.117)

∇ · (f × xx) = ∇ · (f × x)x+ f × x
= x

{
x · (∇× f)

}
+ f × x (1.118)

(n× f) · x = n · (f × x) (1.119)

Equation (1.116) is the sum of Eq. (1.114) and Eq. (1.115) by aid of the relation
x× (x× a) = x (x · a)− x2 a.



30 VECTOR ANALYSIS

1.3.4 Surface integrals of a vector

The corresponding transformation rule on surface integral is, since (n × ∇) ×
(φ x) = (n×∇φ)× x− (d− 1)φ n,∫

S

φ n dS = − 1

d− 1

∫
S

x× (n×∇φ) dS +
1

d− 1

∮
C

φ x× dx (1.120)

and for d = 3, the integral of tangent vector becomes∫
S

n× f dS = −
∫
S

x×
{

(n×∇)× f
}
dS +

∮
C

x× (dx× f) (1.121)

Equation (1.120) is a special case of Eq. (1.113) with f = ∇φ. Here we ap-
ply the divergence theorem for a volume integral, in which the closed boundary
surface can be regarded as being composed of two open surfaces (S1 and S2):∫

S1+S2

φ n dS = − 1

d− 1

∫
S1+S2

x× (n×∇φ) dS (1.122)

Then the surface integral over the first surface S1 can be expressed in terms of
integrals over the second part of the closed surface:∫

S1

φ n dS = − 1

d− 1

∫
S1

x× (n×∇φ) dS

− 1

d− 1

∫
S2

x× (n×∇φ) dS −
∫
S2

φ n dS (1.123)

Use of the relation (n × ∇) × (φ x) = (n × ∇φ) × x) − (d − 1) φ n for the
integral over the second surface makes us to have∫
S1

φ n dS = − 1

d− 1

∫
S1

x× (n×∇φ) dS +
1

d− 1

∫
S2

(n×∇)× (φ x) dS

= − 1

d− 1

∫
S1

x× (n×∇φ) dS +
1

d− 1

∮
−C2

dx× (φ x)

= − 1

d− 1

∫
S1

x× (n×∇φ) dS +
1

d− 1

∮
C2

(φ x)× dx (1.124)
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by applying the Stokes theorem for the second integral.

Proof of Eq. (1.121)

According to the associated vector expansion formulas, we have

(n×∇)× (f × x) = εpil εijk nj
∂

∂xk
(εlmn fm xn)

= εlpi εlmn εijk nj

(
∂fm
∂xk

xn + fm δkn

)
= (δpm δin − δpn δim)

(
εijk nj

∂fm
∂xk

xn + εijk nj fm δkn

)
= εijk nj

∂fm
∂xk

xi − εijk nj
∂fi
∂xk

xn + εijk nj fm δki − εijk nj fi

= x · (n×∇f)−
{

(n×∇) · f
}
x+ n× f (1.125)

and, with a similar manipulation,

(n×∇)× f × x = x · (n×∇f)− (n×∇f) · x (1.126)

(n×∇)(f · x) = (n×∇f) · x+ n× f (1.127)

(n×∇) · (f x) =
{

(n×∇) · f
}
x− n× f (1.128)

Now, adding Eqs. (1.125) and (1.128) and subtracting Eqs. (1.126) and
(1.127) from its result, we have

(n×∇)× (f × x) + (n×∇) · (f x)− (n×∇)× f × x− (n×∇)(f · x)

= −n× f (1.129)

We then take a surface integral for Eq. (1.129) and use Stokes theorem to yield∮
C

dx× (f × x) +

∫
S

x×
{

(n×∇)× f
}
dS −

∮
C

dx (f · x) +

∮
C

dx · (f x)

= −
∫
S

n× f dS (1.130)
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Rearranging this equation, we provide Eq. (1.121):∫
S

n× f dS = −
∮
C

{
f (x · dx)− x (f · dx)

}
−
∫
S

x×
{

(n×∇)× f
}
dS

+

∮
C

dx (f · x)−
∮
C

dx · (f x)

=

∮
C

x× (dx× f)−
∫
S

x×
{

(n×∇)× f
}
dS (1.131)

���

1.3.4.1 Surface integrals of first moment

The surface integrals of the first moment x × nφ and x × (x × f) can also be
transformed to the following alternative forms: 9∫

S

x× n φ dS =
1

2

∫
S

x2 n×∇φ dS − 1

2

∮
C

x2 φ dl (1.132)∫
S

x× n φ dS = −
∫
S

x {x · (n×∇φ)} dS

+

∮
C

φx (x · dx) (1.133)∫
S

x× n φ dS = −1

3

∫
S

x× {x× (n×∇φ)} dS

+
1

3

∮
C

φx× (x× dx) (1.134)∫
S

x× (n× f) dS =

∫
S

S ·
{

(n×∇)× f
}
dS

−
∮
C

S · (dx× f) (1.135)

where S is the second order tensor depending only on x:

S =
1

2
x2 I − xx or Sij =

1

2
x2 δij − xi xj (1.136)

Equation (1.133) is obtained from applying the Stokes’ theorem to the sur-
9See Wu, J.-Z, Ma, H.-Y. and Zhou, M.-D. (2006), Vorticity and Vortex Dynamics, Springer, p. 702.
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face integrals of the following identity:

(n×∇) · (φxx) = n · {∇ × (φxx)} = ni

{
εijk

∂

∂xj
(φxk xl)

}
= ni

{
εijk

∂φ

∂xj
xk xl + φ εijk xk δjl

}
= ni

{
εijk

∂φ

∂xj
xk xl + φ εilk xk

}
= n · (∇φ× x)x− φn× x
= {n×∇φ) · x} x+ x× (φn) (1.137)

Note that Eq. (1.134) is obtained from a linear combination of Eq. (1.132) and
Eq. (1.133).

1.4 Curvilinear Coordinates on Lines and Surfaces

We are used to encounter Cartesian components in vector and tensor analysis.
In some situations, local curvilinear coordinates along a line or surface are more
convenient, especially when they orthogonal. Therefore they are as intrinsic as
possible, with an arbitrarily moving origin thereon. 10

1.4.1 Intrinsic line frame

If we are interested in the flow behavior along a smooth line C with arc length
element ds, say a streamline or a vortex line, the intrinsic coordinate system
with origin O(x) on C has three orthonormal basis vectors: the tangent vector

t =
∂x

∂s
, the binormal b = t × n, and the principal normal n (toward the center

of curvature), see Figure 1.3 .
10Most of material covered in this section has been taken from

(1) Kreyszig, E. (2006), Advanced Engineering Mathematics, 9th ed., Wiley, pp. 397-398,
(2) Wu, J.-Z, Ma, H.-Y. and Zhou, M.-D. (2006), Vorticity and Vortex Dynamics, Springer, pp. 705-712,
(3) Farin G. & Hansford D. (2000), The Essentials of CAGD, A K Peters, Natick, MA, pp. 119-121, and
(4) Farin G. (2002), Curves and Surfaces for CAGD-A Practrical Guide, 5th ed., Morgan Kaufmann Publishers,
pp. 181-187, 419-421.
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Figure 1.3 Intrinsic 3 orthonomal basis vectors along a curve in a local curvilinear coordinate
system. From Wu, Ma and Zhou (2006), p. 706.

Three axes t, b and n are defined as

t(s) =
∂x

∂s

/∣∣∣∣∂x∂s
∣∣∣∣ (1.138)

b(s) =

(
∂x

∂s
× ∂2x

∂s2

)/∣∣∣∣∂x∂s × ∂2x

∂s2

∣∣∣∣ (1.139)

n(s) = b× t (1.140)

The plane spanned by the point x, t, and n is called the osculating plane. The
planes spanned by (x, t, b) and (x, b, n) are called, respectively, the rectifying
plane and the normal plane. 11

The key of using this frame is to know how the basis vectors change their
directions as s varies. This is given by the ‘Frenet-Serret formulas’, form the
entire basis of spatial curve theory in classical differential geometry:

∂t

∂s
= κn,

∂n

∂s
= −κ t+ τ b,

∂b

∂s
= −τ n (1.141)

11(1) The equation of the osculating plane is det
[
y − x, ∂x

∂s
,
∂2x

∂s2

]
= 0, where y denotes any point on the

plane.

(2) A curve C in a surface is a geodesic of the surface if the second derivative
(
∂2x

∂s2

)
of the position vector of C

is always normal to the surface. (See O’Neill (1966), p. 228 or Aris (1962), p. 201).
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where κ and τ are the curvature and torsion of C, respectively. The curvature
radius is rc = 1/κ with d r = −d n. A formula for the curvature is given by

κ(s) =

∣∣∣∣∂x∂s × ∂2x

∂s2

∣∣∣∣∣∣∣∣∂x∂s
∣∣∣∣3

(1.142)

A point where the curvature changes sign is called inflection points. The torsion
measures how much a curve deviates from a plane curve, i.e., it is the curvature
of the projection of C onto the (n, b) plane (i.e., the normal plane). Similarly, a
formula for the torsion is given by

τ(s) =

det

[
∂x

∂s
,
∂2x

∂s2
,
∂3x

∂s3

]
∣∣∣∣∂x∂s × ∂2x

∂s2

∣∣∣∣2
(1.143)

The Taylor expansion of x(s+4s) can be written as

x(s+4s) = x(s) +4s t+
1

2
κ4s2 n

−1

6
κ24s3 t+

1

6
κ′4s3 n+

1

6
κ τ 4s3 b

+ · · · (1.144)

For 2-D curves only, the slope κ′ is given by, 12

dκ

ds
=

det

[
∂x

∂s
,
∂3x

∂s3

]
∣∣∣∣∂x∂s

∣∣∣∣4
− 3

(
∂x

∂s

) (
∂2x

∂s2

) det

[
∂x

∂s
,
∂2x

∂s2

]
∣∣∣∣∂x∂s

∣∣∣∣6
(1.145)

Now, let the differential distance form O along the directions of n and b be

12See Farin G. (2002), Curves and Surfaces for CAGD-A Practrical Guide, 5th ed., Morgan Kaufmann Publish-
ers, p. 421.



36 VECTOR ANALYSIS

dn and db, respectively. Then

∇ = t
∂

∂s
+ n

∂

∂n
+ b

∂

∂b
(1.146)

It involves curves along n and b directions, for which the Frenet-Serret formulas
can be applied to complete the gradient operation.

1.4.1.1 Example: Propeller pitch helix

Let us consider the constant-pitch helix of a propeller blade. The position vector
is expressed as, by converting a cylindrical coordinates (r, θ, x) into the Carter-
sian coordinates,

x(θ) = r θ tanφ i+ r cos θ j + r sin θ k (1.147)

where φ is the constant pitch angle. Simple calculations yield

∂x

∂θ
= r tanφ i− r sin θ j + r cos θ k (1.148)

∂2x

∂θ2
= −r cos θ j − r sin θ k (1.149)

∂x

∂θ
× ∂2x

∂θ2
= −r2 cos θ tanφ k + r2 tanφ sin θ j + r2 i (1.150)

from which the curvature becomes

κ =
r2(1 + tan2 φ)1/2

r3(1 + tan2 φ)3/2
=

cos2 φ

r
(1.151)

The radius of curvature is given by rc =
1

κ
=

r

cos2 φ
. The center of the osculat-

ing circle is, in the direction of the normal vector n,

xc = x+ rc n (1.152)

By developing of such an osculating circle onto a (2-D) plane, we can take two
end points of the circular arc with the radius rc that correspond to, respectively,
the leading edge and the trailing edge of the blade section.
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By assembling the corresponding two end points of the osculating circu-
lar arcs for pitch helices at other radial positions, we can produce a developed
outline of the propeller blade. In general, the corresponding radii of curvature
might be different each other.

1.4.1.2 Example: Streamline intrinsic frame

For example, if C is a streamline such that u = q t, then the divergence of the
velocity becomes

∇ · u =
∂q

∂s
+ q∇ · t =

∂q

∂s
+ q

(
n · ∂t

∂n
+ b · ∂t

∂b

)
(1.153)

Similarly, the curl operation for t is

∇× t =

(
n× ∂t

∂n
+ b× ∂t

∂b

)
+ κ b (1.154)

Here, since |t| = 1, it follows that

n ·
(
n× ∂t

∂n
+ b× ∂t

∂b

)
= t · ∂t

∂b
=

1

2

∂|t|2

∂b
= 0 (1.155)

b ·
(
n× ∂t

∂n
+ b× ∂t

∂b

)
= −t · ∂t

∂n
= −1

2

∂|t|2

∂b
= 0 (1.156)

The first term of ∇ × t in (1.154) must be along the t direction, with the
magnitude known as the ‘torsion of neighboring vector lines’.

ξ ≡ t · (∇× t) = b · ∂t
∂n
− n · ∂t

∂b
(1.157)

Using this notation we obtain

∇× t = ξ t+ κ b (1.158)

This result enables us to derive the vorticity expression in the streamline
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intrinsic frame

ω = ∇× (q t) = ∇q × t+ q∇× t = ∇q × t+ q ξ t+ q κ b (1.159)

The first term of this equation is

(∇q)× t =
∂q

∂b
n− ∂q

∂n
b (1.160)

so we obtain

ω = q ξ t+
∂q

∂b
n+

(
q κ− ∂q

∂n

)
b (1.161)

Thus, ξ = 0 if ω · u (= q2 ξ) = 0.

1.4.2 Curvilinear orthogonal coordinates

We will have need for the expressions of several vector differential operators in
terms of curvilinear orthogonal coordinates. 13 Suppose x1, x2, x3 are mutually
orthogonal curvilinear coordinates.

1.4.2.1 Line element

When the line-element vector in the orthogonal system is expressed in terms of
a scalar multiple, the scalar multiple is usually written hi and is called a scale
factor:

ds = (h1 dx1, h2 dx2, h3 dx3) (1.162)

where h1 = h1(x1, x2, x3) =

∣∣∣∣ ∂s∂x1

∣∣∣∣ =

{(
∂s1

∂x1

)2

+

(
∂s2

∂x1

)2

+

(
∂s3

∂x1

)2
}1/2

etc.

The base vectors,
∂s

∂xi
, is then expressed in terms of the scale factor and a

13For example, expressions for the related common differentials in spherical, cylindrical and polar coordinate
systems are found in Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press,
Cambridge, pp. 598–603.
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unit vector, e.g.
∂s

∂x1
= h1(x1, x2, x3) e1(x1, x2, x3) (1.163)

For example, if we take spherical coordinates x1 = r, x2 = θ, and x3 = φ

where φ is the azimuthal angle about the axis θ = 0, the line element is ds =

(dr, r dθ, r sin θ dφ); hence the scale factors h1 = 1, h2 = r, h3 = r sin θ.

If we take cylindrical coordinates x1 = ρ, x2 = φ, and x3 = z where φ is the
azimuthal angle about the axis ρ = 0, the line element is ds = (dρ, ρ dφ, dz);
hence the scale factors h1 = 1, h2 = ρ, h3 = 1.

Figure 1.4 Cylindrical and spherical coordinate systems. From Brockett(Lecture note
NA520, 1988), p.1-30a.

The scalar differential arc length, denoted by ds is determined from

ds2 = ds · ds =

(
∂s

∂xi
dxi

)
·
(
∂s

∂xj
dxj

)
= hi hj dxi dxj ei · ej (1.164)

When the unit base vectors are orthogonal, this expression reduces to the simple
form

ds2 = h2
1 dx

2
1 + h2

2 dx
2
2 + h2

3 dx
2
3 (1.165)
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By the triple scalar product, the volume element can be obtained from the
elemental arc length vectors:

dV = ±
(
∂s

∂x1
dx1

)
·
(
∂s

∂x2
× ∂s

∂x3
dx2 dx3

)
(1.166)

where the ± sign is necessary to provide a positive element of volume. For an

orthogonal coordinate system, with
∂s

∂x1
= h1 e1, etc, the volume element is

dV = h1 h2 h3 dx1 dx2 dx3 (1.167)

since e1 · (e2 × e3) = ± 1. Multiplication of the scale factors corresponds to the
Jacobian J = h1 h2 h3.

1.4.2.2 Gradient (∇u)

We have the formula du = ds · ∇u, which is completely general. Also in any
coordinate system, we have

du =
∂u

∂x1
dx1 +

∂u

∂x2
dx2 +

∂u

∂x3
dx3 (1.168)

Equating these two relations gives

∂u

∂x1
dx1 +

∂u

∂x2
dx2 +

∂u

∂x3
dx3 = h1 dx1 (∇u)1 + h2 dx2 (∇u)2 + h3 dx3 (∇u)3

(1.169)
Now dx1, dx2, dx3 are completely arbitrary; hence this equation can be true only
if their coefficients are equal. Thus

∇u =

(
1

h1

∂u

∂x1
,

1

h2

∂u

∂x2
,

1

h3

∂u

∂x3

)
(1.170)
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1.4.2.3 Divergence (∇ · v)

For this operator we return to the original definition; thus, denoting by v1, v2, v3

the components of v in the 1, 2, 3 directions at any point,

∇ · v ≈ (h1 h2 h34x14x24x3)
−1{

− v1 h2 h34x24x3 − v2 h3 h14x34x1 − v3h1h24x14x2

+

[
v1 h2 h3 +

∂

∂x1
(v1 h2 h3)4x1

]
4x24x3

+

[
v2 h3 h1 +

∂

∂x2
(v2 h3 h1)4x2

]
4x34x1

+

[
v3 h1 h2 +

∂

∂x3
(v3 h1 h2)4x3

]
4x14x2

}
=

1

h1 h2 h3

{
∂

∂x1
(h2 h3 v1) +

∂

∂x2
(h3 h1 v2) +

∂

∂x3
(h1 h2 v3)

}
(1.171)

1.4.2.4 Curl (∇× v)

Apply Stoke’s Theorem to one face of the element of a cube, say the 1-3 face:∫
S

n · ∇ × v dS =

∮
C

v · ds

= v1 h14x1 − v3 h34x3

+

[
v3 h3 +

∂

∂x1
(v3 h3)4x1

]
4x3 −

[
v1 h1 +

∂

∂x3
(v1 h1)4x3

]
4x1

=

[
∂

∂x1
(h3 v3)−

∂

∂x3
(h1 v1)

]
4x14x3 (1.172)

But also ∫
S

n · ∇ × v dS ≈ −h1 h34x14x3 (∇× v)2 (1.173)
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Thus, by cyclic substitution,

(∇× v)2 =
1

h3 h1

[
∂

∂x3
(h1 v1)−

∂

∂x1
(h3 v3)

]
(∇× v)3 =

1

h1 h2

[
∂

∂x1
(h2 v2)−

∂

∂x2
(h1 v1)

]
(1.174)

(∇× v)1 =
1

h2 h3

[
∂

∂x2
(h3 v3)−

∂

∂x3
(h2 v2)

]
or, symbolically

∇× v =
1

h1 h2 h3

∣∣∣∣∣∣∣∣
h1 i1 h2 i2 h3 i3
∂

∂x1

∂

∂x2

∂

∂x3

h1 v1 h2 v2 h3 v3

∣∣∣∣∣∣∣∣ (1.175)

For example, if we take spherical coordinates x1 = r, x2 = θ, and x3 = αwhere
α is the azimuthal angle about the axis θ = 0,

∇× v =
er

r sin θ

{
∂(vα sin θ)

∂θ
− ∂vθ
∂α

}
+
eθ
r

{
1

sin θ

∂vr
∂α
− ∂(r vα)

∂r

}
+
eα
r

{
∂(r vθ)

∂r
− ∂(r vr)

∂θ

}
(1.176)

1.4.2.5 Laplacian (∇2u)

For∇2u, we simply employ Eqs. (1.170) and (1.171) above:

∇2u = ∇ · (∇u) =

1

h1 h2 h3

{
∂

∂x1

(
h2 h3

h1

∂u

∂x1

)
+

∂

∂x2

(
h3 h1

h2

∂u

∂x2

)
+

∂

∂x3

(
h1 h2

h3

∂u

∂x3

)}
(1.177)

The most convenient way to write out ∇2v is by use of expansion formula
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Eq. (1.72):
∇2v = ∇(∇ · v)−∇× (∇× v) (1.178)

which can be expanded by use of formulas, Eqs. (1.170), (1.171), and (1.175).

1.4.2.6 Convection term (u · ∇v)

This useful vector appears in the Navier-Stokes equation when we write the time
rate of flow momentum in Eulerian description sense. Performing very compli-
cated procedure but straightforward manipulation, we arrive at the following
result:

(u · ∇v)1 =
1

h1

[
u1
∂v1

∂x1
+ u2

∂v2

∂x1
+ u3

∂v3

∂x1

+
1

h2
(u1 v2 − u2 v1)

∂h1

∂x2
+

1

h3
(u1 v3 − u3 v1)

∂h1

∂x3

]
− u2

h1 h2

[
∂(h2 v2)

∂x1
− ∂(h1 v1)

∂x2

]
+

u3

h3 h1

[
∂(h1 v1)

∂x3
− ∂(h3 v3)

∂x1

]
(1.179)

(u · ∇v)2 =
1

h2

[
u1
∂v1

∂x2
+ u2

∂v2

∂x2
+ u3

∂v3

∂x2

+
1

h3
(u2 v3 − u3 v2)

∂h2

∂x3
+

1

h1
(u2 v1 − u1 v2)

∂h2

∂x1

]
− u3

h2 h3

[
∂(h3 v3)

∂x2
− ∂(h2 v2)

∂x3

]
+

u1

h1 h2

[
∂(h2 v2)

∂x1
− ∂(h1 v1)

∂x2

]
(1.180)

(u · ∇v)3 =
1

h3

[
u1
∂v1

∂x3
+ u2

∂v2

∂x3
+ u3

∂v3

∂x3

+
1

h1
(u3 v1 − u1 v3)

∂h3

∂x1
+

1

h2
(u3 v2 − u2 v3)

∂h3

∂x2

]
− u1

h3 h1

[
∂(h1 v1)

∂x3
− ∂(h3 v3)

∂x1

]
+

u2

h2 h3

[
∂(h3 v3)

∂x2
− ∂(h2 v2)

∂x3

]
(1.181)
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1.5 Tensors of Second Order

For example, let us consider a stress tensor that is a key quantity in continuum
mechanics. 14 A stress is a force per unit area, in which force and an element
of area are vectors. The area element have to specify both its magnitude and
the direction of its normal. If F denotes the force and S is the area element,
the stress tensor T might be thought of as F/S. This quotient of two vectors
cannot be defined, but rather we can define F as S · T . The stress tensor at
a point T becomes a newly physical quantity associated with two directions.
In fact, it needs 9 numbers to specify the stress tensor in a reference system
corresponding to the 9 possible combinations of 2 base vectors.

A second-order tensor is a set of nine numbers τij, having the property that
when transferred from the x1, x2, x3 system to the x′1, x

′
2, x
′
3 system the corre-

sponding quantities are given by

τ ′ij =
3∑

k=1

3∑
`=1

aki a`j τk`, for i, j = 1, 2, 3 (1.182)

1.5.1 Dyadic products

Much of our work can be simplified if we extend our definitions of vector mul-
tiplication to include the dyadic product u v. For our purpose, this need only be
defined by the relations

(u v) · w ≡ u (v · w)

w · (u v) ≡ (w · u) v
(1.183)

Actually the dyadic product u v is a special form of second-order tensor; it
can easily be seen to satisfy the definition of such a tensor. This definition may
be stated as follows, with reference to the xi and x′i coordinate systems.

In the case of u v, of course, the nine numbers involved are the products
ui vj (i, j = 1, 2, 3).

14See Aris, R. (1962), Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice Hall, p. 5.
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Let us consider some examples:

(1) For∇(u · v), using dyadic notation,∇(u · v) = (∇u) · v + (∇v) · u.

(2) Laplacian∇2v = ∇ · (∇v).

(3) When we define (u v)× w ≡ u(v × w) and w × (u v) ≡ (w × u)v, these
are obviously dyadics.

(4) If φ is any dyadic product, φ · (a× b) = (φ× a) · b.

(5) Let us look at the more important example. Let ui be a vector, and consider
the set of nine numbers ∂ui/∂xj. This is easily shown to be a second-order
tensor. It might be represented by the symbol grad u or ∇u.

1.5.2 Gradient of a vector

Now, consider the gradient of a vector, ∇u, which is involved into the convec-
tion and the diffusion terms of the Navier-Stokes equations.
The velocity change at a point du is

du = (dx · ∇)u (1.184)

The gradient of a vector is defined by, in a similar fashion to the gradient of a
scalar,

∇u = lim
V→0

1

V

∮
S

n u dS =
∂uj
∂xi

(1.185)

In a rectangular Cartesian coordinate system, the gradient of a vector u = u1 i+

u2 j + u3 k is

∇u =
∂u1

∂x1
i i+

∂u2

∂x1
i j +

∂u3

∂x1
i k + · · · similar 6 terms (1.186)
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In general orthogonal curvilinear coordinates, the gradient of a vector u =

u1 e1 + u2 e2 + u3 e3, is 15

∇u =
1

h1

(
∂u1

∂x1
+
u2

h2

∂h1

∂x2
+
u3

h3

∂h1

∂x3

)
e1 e1 +

1

h1

(
∂v2

∂x1
− v1

h2

∂h1

∂x2

)
e1 e2

+
1

h1

(
∂v3

∂x1
− v1

h3

∂h1

∂x3

)
e1 e3 + · · · similar 6 terms (1.187)

If the vector v is a velocity vector in the field of fluid mechanics, this is often
resolved into a symmetric and antisymmetric form:

∇v =
1

2

[
(∇v +∇vT ) + (∇v −∇vT )

]
=

1

2
def(v) +

1

2
rot(v) (1.188)

where, if we consider a second-order tensor to be a 3×3 matrix, the superscript
T stand for transpose of the matrix which is the operation described by inter-
changing the rows and columns of the matrix. The first term is called the strain
rate tensor, having 6 independent components. It represents (i) normal strain
rate and (ii) shear strain rate which cause stress in fluid.
The second term is called the spin tensor or vorticity tensor Ω, having only
off-diagonal components. It represents rigid body rotation of a fluid element.

1.6 Transport Theorem

We will have need for the rate of change of an integral taken over a volume
moving through a field

d

dt

∫
V (t)

F (x, t) dV (1.189)

where F (x, t) may be a scalar, vector or tensor variable. We assume the path of
points in V (t) are known:

x = x(ξ, t) (1.190)
15For details, see Milne-Thomson, L. M. (1968), Theoretical Hydrodynamics, Fifth edition, Macmillan, Lon-

don, pp. 62–66 and Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press,
Cambridge, pp. 598–603.
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where ξ is the initial point of x. Hence we can invert the integral to the ξ vari-
able: ∫

V (t)

F (x, t) dV =

∫
V (0)

F ∗(ξ, t) J dξ1 dξ2 dξ3 (1.191)

where Jacobian J is written as

J =
∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)
= εijk

∂x1

∂ξi

∂x2

∂ξj

∂x3

∂ξk
(1.192)

and the integrand
F ∗(ξ, t) = F

{
x(ξ, t), t

}
(1.193)

Hence

d

dt

∫
V (0)

F ∗(ξ, t) J dξ1 dξ2 dξ3 =

∫
V (0)

(
∂F ∗

∂t
J + F ∗

∂J

∂t

)
dξ1 dξ2 dξ3

(1.194)
Now

∂J

∂t
= εijk

∂

∂t

(
∂x1

∂ξi

∂x2

∂ξj

∂x3

∂ξk

)
(1.195)

∂

∂t

(
∂x1

∂ξi

)
=

∂

∂ξi

(
∂x1

∂t

)
=
∂v1

∂ξi
(1.196)

If v1 = v1(x1, x2, x3),
∂v1

∂ξi
=
∂v1

∂xj

∂xj
∂ξi

(1.197)

Since εijk
∂v1

∂x2

∂x2

∂ξi

∂x2

∂ξj

∂x3

∂ξk
and similar terms are zero, the non-zero terms

εijk

(
∂v1

∂x1

∂x1

∂ξi

∂x2

∂ξj

∂x3

∂ξk
+
∂v2

∂x2

∂x1

∂ξi

∂x2

∂ξj

∂x3

∂ξk
+
∂v3

∂x3

∂x1

∂ξi

∂x2

∂ξj

∂x3

∂ξk

)
(1.198)

remain. So
∂J

∂t
= (∇ · v) J (1.199)
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where v is the velocity of the point x. Hence∫
V (0)

(
∂F ∗

∂t
+ F ∗∇ · v

)
J dξ1 dξ2 dξ3 =

∫
V (t)

[(
∂F ∗

∂t

)
ξ=const

+ F ∗∇ · v

]
dV

(1.200)
Now

∂F ∗

∂t

∣∣∣∣
(ξ=const)

=
F
{
x(ξ, t), t

}
∂t

∣∣∣∣∣
ξ

=
∂F

∂t
+
∂x

∂t
· ∇F =

∂F

∂t
+ v · ∇F (1.201)

Hence
d

dt

∫
V (t)

F dV =

∫
V

[
∂F

∂t
+∇ · (v F )

]
dV (1.202)

or
d

dt

∫
V (t)

F dV =

∫
V (t)

∂F

∂t
dV +

∮
S(t)

n · (v F ) dS (1.203)

We can apply this relation at any instant in time.

The first integral implies rate of change in volume and the second one rate of
change associated with motion of surface bounding volume. 16 It is noted that
this is similar to Leibnitz’s rule for an integral over one dimensional region:

d

dt

∫ b(t)

a(t)

f(x, t) dx =

∫ b(t)

a(t)

∂f

∂t
dx+ f [b(t), t] b′(t)− f [a(t), t] a′(t) (1.204)

We can apply extensively the transport theorem to the case that there is a
discontinuity interface Σ within a volume V . 17 The volume V is considered to
be composed of two volumes V1 and V2 divided by an internal surface Σ. V is a
material volume but as Σ moves with arbitrary velocity u and across it F suffers
a discontinuity, F1 and F2 being its values on either side. If ν is the normal to
Σ in the direction form V1 to V2, Eq. (1.203) may be generalized to

d

dt

∫
V (t)

F dV =

∫
V (t)

∂F

∂t
dV +

∮
S(t)

n · (v F ) dS +

∮
Σ(t)

ν · (uF ) dS (1.205)

16See Newman, J. N. (1977), Marine Hydrodynamics, MIT Press, for depicted interpretation.
17Refer to Aris, R. (1962), Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice Hall, p. 86.
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1.7 Moving Coordinate Systems

1.7.1 Velocity due to rigid body rotation

Suppose a rigid body rotates about an axis through the origin of a coordinate
system with an angular velocity ω = ω n, where the direction of the axis is
given by a unit vector n and ω is the magnitude of the angular velocity (see
Figure 1.5 ). 18

Figure 1.5 Rotation of a rigid body. From Aris (1962), p. 17.

Let P be any point in the body at position x. Then n × x is a vector in the
direction of PR of which magnitude is |x| sin θ. However, |x| sin θ = PQ is the

18The description herein is based on Aris, R. (1962), Vectors, Tensors and the Basic Equations of Fluid Mechan-
ics, Prentice Hall, p. 17.



50 VECTOR ANALYSIS

perpendicular distance from P to the axis of rotation. In a small interval of time
δt, the radius PQ moves through an angle ω δt and hence P moves through a
distance (PQ)ω δt.

It follows that the small short distance PR is a vector δx perpendicular to
the plane of OP and the axis of rotation:

δx = (n× x)ω δt = (ω × x) δt (1.206)

Dividing both sides by δt and taking the limit δt → 0 provide the velocity of
the point P . Thus the linear velocity v of the point x due to a rotation ω is

v = ω × x (1.207)

This result can be directly applied to moving coordinate systems. Details are
given in the following subsection.

1.7.2 Transformations of moving coordinates

Let us introduce two coordinate systems: one system fixed to space and the
other moving relative to the space-fixed system. The moving (the unprimed)
coordinate system is supposed to be in motion of both translation and rotation
relative to the space-fixed (the unprimed) system. Then the position vector x′

defined in the space-fixed system is related to the position vector x defined in
the moving system as follows:

x′ = x+R (1.208)

where R is the distance vector between the origins of two coordinate systems.
(See figure 1.6 )

Because of the relative motion, time-derivative will appear different to ob-
servers in the two coordinate systems. For example, a vector that is constant
in either system would seem to vary with time to an observer fixed in the other
system. We can write the relationship between the derivative(d′/dt) observed in
the space-fixed system and the derivative(d/dt) observed in the moving system,
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Figure 1.6 Moving coordinate system.

for an arbitrary vector:
dA′

dt
=
dA

dt
+ Ω× A (1.209)

where Ω is the vector angular velocity of the moving system. The last term in
Eq. (1.209) implies a rotation of a rigid body. 19

If this formula is applied to the special case of the position vector x given in
Eq. (1.208), we have the velocity:

q′ = q + Ω× x+ Ṙ (1.210)

where Ṙ represents the translation velocity of the moving frame. Therefore
this equation implies that the absolute velocity is the sum of the velocity(q)
measured by an observer in the moving system and the frame velocity of the
moving system (Ω× x+ Ṙ).

19See 김 형 종 (1999), 미적분학, 총 2권, 서울대학교 출판부, pp. 317–318, and Aris, R. (1962), Vectors,
Tensors and the Basic Equations of Fluid Mechanics, Prentice Hall, p. 17.
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In a similar manner, we can obtain the relation between acceleration vectors
by making use of the general rule Eq. (1.209):

a′ ≡ d′2x′

dt2
= a+ 2 Ω× q +

dΩ

dt
× x+ Ω× (Ω× x) + R̈ (1.211)

Here we have written dΩ/dt instead of d′Ω/dt because Ω is a vector that is
always the same in both systems.

The first term of Eq. (1.211) (a) is the acceleration viewed in the moving
system. The second is the Coriolis acceleration, which depends on the velocity
in the moving system. The meaning of the third term is not clear. The fourth
term is the generalized centripetal acceleration, since

|Ω× (Ω× x)| = Ω2 x sin(Ω, x) (1.212)

It is noted that, if we consider the self-rotation of earth with constant angular
speed, this term becomes a form of gradient of a scalar function and its effect
was already included in gravitational acceleration for treatment as a body force
term of the momentum equations.

1.8 Mathematical Identities

1.8.1 Green’s scalar identity

If u = ψ∇φ in Eq. (1.90), we obtain Green’s first identity:∫
V

[
ψ∇2φ+∇ψ ·∇φ

]
dV =

∮
S

ψ n ·∇φ dS (1.213)

And if u = φ∇ψ, use Eq. (1.90) and add the result to Green’s first identity, we
obtain Green’s second(scalar) identity:∫

V

[
ψ∇2φ− φ∇2ψ

]
dV =

∮
S

[
ψ
∂φ

∂n
− φ∂ψ

∂n

]
dS (1.214)
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where n ·∇φ =
∂φ

∂n
. For these relations to be valid, φ and ψ must be continuous

in the volume and on the surface and the second derivatives must be continu-
ous within the volume while on the surface only the first derivatives need be
continuous. 20

As an practical application, an arbitrary scalar field defined in a volume V
can be represented in terms of integrals over the enclosing surfaces plus an in-
tegral of∇2φ over the volume.

From the expansion formulas, we see that
1

|x|
=

1

|r|
=

1

r
satisfies Laplace’s

equation: ∇2

(
1

r

)
= 0 if r 6= 0. Similarly ∇2

(
1

|y − x|

)
= 0 for y a con-

stant vector. Since∇2

(
1

|y − x|

)
does not exist at x = y, we exclude this point

from the volume by surrounding it with a sphere.

Figure 1.7 Two-dimensional drawing of a simply connected region for deriving the scalar
identity.

20More detailed explanation can be found in mathematical texts, e.g., Kreyszig, E. (1993), Advanced Engineer-
ing Mathematics, Seventh ed.,Wiley, pp. 553–554.
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Hence if we take ψ =
1

|y − x|
, Green’s second identity becomes:

∮
S+T+

∑
(y,ε)

[
n ·∇φ
|y − x|

− φn ·∇ 1

|y − x|

]
dS =

∫
V−B(y,ε)

[
1

|y − x|
∇2φ

]
dV

(1.215)
where B(y, ε) is a sphere of radius ε centered at y and bounded by Σ.

In this application, the surface is in three-dimensional space and the integra-
tion variable is x. We illustrate the situation with a two-dimensional drawing as
shown in Figure 1.7 . Integrations over the small tubes joining Σ and S2, and
S1 and S2 vanish by continuity of φ.

On the surface Σ surrounding the point y, as shown in Figure 1.8 for an
enlarged view, we have

y − x = −ε er (1.216)

n = −er (1.217)

dS = (ε dθ) (ε sin θ dα) (1.218)

φ(x) = φ(y) + ε
∂φ

∂r

∣∣∣∣
y

+ · · · (1.219)

∇ 1

|y − x|
=

(y − x)

|x− y|3
= −ε er

ε3
(1.220)

where er is the unit vector in the radial direction. Hence the integration for the
surface Σ and the small ball B becomes, respectively,∮

∑
[
n ·∇φ
|y − x|

− φn ·∇ 1

|y − x|

]
dS

= −φ(y)

∫ 2π

0

dα

∫ π

0

[
ε2
er · (ε er)

ε3
sin θ

]
dθ +O(ε)

= −4π φ(y) +O(ε) (1.221)

and ∫
B

[
∇2φ

1

|y − x|

]
dV = ∇2φ

∣∣
y

(
O(ε2)

)
(1.222)
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Figure 1.8 Small sphere region containing a singular point.

Hence, taking the limit as ε→ 0, we find

φ(y) =
1

4π

∮
S

[
n ·∇φ
|y − x|

− φ
n · (y − x)

|y − x|3

]
dS − 1

4π

∫
V

∇2φ

|y − x|
dV (1.223)

If the point y had been outside V , the left-hand side would have been zero.

For a two-dimensional field, ψ = ln
1√

x2
1 + x2

2

in Green’s second identity

and a similar expression is obtained.

1.8.2 Uniqueness of scalar identity

Let us consider the uniqueness of this integral representation. If another scalar
field, say φ′(x) had the same value of ∇2φ in V and the same value of φ or
n · ∇φ on S, then we could construct a third solution which had ∇2φ′′ = 0 in
V , and either φ′′ = 0 or n · ∇φ′′ on S. If φ = ψ = φ′′ in Green’s first identity,
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then ∫
V

[
φ′′∇2φ′′ +∇φ′′ ·∇φ′′

]
dV =

∮
S

[φ′′ n ·∇φ′′] dS (1.224)

and this reduces to only ∫
V

∇φ′′ ·∇φ′′ dV = 0 (1.225)

Since (∇φ)2 is always greater than or equal to zero, the only solution is

∇φ′′ ·∇φ′′ = 0 (1.226)

This requires that φ′′ be at most a constant. If φ were specified on the boundary,
the constant is zero. If n · ∇φ is specified on the boundary, φ is uniquely deter-
mined by the integral to within a constant. It is important to recognize that our
expression for φ is in terms of φ and n · ∇φ and the above consideration shows
we need specify only one of these on the boundary. Hence to find the unknown
on the boundary, one must first solve an integral equation.

Also we have assumed that the field boundaries are fixed. If they were to de-
pend on the field, then special conditions must be specified to insure the solution
is unique. In addition to this uniqueness, we should also consider the far-field
behavior of φ as the distance r goes to infinity. 21

1.8.3 Type of boundary conditions

(1) Dirichlet boundary condition (1st type)
The Dirichlet (or first type) boundary condition is perhaps the easiest one
to understand. When we solve a differential equation, we put specified
values on the boundary of the domain where a solution needs to take. For
example, when Poisson equation such as∇2ψ = −ω for stream function ψ
and vorticity ω is satisfied in a domain Ω, the Dirichlet boundary condition

21Detailed consideration may be found in Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cam-
bridge University Press, Cambridge.
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takes the form ψ(x) = f(x) on the boundary ∂Ω, where f(x) is a known
function defined on the boundary.

(2) Neumann boundary condition (2nd type)
The Neumann (or second type) boundary condition specifies the values
that the derivative of a solution is to take on the boundary of the domain,
when imposed on an ordinary or a partial differential equation. For ex-
ample, for Laplace equation ∇2φ = 0 which we will present later on, the

Neumann boundary condition takes the form
∂φ(x)

∂n
= g(x). Here, n de-

notes the (typically exterior) normal to the boundary and g is a given scalar
function.

(3) Robin boundary condition (3rd type)
The Robin (or third type) boundary condition is a type of hybrid boundary
condition; it is a linear combination of Dirichlet and Neumann bound-
ary conditions, namely, it is a specification of a linear combination of the
values of a function and the values of its derivative on the boundary of
the domain. Robin boundary conditions are a weighted combination of
Dirichlet boundary conditions and Neumann boundary conditions, such as

a φ + b
∂φ

∂n
= h(x) where a and b are non-zero constants or functions

more generally. Robin boundary conditions are commonly used in solv-
ing Sturm-Liouville problems (Stakgold, 1986). These boundary condi-
tions should not be confused with mixed boundary conditions, which are
boundary conditions of different types specified on different subsets of the
boundary.

(4) Mixed boundary condition
The mixed boundary condition for a partial differential equation implies
that different types of boundary condition are used on different parts of the
boundary. For example, in partial sheet cavity problems for a hydrofoil,
if φ is a solution to Laplace equation on a fluid domain and the boundary
is divided into two portions of cavity and non-cavity, one would impose a
Dirichlet boundary condition on the cavity portion and a Neumann bound-
ary condition on the non-cavity portion.

(5) Cauchy boundary condition
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A Cauchy boundary condition imposed on an ordinary differential equa-
tion or a partial differential equation specifies both the values a solution
of a differential equation is to take on the boundary of the domain and
the normal derivative at the boundary. It corresponds to imposing both a
Dirichlet and a Neumann boundary condition.
Cauchy boundary conditions can be understood from the theory of second
order, ordinary differential equations, where to have a particular solution
one has to specify the value of the function and the value of the derivative
at a given initial or boundary point.
For a second order partial differential equation, we now need to know the
value of the function at the boundary, and its normal derivative in order to
solve the partial differential equation.
When the variable is specially time, Cauchy conditions can also be called
initial value conditions.

1.8.4 Vector identity

Another identity involving vectors can be constructed from divergence theorems
for a vector and a dyadic. In the third divergence theorem given by Eq. (1.91),
let the vector be u× v, then∫

V

[∇× (u× v)] dV =

∮
S

[n× (u× v)] dS (1.227)

According to the expansion formula on vector triple products, we know

n× (u× v) = (n× u) × v + (v× n) × u

= (n× u) × v − v (n · u) + n (u · v) (1.228)

Hence∮
S

[n× (u× v)] dS =

∮
S

[(n× u) × v − (n · u) v + n (u · v)] dS (1.229)
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These integrals can be rearranged by the divergence theorem:∮
S

[(n× u) × v] dS =

∫
V

[∇× (u× v) +∇ · (u v)−∇(u · v)] dV

(1.230)
Now adding the results of the divergence theorem for a dyadic u v to both sides:∮

S

(n× u) × v + (n · u) v] dS

=

∫
V

[∇× (u× v) + 2 v (∇ · u) + 2u ·∇v −∇(u · v)] dV

(1.231)

Using the expansion formulas

∇× (u× v) = v ·∇u+ u (∇ · v)− v (∇ · u)− u ·∇v (1.232)

∇(u · v) = v ·∇u+ v× (∇× u) + u× (∇× v) + u ·∇v
(1.233)

and subtracting one from the other, we obtain

∇× (u× v)−∇(u · v) = u (∇ · v)− v (∇ · u)− 2u ·∇v
−v× (∇× u)− u× (∇× v)

(1.234)

Hence ∮
S

[(n× u) × v + (n · u) v] dS

=

∫
V

[v (∇ · u) + u (∇ · v)− u× (∇× v)− v× (∇× u)] dV

(1.235)

This is called vector identity.

An arbitrary vector field can be represented by this vector identity by choos-
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ing

v = ∇ 1

|y − x|
=

(y − x)

|y − x|3
for y fixed (1.236)

For which, we have
∇× v = 0

∇ · v = 0

 for x 6= y (1.237)

Hence for y not in V , Eq. (1.235) becomes, without any restriction,∮
S

[
(n× u) ×

(y − x)

|y − x|3
+ (n · u)

(y − x)

|y − x|3

]
dS

=

∫
V

[
(y − x)

|y − x|3
(∇ · u)−

(y − x)

|y − x|3
× (∇× u)

]
dV (1.238)

For the case when y is in V ,
(

1

|y − x|

)
becomes singular as y tends to x.

The point y can be excluded from V by surrounding it with a sphere of radius ε
centered at y, as shown in Fig. 1.7 . This sphere plus any other surfaces inside V
can be connected to the exterior surface by small tubes to make all the surfaces
continuous and the region remains simply connected, in the same manner as for
the scalar identity.

The vector identity applies to the region V as defined with the exclusions:∮
S+T+

∑
(y,ε)

[
(n× u) ×

(y − x)

|y − x|3
+ (n · u)

(y − x)

|y − x|3

]
dS

=

∫
V−B

[
(y − x)

|y − x|3
(∇ · u)−

(y − x)

|y − x|3
× (∇× u)

]
dV (1.239)

Integrations over the small tubes T1 and T2 vanish by continuity as they become
increasingly small.
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On the surface Σ surrounding the point y (see Figure 1.8 ):

y − x = −ε er (1.240)

n = −er (1.241)

dS = (ε dθ) (ε sin θ dφ) (1.242)
(y − x)

|x− y|3
=
−ε er
ε3

(1.243)

where er is the unit vector in the radial direction. Furthermore,

u|∑ = u(y) + (x− y) ·∇u+ · · · = u(y) +O(ε) (1.244)

(n× u) × (y − x) = ε (−er × u) × (−er) = ε {u− er(u · er)}
(1.245)

(n · u) (y − x) = ε (er · u) er (1.246)

Hence, ∮
∑
[
(n× u) ×

(y − x)

|y − x|3
+ (n · u)

(y − x)

|y − x|3

]
dS

= u(y)

∫ 2π

0

dα

∫ π

0

ε3 sin θ dθ

ε3
+O(ε)

= 4π u(y) +O(ε) (1.247)

And for ε→ 0,

4π u(y) = −
∮
S

[
(n× u) ×

(y − x)

|y − x|3
+ (n · u)

(y − x)

|y − x|3

]
dSx

+ lim
ε→0

∫
V−B(y,ε)

[
(y − x)

|y − x|3
(∇ · u)−

(y − x)

|y − x|3
× (∇× u)

]
dVx (1.248)

This is a representation of u in terms of both components on the boundary, the
normal component n·u, and the tangential component, n×u, plus the divergence
and the curl integrated over the field.

If u is divided into two components after interchanging the variables x and
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y, Eq. (1.248) is rewritten as

4π u = u1 + u2 (1.249)

u1(x) = +

∫
V

(x− y)

|x− y|3
(∇ · u) dVy −

∮
S

(n · u)
(x− y)

|x− y|3
dSy (1.250)

u2(x) = −
∫
V

(x− y)

|x− y|3
× (∇× u) dVy −

∮
S

(n× u) ×
(x− y)

|x− y|3
dSy

(1.251)

where the bar through the integral sign indicates the limit integration.

1.8.5 Integral expression of Helmholtz decomposition

For a vector field u given in a domain V , we define a vector F by

F (x) = −
∫
V

G(x− y)u(y) dVy (1.252)

where G(r) is the fundamental solution (Green function) of Poisson equation

∇2G(r) = δ(r). (1.253)

For example, G(r) = − 1

4π|r|
in 3-D dimesional free space.

By Eqs. (1.252) and (1.253) and the definition of the Dirac delta function,
we have

−∇2F = −
∫
V

δ(x− y)u(y) dVy = u(x) (1.254)

According to Eq. (1.72),

u(x) = −∇2F = −∇(∇ · F ) +∇× (∇× F ) (1.255)

By comparing this expression with the Helmholtz decomposition form u =

∇φ+∇× A, the scalar and the vector potentials are simply given by

φ = −∇ · F , A = ∇× F (1.256)
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We can then perform the integration of Eq. (1.252) to yield

φ = −∇ · F =

∫
V

∇ ·
{
G(x− y)u(y)

}
dVy

=

∫
V

∇G(x− y) · u(y) dVy

= −
∫
V

∇yG(x− y) · u(y) dVy

= −
∫
V

{∇y · (Gu)−G∇y · u} dVy

= −
∮
S

Gn · u dSy +

∫
V

Gθ dVy (1.257)

A = ∇× F = −
∫
V

∇×
{
G(x− y)u(y)

}
dVy

= −
∫
V

∇G(x− y)× u(y) dVy

=

∫
V

∇yG(x− y)× u(y) dVy

=

∫
V

{∇y × (Gu)−G∇y × u} dVy

=

∮
S

Gn× u dSy −
∫
V

Gω dVy (1.258)

Here we denote the gradient operator with respect to the integration variables
y by ∇y so that ∇G = −∇yG. Equations (1.257) and (1.258) provide the
mathematical background of the Helmholtz decomposition for any vector field.
Therefore the irrotational vector ∇φ and the solenoidal vector ∇ × A can be
expressed in terms of dilatation and vorticity, respectively:

∇φ = −
∮
S

(n · u)∇GdSy +

∫
V

θ∇GdVy (1.259)

∇× A = −
∮
S

(n× u)×∇GdSy +

∫
V

ω ×∇GdVy (1.260)

Note that we have dropped the subscript y in ∇G for brevity, and hence it de-
notes the operator with respect to the integration variables y. This result is the
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same as the expression of the vector identity Eqs. (1.250) and (1.251) derived
in the previous subsection.

1.8.6 Green functions

When other surfaces can be included in the problem of the Laplace equation
(more generally other partial differential equations, not necessarily the Laplace
equation) that governs flow fields, additional boundary conditions are imposed.
Then the Green function is often taken instead of the elementary function for
computational advantage.

(1) Green fuction is defined as an elementary singularity plus another non-
singular component that satisfies Laplace equation as well as boundary
contions on the other surfaces.

(2) What is left unsatisfied is boundary conditions on a body.

(3) Scalar (velocity potential) at x in terms of a distribution of elementary

singularities ψ =
1

|x− y|
. When we add a function (say H(x, y)) that also

satisfies the Laplace equation and is not singular within the field to ψ, iden-
tity is unchanged except that we have a modified singularity element. It is
necessary but not easy to find a function H with the following properties.

(4) If there were surfaces near a body, construct new singularity element
G(x, y) with ∇2G = 0 and such that

(a) G satifies given boundary conditions on non-body surfaces

(b) G contains elementary singularity element (say
1

|x− y|
) to give the

field point value φ(x)

(c) G results in integral equation over only the body surface.

(5) The formulation is as follows

G(x, y) =
1

|x− y|
+H(x, y) (1.261)
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where H(x, y) is non-singular for all x ∈ V, ∇2H = 0 and

φ n · ∇G−Gn · ∇φ = 0 on S 6= SB (1.262)

(6) For a simple example, if a wall is aligned with onset flow, H is image of
elementary singularity.

1.8.7 Uniqueness of vector identity

To examine uniqueness of the solution as before, suppose that vectors u1 and u2

satisfy∇ · u1 = ∇ · u2 and∇× u1 = ∇× u2 in V . Then the difference vector
u3 = u1 − u2 satisfies ∇ · u3 = 0 and ∇× u3 = 0 in V . The condition that the
curl and divergence of u3 are both zero is necessary and sufficient to establish
that u is the gradient of a scalar function P which satisfies Laplace’s equation:

u3 = ∇P (1.263)

∇2P = 0 (1.264)

Green’s first identity, Eq. (1.213),∫
V

[
ψ∇2φ+∇ψ ·∇φ

]
dV =

∮
S

ψ n ·∇φ dS (1.265)

with ψ = φ = P reduces to∫
V

u3 · u3 dV =

∮
S

P n · u3 dS (1.266)

If the normal component of the two solution vector is specified equal on the
boundary, then n · u3 = 0 on S and hence∫

V

u3 · u3 dV = 0 (1.267)

Since u3 · u3 is always greater than or equal to zero, the only possible solution
is

u3 = 0 (1.268)
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When the boundary condition uniquely defines the normal component of the
vector, Eq. (1.249) represents a unique representation of an arbitrary vector and
no information need be given about the tangential component of the vector.

1.8.8 Classification of vector fields

We have noted two distinct types of vector field; ‘solenoidal’ and ‘irrotational’.
Apart from these types, several other types of fields have been named. 22

Figure 1.9 Classification of vector fields. From Aris (1962), p. 64.

(1) Laplacian: A field which is both solenoidal and irrotational is called Lapla-
cian. It is the gradient of a potential function. The potential function is
taken to be either scalar or vectorial.

(2) Complex lamellar: The condition for a field to be ‘complex lamellar’ is
a · (∇ × a) = 0. This field is orthogonal to its curl if ∇ × a 6= 0. The

22See Aris, R. (1962), Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice Hall, p. 64.
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name ‘lamellar’ is also applied to an irrotational vector field ∇ × a = 0.
The ‘lamellar’ is therefore a special case of the ‘complex lamellar’.

(3) Beltrami: The field is parallel to its curl, i.e, a× (∇×a) = 0. As a special
case, if its curl is proportional to the original vector a with a contant (i.e.,
∇× a = k a, ∇k = 0), it is called ‘Trkalian’.

The relations between these types are shown in a schematic diagram (Figure 1.9
). If a field is both a complex lamellar and Beltrami field, it is irrotational if
a 6= 0.

1.9 Improper Integrals

1.9.1 Examples

Most of integrals involved in physics are well defined as a limit of a Rieman
sum for which integrand and range of integration are well behaved. 23 Several
types of integrals occur in hydrodynamic problems that involve quantities that
tend to infinity. Some of these integrals have meaning in the classical mathe-
matical sense that the integral is to be interpreted as a limit process, but a some
additional insight is also required. Two general types of integrals are of concern:

(1) those with a range of integration that tends to infinity and

(2) those that have integrands that are singular at points within the range of
integration.

As an example of the second type of improper integral, suppose f(x) has singu-
larities at the start of the range and at an intermediate point x0 within the range
of integration, then the definition of the improper integral of f(x) is∫ b

a

f(x) dx = lim
a1,b1,c1→0

[∫ x0−b1

a+a1

f(x) dx+

∫ b

x0+c1

f(x) dx

]
(1.269)

23See, e.g., Kaplan, W. (1952), Advanced Calculus, Addison-Wesley.
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if it exist.

Such an interpretation of the integral does not always exist. The improper

integral
∫ ∞

1

dx

x
has an infinite range of integration but no singularities in the

integrand over the range of integration. It is to be interpreted as

lim
R→∞

[∫ R

1

dx

x

]
= lim

R→∞
[ln(R)]→∞ (1.270)

and thus does not produce a finite value. Hence the integral is both improper and
unbounded, even the integrand is well behaved over the range of integration.

Meanwhile, the integrand of
∫ 1

0

dx√
x

is singular at x = 0. Hence we inter-

pret it as

lim
ε→0

∫ 1

ε

dx√
x

= lim
ε→0

[
2−
√
ε
]

= 2, (1.271)

and hence it exists by construction. We say the integral is convergent improper.

1.9.2 Principal value integrals

There are a class of improper integrals that are fundamental to investigations of
the flow about bodies. These are Principal Value Integrals and are defined with
some aspect of symmetry relative to the infinities involved. For integrals with
infinite limits this may be

(P.V.)

∫ ∞
−∞

f(x) dx ≡
∫ ∞
−∞

f(x) dx = lim
R→∞

∫ R

−R
f(x) dx (1.272)

and for integrals with integrands that are singular at points within the range of
integration, say at the point x0 such that lim

x→x0
f(x)→∞,

(P.V.)

∫ b

a

f(x) dx ≡
∫ b

a

f(x) dx = lim
ε→0

[∫ x0−ε

a

f(x) dx+

∫ b

x0+ε

f(x) dx

]
(1.273)

Some integrals have both an infinite range of integration and singularities in
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the integrand at some points. They may exist in the principal-value sense by
cancelling the positive and negative values around the singularities.

A specific form of an improper integral, with a well-behaved numerator and
specific singular denominator, called a Cauchy Principal Value Integral is de-
fined in the same manner. In application, we will arrive at such integrals when
a form of the general solution for the flow about a body(obtained with sources,
sinks, dipoles or vortices distributed over the body surface) is derived for the
case that a field point approaches the body surface. However we will treat the
limiting process in such a way that not only is the Cauchy Principal Value Inte-
gral obtained but a local contribution from the excluded region is defined.

In the previous section, we have already treated two cases for which an im-
proper integral was evaluated for the representation of scalar and vector field
values in terms of surface and volume integrals. For the case with a singular
point in the field, a small sphere around the point excluded it from the field.
The sphere had constant radius so the integral is a principal-value one with the
symmetry appropriate for such integrals. Such an approach is similar to the
classical mathematical one in the sense that we saw the integrand had a singular
point after we selected the specific form of the function(i.e., Green function sat-
isfying∇2G(x, y) = δ(x− y)) 24 to put into an identity and we found a way to
define a finite value for the expression obtained. It is, however, worthy to note
that exclusion of the singular point for the scalar function φ(y) as a principal
value in the previous section is not required in potential flow theory. The exclu-
sion need be only as defined for an improper integral. In our later treatment of
the values as a field point tends to a surface point, we will find some integrals
are principal-value ones and some are simply improper.

24The function is of a form 1/r, which can be also obtained by taking Fourier transform of this equation.
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2.1 Introduction

In this chapter, basic concepts and analysis for fluid flow are listed below and
will not be presented in detail. Detailed and fundamental explanation can be
found in some hydrodynamics texts.

2.1.1 Basic definitions

While solid can be in stable equilibrium under shear stress oblique to the surface
separating any two parts, fluid cannot be in stationary equilibrium. 1 Resistance
to rate of shear deformation from viscosity gives rise to drag for bodies. We can
easily recognize that such shear stresses do exist in fluids: e.g., consider how
the fluid in a rotating circular vessel takes on the rotating motion of the vessel
eventually.
Other observed properties of fluids are:

(1) resistance to volumetric compression and tension in general,

(2) no shape or preferred orientation,
1For detailed information on difference and similarity among various fields in continuum mechanics and their

historical background, see the article: 이승준 (1992), “재료역학과고체역학: 유체역학자의관점에서”, 대한
조선학회지,제29권,제3호.
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Figure 2.1 Behavior of a solid and a fluid, under the action of constant shear force. (left)
solid; (right) fluid. From Fox et al. (2004).

(3) homogeneous matter in general, and

(4) has mass.

There are two kinds of fluids depending on bulk elasticity(compressibility): 2

(1) liquid forms a free surface(density ρ ≈ 0 above free surface), and

(2) gas expands to fill container.

With the principal types of fluid flow and their associated phenomena, it
is possible to make up practically any flow combination in nature, even the
complex system around a moving ship: potential flow pattern, viscosity of fluid,
turbulent flow, separation of flow, cavitation, wave making, vortex motion and
flow-induced sound.

Such flow phenomena can be characterized by several principal effects which
constitute the basis for important relationships in the form of non-dimensional
numbers: velocity effects, acceleration effects, force effects, inertia effects,
gravity effects, viscosity, elastic effects, surface tension effects.

2.1.2 Assumptions and axioms

We assume that the fluid is continuous and homogeneous in structure. Actually
this is not so since matter is ultimately made up of molecules and atoms, but in

2On the mechanism of formation of liquid and vapor, see Brennen, C. (1995), Cavitation and Bubble Dynamics,
Oxford University Press, pp. 1–6.
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many applications the dimensions we are concerned with are large compared to
the molecular structure, and the smallest sample of fluid that concerns us con-
tains a very great number of molecules(i.e., number of about 2.687 × 107/µ3).
In such cases, the properties of any sample are the average values over many
molecules, and the approximation of a continuum is found to be acceptable and
useful.

Nevertheless, results obtained on the assumption of a continuum may be
erroneous whenever the molecular structure dimensions are relatively large. For
example, at very high altitudes (low pressures), the molecular spacing is so great
that air is not even approximately a continuum in its contact with a body the size
of an airplane wing. Failures of the continuum assumption occur probably in the
cases of that body size compares with molecular dimensions (e.g., a very small
body in a fluid) or with distances between molecules (e.g., a body in a rarefied
gas).

Other acceptable and useful assumptions are those as follows:

(1) that physical laws are independent of the coordinate system used to express
them (frame indifference).

(2) that natural laws are independent of the dimensions of physical quantities
that occur in the expressions (dimensional homogeneity),

(3) that derivations of physical quantities with respect to space and time exist
to the required order (smoothness of quantities), and

(4) that the present motion is a function of its history and not the future (mem-
ory of history).

Newton’s laws of motion are derived from rigid body mechanics. Our use
of these laws are based on continuum hypothesis. We postulate that mass, mo-
mentum and energy are conserved: Conservation of mass, Conservation of mo-
mentum, Conservation of energy. Since these notes tend to deal mostly with
incompressible flows, we do not examine the conservation of energy.
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2.1.3 Description of fluid motion

Although one of our assumption on a fluid is that it is a continuum and does
not consist of discrete particles, we introduce the term “fluid particles,” such
as, “velocity of a particle,” etc, to identify simply an infinitesimal portion or
sample of the fluid by mathematically tagging it. There are two common ways
of representing equations to describe a fluid flow.

2.1.3.1 Lagrangian description

We may take the tag to be the initial position, denoted by ξ(a, b, c). Let a, b, c
denote the coordinates of any fluid particle at the time t = 0. Let x, y, z denote
the coordinates of the same particle at time t. Then the flow geometry is com-
pletely specified if we know x = x(a, b, c, t), y = y(a, b, c, t), z = z(a, b, c, t).
These give the trajectories of various particles.

The pathline of a particle is the curve x = x(ξ, t), where x is the position
vector. The velocity is q(a, b, c, t) = ∂x/∂t and the acceleration is ∂q/∂t =

∂2x/∂t2. Any other physical quantities would be given by a function, say,
f = f(a, b, c, t). This description is called Lagrangian, material, or convective
description of motion.

2.1.3.2 Eulerian description

Instead of following individual particles as above, in Eulerian description we
fix our attention on a point in space, x, y, z. Consider any property of the fluid,
for example, the density ρ, and calculate its differential:

ρ = ρ(x, y, z, t) (2.1)

dρ =
∂ρ

∂x
dx+

∂ρ

∂y
dy +

∂ρ

∂z
dz +

∂ρ

∂t
dt = d` · ∇ρ+

∂ρ

∂t
dt (2.2)

For any given particle as it moves along, dx, dy, dz are not independent; in fact,
dx = u dt, dy = v dt, and dz = w dt, i.e., d` = q dt, where q(x, y, z, t) is the
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velocity. Thus, the rate of change of the density of a particle is

dρ

dt
=
∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
=
∂ρ

∂t
+ q · ∇ρ (2.3)

2.1.4 Particle tracing lines

In the previous subsection, the material and spatial descriptions of the flow were
described. Below we list some additional prerequisites.

(1) Local derivative
The time rate of change of a flow quantity at a fixed point x is given by

∂

∂t

∣∣∣∣
x=const

(2.4)

The flow is then called steady if the first term vanishes, that is, it does not
vary with time.

(2) Material derivative

We use the symbol
D

Dt
for this type of derivative, sometimes called the

“convective or material derivative”:

D

Dt
≡ ∂

∂t
+ q · ∇ (2.5)

The time rate of change of a flow quantity following a particle is given by

∂

∂t

∣∣∣∣
ξ=const

≡ D

Dt
(2.6)

The velocity of a particle is the material derivative of the position vector
of the particle:

q∗(ξ, t) =
∂x

∂t

∣∣∣∣
ξ

=
Dx

Dt
= q(x, t) (2.7)

This can be applied to any fluid property including vector properties. The
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acceleration of a particle, for example, is

Dq

Dt
≡
∂q

∂t
+ q · ∇q (2.8)

A similar description for the evolution of the material line element 3 is

D(dξ)

Dt
= dq = dxj

∂q

∂xj
= dx · ∇q. (2.9)

If F (x, t) is some property of the flow field, then

∂F

∂t

∣∣∣∣
ξ

=
∂F

∂t

∣∣∣∣
x

+ q · ∇F (2.10)

(3) Streamlines
A streamline is defined as a line everywhere parallel to velocity q. Namely,
the tangent of the streamline at each point is parallel to the fluid velocity
at that point. We can produce a streamline by taking a short time exposure
picture of a flow for which numerous particles have been tagged. We try
to trace out curves on the photograph such that each curve is tangent to the
velocity vector at a point.

Let the fluid velocity be denoted by the vector q; then q = q(x, y, z, t) =

(u, v, w). Differential equations for streamlines are

dx

u
=
dy

v
=
dz

w
. (2.11)

If x(σ) (σ parameter) describes the position vector of a streamline, then
dx

dσ
is tangent to a streamline and parallel to the velocity at x(σ). Hence

we can express the differential equation for streamlines in terms of the
parameter σ:

dx

dσ
× q(x(σ), t) = 0, or

dx

dσ
∝ q(x(σ), t) (2.12)

3A material line is a line composed of the same fluid particles in a moving fluid. Similarly a material surface
and a material volume are, respectively, a surface and a volume composed of the same particles. A material surface
may be a bounding surface and every impenetrable bounding surface must be a materialsurface.
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(4) Streaklines
At time t, a streakline through a fixed point y is the curve traced out by
particles each of which have gone through y since time t0 < t. (Typically
t0 = 0.) Physically we construct a streakline by making (or tagging) all
particles that pass a point, e.g., by continuously emitting dye at that point.
The dye trail marks the streakline.

A particle is on the streakline at time of observation t if it had been at y at
time s where s lies in the inteval t0 ≤ s ≤ t. The material coordinates fo
the particle that went through y at s are ξ = ξ(y, t). At time t, the particle
is at the spatial position

x = x
(
ξ(y, s), t

)
(2.13)

where y and t are to be assigned and s varies from t0 to t to trace out the
streakline.

For steady flows, a pathline, a streamline and a streakline coincide.

2.1.4.1 Example of particle tracing lines

(1) Velocity field
The concepts of various flow lines may be illustrated by the 2-D case for
which the particle velocity is considered to be

q∗(ξ, t) = ξ1 i+ ξ2 e
t j (2.14)

This means that at the initial time t0 = 0 the particle velocity is equal to
the position vector: q∗(ξ, 0) = ξ, and as time proceeds from t = 0, the
horizontal component of the velocity remains unchanged but the vertical
velocity component grows exponentially with time.

(2) Pathlines
The pathline of the particle that was initially at ξ is the curve

x = ξ +

∫ t

0

q∗(ξ, t) dt = ξ1(1 + t) i+ ξ2 e
t j (2.15)
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Spatial coordinates and material coordinates can be related:

x1 = ξ1 (1 + t), x2 = ξ2 e
t (2.16)

This is the parametric representation of the pathline. Eliminate the param-
eter t from the equation to find the pathline in the (x1, x2) plane:

x2 = ξ2 e
(x1/ξ1−1) (2.17)

The inverse of the pathline is the relation obtained by solving for ξ(x, t)

ξ =
x1

(1 + t)
i+

x2

et
j (2.18)

With the inverse of the pathlines known, the spatial description of the ve-
locity vector can be constructed:

q(x, t) = q∗(ξ(x, t), t)

=
x1

(1 + t)
i+

x2

et
et j

=
x1

(1 + t)
i+ x2 j (2.19)

If the spatial description of the velocity vector were given, the differential
equation of the particle pathline would be

∂x
(
ξ, t
)

∂t
= q

(
x(ξ, t), t

)
(2.20)

and, if solved, would give the same expressions as above.

(3) Streamlines
We can also use the spatial description of the velocity field to the find the
position vector of a streamline, x(σ, t):

∂x

∂σ

∣∣∣∣
t

= q (x(σ), t))

=
x1(σ)

(1 + t)
i+ x2(σ) j (2.21)
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From which we obtain

x1(σ) = c1 e
σ

(1+t) (2.22)

x2 = c2 e
σ (2.23)

If we eliminate the parameter σ from these two equations, then in the
(x1, x2) plane the streamlines are the curves:

x2 = c2 (x1/c1)
(1+t) (2.24)

Note that x2 = k x1 at t = 0.

(4) Streaklines
The streaklines are determined by finding the material coordinates of a
particle that was a spatial position y at some time s. We use the inverse
relations for the pathline to define the relationship:

ξ =
y1

(1 + s)
i+

y2

es
j (2.25)

Hence the streakline is

x(s) =
y1

(1 + s)
(1 + t) i+

y2

es
et j (2.26)

At s = t, these relations give x = y, so that is the location of the particle
just passing through the spatial point y. At s = 0, the particle that was
previously at y for t = 0 is to be found. To find the streakline definition
for any time, we solve the i component for the relationship between s and
the other variables:

s =

(
y1

x1

)
(1 + t)− 1 (2.27)

and from the second equation:

x2 = y2 e
t−(1+t)(y1/x1)+1 (2.28)

Thus for any particular time t this equation gives the equation of the streak-
line through the point y.
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Typical flow patterns are illustrated in Figure 2.2 .

Figure 2.2 Example of various flow lines. (a) streamlines at t = 0 and t > 0; (b) path lines;
(c) streakline. From Aris (1962), p. 82.

2.2 Kinematics

2.2.1 Continuity

Consider an arbitrary volume V (t) enclosed in a material surface S(t). A ma-
terial surface is always composed of the same fluid particles. As the volume
moves through space it experiences deformation although the mass within the
volume remains constant. The mass enclosed within V (t) is given by, in an
integral form for density ρ, ∫

V (t)

ρ dV (2.29)

where the integration is over the region of space occupied by V at time t. Since
the mass of the material volume is constant, the time derivation of this expres-
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sion is zero:
d

dt

∫
V (t)

ρ dV = 0 (2.30)

Using the (Reynolds) transport theorem, one obtains∫
V (t)

[
∂ρ

∂t
+∇ · (ρ q)

]
dV = 0. (2.31)

This is the integral form of the continuity equation. Since the volume taken is
arbitrary, the integrand must be zero at all points within V :

∂ρ

∂t
+∇ · (ρ q) = 0. (2.32)

This is the spatial or Eulerian description of the continuity equation. The above
derivation of the continuity equation was from the system analysis point of view
for which the mass within a deformable bounding surface is constant. Mean-
while, it is common to also use control volume analysis, for which one consider
an arbitrary fixed volume V enclosed in a surface S. Let n be the outward unit

normal vector. The mass of fluid in V is
∫
V

ρ dV = m, say. If m increases it

means that fluid has entered through S:

dm

dt
= −

∫
S

ρ n · q dS (2.33)

and by the “divergence theorem”, this surface integral is equal to

−
∫
V

∇ · (ρ q) dV, (2.34)

V being a fixed volume, we can write

dm

dt
=

∫
V

∂ρ

∂t
dV (2.35)

Hence, for arbitrary choice of V , we have∫
V

∂ρ

∂t
dV = −

∫
V

∇ · (ρ q) dV. (2.36)
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The only way that these integrals can be equal for any and every choice of
V is that their integrands be equal; thus we obtain the General Equation of
Continuity:

∂ρ

∂t
+∇ · (ρ q) = 0 (2.37)

Noting that ∇ · (ρ q) = q · ∇ρ+ ρ∇ · q, this equation can be expressed, in an
alternative form, as

Dρ

Dt
+ ρ∇ · q = 0 (2.38)

There are two important special cases:

(1) Steady motion
Since, for steady motion, all partial derivatives ∂( )/∂t vanish, Eq. (2.37)
becomes

∇ · (ρ q) = 0 (2.39)

(2) Incompressible flow
If the density of every particle is constant, Dρ/Dt = 0, and Eq. (2.38)
gives us

∇ · q = 0 (2.40)

Vector fields with this property are called solenoidal. Most of our work
will deal with incompressible fluid. It is to be noted that this is correct
whether the fluid is steady or not, and moreover it applies to the case of an
inhomogeneous fluid, such as a stratified liquid, in which ρ varies through-
out the fluid, provided each particle is incompressible.

2.2.2 Vorticity, circulation, and velocity potential

2.2.2.1 Vorticity

The vector function ∇ × q, where q(x, y, z, t) is the velocity of the fluid, is
called the vorticity. Its components are occasionally represented by the symbols
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ξ, η, ζ; namely, in rectangular Cartesian coordinates

ξ =
∂w

∂y
− ∂v

∂z
, η =

∂u

∂z
− ∂w

∂x
, ζ =

∂v

∂x
− ∂u

∂y
(2.41)

To give a physical feature of the meaning of vorticity, it is often said that∇×q is
twice the angular-velocity vector of the fluid particle. Since the particle is being
deformed continually, perhaps we should say the average angular velocity at a
point.

2.2.2.2 Vortex line and vortex tube

A vortex line is a curve which is tangent at each point to the vorticity at the
point. It is analogous to the stream line. Its differential equation is dx/ξ =

dy/η = dz/ζ where the Cartesian component of ω are ξ, η, ζ .

Since the divergence of any curl of a vector must be zero, a continuity equa-
tion ∇ · ω for ω must be invoked especially in the case that the vorticity field
is itself to be sought with independence of the velocity field. The condition
∇·ω = 0 can be thought of as meaning that vortex lines do not begin nor end in
the fluid. We call a tube whose walls are made up of vortex lines a vortex tube.
(The analogous tube made up of streamlines would be called a stream tube.)

2.2.2.3 Circulation and vorticity flux

We classify flows as irrotational and rotational, depending on whether ∇ × q

is or is not everywhere zero. The irrotational type will be found to be rather
common, for sound physical reasons, and will occupy a considerable portion of
our time.

The line integral

Γ =

∮
C

q · d` (2.42)

where q is the fluid velocity, taken about any closed curve C in space, is called
the circulation about the contour C.
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By Stokes theorem, it is clear that the circulation and vorticity are related,
for

Γ =

∮
C

q · d` =

∫
S

n · (∇× q) dS =

∫
S

n · ω dS (2.43)

The transformation is only permissible, of course, when q is finite and has con-
tinuous partial derivatives at each point of S; we may encounter some cases
where certain singularities have to be excluded from such processes.

Obviously, if the flow is wholly irrotational, Γ will be zero for every contour.
In any case, Γ is zero if C encloses only irrotational portions of the flow.

2.2.2.4 Vortex strength

Again consider the application of Stokes theorem to a cross-section of the vortex
tube: ∫

Σ

n · ω dS = Γ = constant along tube (2.44)

Thus the average vorticity in the cross-section varies inversely as the cross-
sectional area. The vorticity becomes very small if the tube spreads out. This
is the result of viscosity, for example; the vorticity is dissipated over a wide
region.

Suppose, on the other hand, that the tube is necked down; this makes the
vorticity large. In the extreme case, we imagine that the tube is contracted to a
line. Then the vorticity at this line becomes infinite, but the circulation is still
the same, Γ. This is called a vortex filament, or briefly a “vortex”, and Γ is its
strength.

It is a kind of mathematical approximation to the case where all the vorticity
is confined to a tube of relatively small cross-section, as often occurs in nature –
for example in a tornado. Outside the core of a tornado, the air is in practically
irrotational motion.

The irrotational concentric flow represents the case of a long, straight vortex
filament; the singularity at the center is the filament, and there the vorticity is
infinite, as predicted. Clearly, a vortex tube or filament, consisting of vortex



86 BASIS OF FLUID FLOWS

lines, cannot begin nor end in the fluid. It can double back on itself in a ring or
terminate at a boundary of the fluid.

2.2.2.5 Velocity potential

In regions where the flow is irrotational, the line integral around an entire closed
path is the circulation and is zero because the flow is irrotational. This implies

that the open line integral
∫
q · d` is independent of the path within the regions,

but only dependent of the end points of the path. Therefore, choosing A as a
fixed point and B as a varying point,∫ B(x,y,z)

A

q · d` = φ(x, y, z), (2.45)

and
dφ = q · d` (2.46)

Now we see that dφ = d` · ∇φ from Eq. (1.61) and hence d` · ∇φ = q · d`
for arbitrary choice of d`. This means that

q = ∇φ (2.47)

By retracing these steps you will see immediately that this result has nothing
to do with the physical meaning of q. That is, the result Eq. (2.47) will follow for
every vector function q whose curl is zero. Moreover, the condition ∇× q = 0

is necessary, as well as sufficient, for the result q = ∇φ, because the curl of
every gradient is identically zero.

In the case considered here, where q(x, t) is the fluid velocity, φ(x, t) is
called the velocity potential. The surfaces φ = constant are called equipotential
surface; thus q is the vector perpendicular to these surfaces at every point, and its
magnitude is that of derivative ∂φ/∂n in the normal direction. These statements
are verified by using the relation dφ = d` · ∇φ.
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2.2.3 Helmholtz decomposition of a velocity field

The Helmholtz decomposition theorem states that an arbitrary continuously dif-
ferentiable velocity field can be represented as a combination of solenoidal and
irrotational velocity field. 4 Thus for any finite continous velocity field which
vanishes at infinity we may find a scalar function (velocity potential) φ and a
vector potential function (vector stream function) A such that

q = ∇φ+∇× A (2.48)

To prove this decomposition, we first need the solution of Possion’s equation

∇2φ = f(x) (2.49)

where f(x) = ∇ · q. We can consider an unsteady velocity field, if necessary,
just by adding the time variable.
The solution is provided by the integral 5

φ(x) = − 1

4π

∫
V

f(ξ)

r
dVξ (2.50)

where r = |x − ξ| is the distance from the volumetric element dVξ to the point
x, y, z. The integration is carried throughout the entire fluid. If f is only defined
in a certain region, we may set it equal to zero outside, and if it is defined
everywhere we require that it should tend to zero towards infinity.

Now let us return the Helmholtz decomposition form. We have started with
the equation ∇ · q = ∇2φ by taking the divegence of the orginal decomposion
form, and have derived the solution given by, again,

φ(x) = − 1

4π

∫
V

∇ · q
r

dVξ (2.51)

Consequently, q−∇φ is a solenoidal since∇· (q−∇φ) = 0 from∇·q = ∇2φ.

4See Aris, R. (1962), Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice Hall, p. 70.
5See Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge.
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Hence we can construct a vector potential function A such that

q −∇φ = ∇× A (2.52)

which reaches to the Helmholtz decomposition form. In the next subsection, we
will deal with the vector potential A.

Proof of Eq. (2.50)

Consider the gradient of φ with respect to x

∇xφ = +
1

4π

∫
V

f(ξ)

r3
(x− ξ) dVξ (2.53)

Now take integral of ∇2φ, where φ is given by Eq. (2.50), over an arbitrary
volume V enclosed in a closed surface S, and use the divergence theorem:∫

V

∇2φ dVx =

∮
S

n · ∇φ dSx

=

∮
S

n ·
{

1

4π

∫
V

f(ξ)

r3
(x− ξ) dVξ

}
dSx

=

∫
V

f(ξ) dVξ

∮
S

n · (x− ξ)
4πr3

dSx (2.54)

Here we have changed the order of integration, since f(ξ) is the value at the ele-

ment dVξ and is therefore independent of the integration over S. Since
(x− ξ)

r

is a unit vector,
n · (x− ξ) dS

r3
is just the solid angle subtended at the point ξ by

the surface element at the integration point x. (See Figure 2.3 .)

Now if ξ is outside of the volumetric region V , the integral of this solid
angle is zero because the contribution from the surface element at x is equal
and opposite to one from the surface element that is projected extensively on
the opposite side of the closed surface. However if ξ is inside of the volumetric
region V , then the integral is the total solid angle for the closed surface which
is equal to 4π.



2.2 Kinematics 89

Figure 2.3 Integration region for Poisson’s solution of vector fields. From Aris (1962), p. 70.

It follows that∮
S

n · (x− ξ)
4πr3

dSx =

{
1 if ξ is inside V

0 if ξ is ouside V
(2.55)

Thus the last integral over the whole space of ξ has zero integrand outside of V
and so may be regarded as the ontegral over V only. Then∫

V

∇2φ dVx =

∫
V

f(x) dVx (2.56)

Since the volume V was arbitrary, this equation reduces to the Poisson’s equa-
tion ( Eq. (2.49)), and Eq. (2.50) gives its solution.

���

2.2.4 Velocity field of a vortex: Biot-Savart integral

In order to determine the velocity field of a vortex in an incompressible fluid,
we begin with a more general case of rotational flow and later specialize for
a vortex filament. Consider incompressible rotational flow in general. The ve-
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locity potential does not exist, but, as will be seen later, it may be possible to
determine a vector-potential function A(x, y, z, t), such that

q = ∇× A (2.57)

This form has the advantage of satisfying the incompressible equation of conti-
nuity identically, for the divergence of every curl is zero. Thus A is related to a
stream function.

Now we shall try to determine A(x, y, z, t) for any given distribution of vor-
ticity ω(x, y, z, t), for then we shall have q(x, y, z, t) in terms of the vorticity—a
sort of inverse of the relation ω = ∇×q. The relation between ω andA is, using
Eq. (1.72)

ω = ∇× (∇× A) = ∇(∇ · A)−∇2A (2.58)

This is a differential equation for A, for given ω, and our aim is to obtain a
particular integral. We can now assume that ∇ · A = 0; this does not sacrifice
any generality, for we are trying to calculate A for given ω. If we can succeed
in calculating it with this restriction, the problem will be solved. However, we
shall have to check our result to verify that the divergence vanishes. With this
assumption,

ω = −∇2A (2.59)

Now Eq. (2.59) is Poisson’s equation, and its solution is 6

A(x, y, z, t) =
1

4π

∫
V

ω

r
dV (2.60)

where r = |x − ξ| is the distance from the element dV to the point x, y, z, and
the integration is carried throughout the entire fluid.

Consequently, the velocity induced by the vorticity distribution is given by

q(x, t) = ∇× A =
1

4π

∫
V

ω ×
(x− ξ)
|x− ξ|3

dV (2.61)

where the integration variable is ξ.
6See Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge.
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Equation (2.61) is called the Biot-Savart integral, by analogy with the ex-
pression for the magnetic flux due to a conductor carrying a current. This anal-
ogy also leads to the name ‘induced velocity’ for q.

To illustrate the use of this result Eq. (2.60), let us calculate the velocity in the
field of a vortex filament. That is, let us assume that the vorticity is concentrated
in a tube of very small cross-sectional area δS and circulation Γ = ω δS. Then

A =
1

4π

∫
C

ω

r
δS d` =

1

4π

∫
C

Γ e`
r
d` =

Γ

4π

∫
C

d`

r
(2.62)

where d` is an element of length along the filament, e` is a unit vector in the
direction of the filament, and d` denotes e`d`. The velocity at P (x, y, z), due to
the particular element d` is

dq =
Γ

4π
∇×

(
d`

r

)
=

Γ

4π
∇
(

1

r

)
× d` = − Γ

4π

r × d`
r3

(2.63)

In other words, the velocity due to the filament d` is directed normal to the plane
of d` and r, and its magnitude is

dq =
Γ

4πr2
sin θ d` (2.64)

where θ is defined by the angle between d` and r.

Proof of Eq. (2.60)

Consider the integral of ∇2A, where A is given by Eq. (2.60), through an arbi-
trary volume V enclosed in a surface S:∫

V

∇2AdV =

∮
S

n · ∇AdS =

∮
S

n · ∇
(

1

4π

∫
V

ω

r
dV

)
dS (2.65)

Since ω is the value at the element dV and is therefore independent of the inte-
gration over S, the contribution of the element dV to this integral is

1

4π
ω dV

∮
S

n · ∇
(

1

r

)
dS = − 1

4π
ω dV

∮
S

n · r
r3

dS (2.66)
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The last integral is either zero or 4π, depending on whether dV is inside or
outside S, according to the divergence theorem. Thus the contribution of dV is
zero if dV is outside V and is −ω dV if dV is within V . Consequently, when
the integration is taken throughout the fluid, the result is∫

V

∇2AdV = −
∫
V

ω dV (2.67)

and since V is arbitrary, the integrands must be equal.
���

Proof of divergence-free∇ · A = 0

Next, we must prove that Eq. (2.60) is divergence-free ∇ · A = 0. Equa-
tion (2.60) makesA a solution of Eq. (2.59), but not a solution of the differential
equation we are trying to solve, Eq. (2.58), unless ∇ · A is zero, as has already
been mentioned. Therefore take the divergence of Eq. (2.60):

∇ · A =
1

4π

∫
V

ω · ∇
(

1

r

)
dV (2.68)

But, using an obvious notation, r =
√

(x− ξ)2 + (y − η)2 + (z − ζ)2 and

∇x

(
1

r

)
= −∇ξ

(
1

r

)
, where ∇x denotes i

∂

∂x
+ · · · etc. and ∇ξ denotes

i
∂

∂ξ
+ · · · etc. Moreover,

ω · ∇ξ

(
1

r

)
= ∇ξ ·

(ω
r

)
− 1

r
∇ξ · ω = ∇ξ ·

(ω
r

)
(2.69)

Thus, the integral in Eq. (2.68) can be changed to a surface integral of n·ω/r, by
the divergence theorem, and the surface integrated over is the surface enclosing
all the areas of rotational flow. But this will be the outer walls of vortex tubes,
and on these n · ω = 0. Hence the divergence is zero as required. 7

���
7See Lamb, H. (1932), Hydrodynamics, Sixth Ed., Dover.
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2.3 Dynamics

2.3.1 Forces

Two types of net forces act in flow problems: (1) body forces and (2) surface
forces.

2.3.1.1 Body forces

From external source the body force acts throughout volume from afar (e.g.,
gravity, magnetic attraction). It is convenient to define the net body force as

F b(t) =

∫
V

F B(x, t) dV (2.70)

where F B(x, t) is the body force per unit volume acting at a point x. For gravity
F B = −ρ g e3 where e3 is the unit vector directed along the upward vertical.
Often the body force is defined as the body force per unit mass:

F b(t) =

∫
V

ρ f(x, t) dV (2.71)

e.g., for gravity f(x, t) = −g e3. The torque due to the body force about the
spatial point x0 is

Q(t) =

∫
V

(x− x0)× F B(x, t) dV (2.72)

We will consider only conservative body forces, for which the body force is
derived from a scalar potential

F B(x, t) = −∇Ω(x, t) (2.73)

For the body force due to gravity, Ω = ρ g x3.
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2.3.1.2 Surface forces

Internal sources that cancel except at bounding surfaces that have no continu-
ation volume provide an equal but oppositely directed force. Surface force is
defined in terms of a stress distribution on the bounding surface

F S =

∮
S

τ(xs, t) dS (2.74)

where S bounds V , τ(xs, t) is the stress vector at a point xs on the surface S,
with three components. The torque about a field point x0 due to the surface
force is

Q(t) =

∮
S

(xs − x0)× τ(xs, t) dS (2.75)

2.3.1.3 Stress and stress tensor

The stress vector τ(xs, t) is associated with a normal vector to the surface upon
which it acts in the sense that if the stresses were in local equilibrium (i.e, no ac-
celeration or other surface forces act), the stress on the one side of a surface(the
side denoted by the normal) is equal and oppositely directed as that on the other
side (see Figure 2.4 ).

Figure 2.4 Stress vector at surface.

Let n be the normal pointing out of the volume(exterior normal), then −n
is pointing into the volume(the interior normal), and τ (n) = −τ (−n). This fact
leads one to an expressing for the local stress vector as the dot product of the
normal(so the equal and opposite property is satisfied) and a dyadic quantity
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called the stress tensor of 2nd order

τ = n · τ (2.76)

where τ is the stress tensor represented with 3 by 3 elements. 8 In three-
dimensional Euclidian space, we can write the stress tensor in the dyadic form

τ =
3∑
i=1

3∑
j=1

τij ei ej (2.77)

where ei and ej are unit base vectors and the scalars τij are the physical com-
ponents of the tensor. Our expression has been with Cartesian coordinates but
the same concepts apply to other curvilinear coordinate systems just as well,
and definition of the stress tensor components in a system compatible with the
geometry is desired.

A fluid is defined as a material that cannot be in stationary equilibrium with
applied shear stress. A Newtonian fluid has a resistance to shear deformation
that is linearly proportional to the rate of deformation(i.e., proportional to the
gradient of velocity), while an ideal(perfect) fluid has no resistance to shear
deformation. This linearity can be applied to elastic solids that follow Hooke’s
law.

Four motions of a fluid particle element are possible: (i) translation, (ii) ro-
tation, (iii) volumetric change, and (iv) squeeze motion. Among them, (iii) and
(iv) cause stress in a fluid, while (i) and (ii) represent only rigid body motion
for which there will be no stress developed. If there were no deformation(also
including rigid body motion), then only a static pressure acts normal to the sur-
face of the volume of interest. The stress vector is simply τ = −p n. Thus the
stress tensor T = −p I = −p δij. The pressure diagram of a fluid is shown in
Figure 2.5 .

Combining the above statements leads one to, for a Newtonian fluid,

τ ≡ τij = −p I + µ
[
∇q + (∇q)T

]
(2.78)

8Tensors of second order are denoted by using the double under bar ·.
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Figure 2.5 Pressure diagram of a fluid.

Here, the proportionality constant µ is called the viscosity coefficient of the

Figure 2.6 Deformation of fluid element in 2-D flows. From Fox, McDonald & Pritchard
(2004)

fluid, and the second term is called the viscous stress tensor. The stress tensor
is symmetric, i.e., τij = τji, because otherwise there will be an unreasonable
motion with an infinite speed due to the resultant unbalanced forces acting on
an infinitesimal fluid element. Symmetry means that only 6 components are
independent (not fully 9). The diagonal terms consist of the divergence of the



2.3 Dynamics 97

velocity vector and (averaged) static pressures, and hence, for an incompress-
ible fluid, are associated with volumetric changes. The off-diagonal terms are
associated with the squeeze-like motion.

2.3.2 Example: Stress tensors for low Reynolds number flows

As an example of stress tensors, let us consider low-Reynolds number flow
(Stokes flow). 9

Figure 2.7 Notation for a spherical bubble in uniform flow.

2.3.2.1 Velocity field

The governing equations for such a fluid are, neglecting the inertia terms of the
Navier-Stokes equations,

∇ · u = 0 (2.79)

µ∇2u = ∇p (2.80)
9See, e.g., Brennen, C. E. (1995), Cavitation and Bubble Dynamics, Oxford University Press. and Ton Tran-

Cong and J.R. Blake (1984), “General solutions of the Stokes flow equations,” J. of Mathematical Analysis and
Applications, vol. 92, pp. 72–84.
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where u is the disturbed velocity about a sphere moving in x-axis direction in
otherwise fluid at rest. The second equation above physically implies that the
pressure gradient balances the viscous force.

The general solution to these equations is given in a form of

u = ∇(r ·B +Bo)− 2B (2.81)

p = 2µ (∇ ·B) (2.82)

where B and B0 should satisfy the following conditions, respectively,

∇2B = 0, ∇2Bo = 0 (2.83)

For Reynolds number values of O(1), the solution for the disturbed velocity field
is known to be, by setting Bx = −3UR/4r, Bo = UR3x/4r3, By = Bz = 0

where U is the moving speed and R is the radius of a sphere,

u =

(
3R

4r
+
R3

4r3

)
U i−

(
−3Rx

4r3
+

3R3x

4r5

)
Ur (2.84)

where x = r cos θ, i = er cos θ − eθ sin θ, r = r er (see Figure 2.7 ).

By introducing a moving frame fixed to the sphere, we can consider equiva-
lently a stream of viscous fluid flows at speedU slowly about a stationary sphere
of radius R. Then the relative velocity components for the moving coordinate
system are given by, i.e.,

q = −U i+ u (2.85)

or

qr = −U cos θ + 2

(
C

r3
+
D

r

)
cos θ (2.86)

qθ = U sin θ +

(
C

r3
− D

r

)
sin θ (2.87)

qα = 0 (2.88)

where C = −UR3/4 and D = +3UR/4.
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The vorticity is

ω = ω eα =

(
1

r

∂(r qθ)

∂r
− 1

r

∂qr
∂θ

)
eα =

3

2
UR

sin θ

r2
eα (2.89)

The pressure can be obtained from the momentum equation ∇p = µ∇2q,
i.e.,∇p = −µ∇× ω, using Eqs. (1.176) and (2.89)

∂p

∂r
= −3µUR cos θ

r3
,

1

r

∂p

∂θ
= −3µUR sin θ

2r3
, (2.90)

Integrating with respect to either r or θ, the solution for pressure is known to be

p = p0 +
3

2
µRU

cos θ

r2
(2.91)

where p0 is a reference pressure at infinity.

2.3.2.2 Stream function approach

Alternatively, we can obtain the same results by introducing the stream function.
In terms of spherical polar coordinates (r, θ, α) where α is the azimuth angle
about the axis θ = 0 (see Figure 2.7 ), the flow is of axi-symmetry and then the
continuity equation becomes

1

r2

∂

∂r
(r2qr) +

1

r

∂

∂θ
(qθ sin θ) = 0 (2.92)

Now, we define the stream function Ψ = (0, 0, ψ/r sin θ) to satisfy the continu-

ity equation automatically, such that q = ∇×Ψ = ∇×
(
ψ eα
r sin θ

)
, i.e.,

qr =
1

r2 sin θ

∂ψ

∂θ
, qθ = − 1

r sin θ

∂ψ

∂r
(2.93)

Now we get the equation for the vorticity ω and then for the stream function ψ
as follows:
Take the curl of Eq. (2.80) using the expansion formula∇× (∇× u) = ∇(∇ ·
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u)−∇2u, we have

∇× (∇× (∇× u)) = 0, i.e., ∇× (∇× ω) = 0 (2.94)

Consequently, it reduces to ∇2(∇2Ψ) = 0 where we have used the relation
∇2Ψ = −ω. Namely, this equation becomes a scalar equation for ψ{

∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)}2

ψ = 0 (2.95)

Taking the separation of variables for the resulting equation, the stream function
would be of a form

ψ = sin2 θ

(
C

r
+D r + E r2 + F r4

)
(2.96)

Applying the boundary conditions on the sphere surface (qr = qθ = 0) and at
infinity ( ψ∞ = −Ur2 sin2 θ/2), we obtain C = −UR3/4, D = +3UR/4,
E = −U/2, and F = 0. The first term and the third term represent the inviscid
flow past a sphere, while the second term corresponds to the viscous correction.

2.3.2.3 Stress tensor and drag

From these expressions, the stress tensor is related to rate of strain tensor in a
spherical coordinate system. Only 6 components are expressed as:

τrr = −p+ 2µ
∂qr
∂r

(2.97)

τrθ = µ

(
1

r

∂qr
∂θ

+
∂qθ
∂r
− qθ
r

)
(2.98)

τrα = µ

(
∂qα
∂r

+
1

r sin θ

∂qr
∂α
− qα

r

)
(2.99)
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τθθ = −p+ 2µ

(
1

r

∂qθ
∂θ

+
qr
r

)
(2.100)

τθα = µ

(
1

r

∂qα
∂θ
− qα

r
cot θ +

1

r sin θ

∂qθ
∂α

)
(2.101)

ταα = −p+ 2µ

(
1

r sin θ

∂qα
∂α

+
qr
r

+
qθ
r

cot θ

)
(2.102)

With the solution for the velocity field, the values of these components are eval-
uated on the surface of the sphere(i.e., on r = R):

τrr = τθθ = ταα = −p(R, θ) (2.103)

τrθ =
3U

2R
µ sin θ, τrα = τθα = 0 (2.104)

On the surface of the sphere, the normal vector n = er(pointing into the fluid
from the surface) is taken to find forces acting on the sphere by the fluid). Then,
the surface stresses become τ = τrr er + τrθ eθ where eθ = sin θ i + cos θ j.
The surface force is composed of two components due to the normal and the
tangential stress:

F
(n)
S =

∮
S

τrr er dS = 2πµUR i (2.105)

F
(t)
S =

∮
S

τrθ eθ dS = 4πµUR i (2.106)

Herein we have used the surface element dS = 2πR2 sin θ dθ for the actual
integrations. The total drag of the sphere becomes D = 6πµUR which corre-
sponds to the drag coefficient CD = D/(0.5 ρU2πR2) = 24/Re where Re is
the Reynolds number based on the sphere diameter and the speed of the onset
flow.

2.3.3 Surface tension

On an interface surface between two fluids (i.e., stratified fluids), the surface
tension should be included to satisfy the continuity of the stress across the in-
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Figure 2.8 Force diagram for a spherical bubble with surface tension.

terface:

n · (τ
i
− τ

o
) = σ

(
1

R1
+

1

R2

)
n (2.107)

where σ is called the surface tension(whose unit is given by force per length),
R1 and R2 are the principal radii of curvature of the interface, n is the normal
vector at the interface, and the subscripts i and o refer the two fluid sides of the
interface. (See Figure 2.8 ).

When the two fluids are stationary, only the pressure terms remain in the
above relation. From the force equilibrium in the normal direction for a small
element of interface,

(pi − po) (R14φ) (R24θ) = Fs14θ + Fs24φ (2.108)

where Fs1 = σ R14φ and Fs2 = σ R24θ. Then,

pi − po = σ

(
1

R1
+

1

R2

)
(2.109)
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As a special example, for a stationary spherical droplet(or bubble) of radius R,
pi − po = 2σ/R.

2.3.4 Equations of motion: Navier-Stokes equations

Newton’s second law states that the time rate of change of the linear momentum
is equal to the applied forces. This statement is also appropriate for continuum
matter. Hence for a moving volume V (t) bounded by a material surface S(t),
we have (for detailed derivations, refer to texts dealing with fluid mechanics.)

d

dt

∫
V

ρ q dV =

∫
V

F B dV +

∫
S

n · τ dS (2.110)

For incompressible Newtonian fluids, the corresponding differential form be-
comes the so-called Navier-Stokes equations:

ρ
Dq

Dt
= −∇p+ F B + µ∇2q (2.111)

Alternate forms of the non-linear convective and the viscous term of the
Navier-Stokes equations are listed in Gresho (1991). 10

(1) Alternate form of the convective term, q · ∇q

(a) Divergence form : ∇ · (q q) = q · ∇q + q (∇ · q)

(b) Advective/convective form : q · ∇q =
1

2
∇q2 − q × (∇× q)

(c) Rotational form : ω × q

(d) Skew-symmetric (transpose of a matrix equals minus the matrix):
1
2

[
∇ · (q q) + q · ∇q

]
= q · ∇q +

1

2
q(∇ · q)

(2) Alternate form of the viscous term,∇2q

(a) Stress-divergence form : ∇ ·
[
(∇q) + (∇q)T

]
= ∇2q +∇(∇ · q)

10Gresho, P. M. (1991), “Incompressible fluid dynamics: some fundamental formulation issues”, Annual Review
of Fluid Mechanics, vol. 23, pp. 413–453.



104 BASIS OF FLUID FLOWS

(b) Div-curl form : ∇2q = ∇(∇ · q)−∇× (∇× q)

(c) Curl form : −∇× (∇× q) = −∇× ω

2.3.5 Bernoulli equation

The equations of motion for inviscid fluids are called Euler’s equations, with
dropping the last term of Eq. (2.111). The term q · ∇q, which occurs in the
equations can be transformed by the vector expansion formula:

∇
(
q2
)

= ∇(q · q) = 2 q · ∇q + 2 q × (∇× q) (2.112)

Thus
q · ∇q =

1

2
∇
(
q2
)
− q × ω (2.113)

Eventually an alternate form of the Euler’s equation is

∂q

∂t
+ ω × q = −1

ρ
∇p+

1

ρ
F B −∇

(
q2

2

)
(2.114)

It is often assumed that the body force F B is derivable from a potential; that
is, that it is a conservative force, such as gravity. Then we can write F B =

−∇Ω, and the equations appear in

∂q

∂t
− q × ω = −∇

(
q2

2
+ Ω

)
− 1

ρ
∇p (2.115)

This is about as far as we can go with complete generality, but the equations
can be simplified still further if the fluid is barotropic; that is, if the density ρ
depends on the pressure p only: ρ = ρ(p). 11

Example of this state of affairs are compressible fluids flowing adiabatically
(p ∼ ρk) or isothermally (p ∼ ρ), or, of course, incompressible fluids (ρ =

constant). In these cases the term
1

ρ
∇p can also be expressed as the gradient of

11We call a fluid baroclinic if the density does not depend on the pressure.
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a function, for consider

d` · ∇p
ρ(p)

=
dp

ρ(p)
= d

∫
dp

ρ(p)
= d` · ∇

∫
dp

ρ(p)
(2.116)

Since d` is arbitrary,
∇p
ρ(p)

= ∇
∫

dp

ρ(p)
, and the Euler’s equations of motion are

reduced to
∂q

∂t
− q × ω = −∇

(
q2

2
+ Ω +

∫
dp

ρ

)
(2.117)

There are several important cases in which the Euler’s equations of motion
can be integrated directly.

(1) Irrotational barotropic flow
In this type of flow q is ∇φ. The left-hand side of Eq. (2.117) becomes

simply
∂

∂t
(∇φ), and since the time and space derivatives are independent

and can be exchanged in order, this is equal to∇
(
∂φ

∂t

)
. Thus

∇
(
∂φ

∂t
+
q2

2
+ Ω +

∫
dp

ρ

)
= 0 (2.118)

But when the gradient of a function is zero throughout a region, the func-
tion must certainly be constant throughout the region– or rather, since the
gradient involves space derivatives only, the function must be constant
throughout the region at any instant, but may vary with time. The inte-
grated form is therefore

∂φ

∂t
+
q2

2
+ Ω +

∫
dp

ρ
= C(t) (2.119)

Remember that the term
∫
dp

ρ
is just a function of ρ (or p) whose form is

known as soon as the particular barotropic law ρ = ρ(p) is specified. For
example, the simplest law is that of the incompressible fluid: ρ =constant.
Hence the integrated equation for incompressible, frictionless, irrotational,
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unsteady flow is
∂φ

∂t
+
q2

2
+ Ω +

p

ρ
= C(t) (2.120)

(2) Steady barotropic motion
For this case we need not assume irrotational flow, and therefore we return
to the original form of the Euler’s equation of motion, but again assume
ρ = ρ(p). The equations then read, for steady flow,

q · ∇q = −∇
(∫

dp

ρ
+ Ω

)
(2.121)

We shall now show that this can be integrated along individual streamlines;
that is, we shall obtain an integral that will tell how the quantities behave
along a streamline, but not how they change from streamline to stream-
line. Let an orthogonal curvilinear coordinate system be defined so that s
is measured along a streamline, and r and t normal to it. Then q = (q, 0, 0),

and q · ∇q =

(
q
∂q

∂s
, · · · , · · ·

)
(as may be verified by reference to the for-

mulas in general curvilinear orthogonal coordinates).

Let us substitute this into Eq. (2.121) and then multiply both sides by ·ds:

q
∂q

∂s
ds = − ∂

∂s

(∫
dp

ρ
+ Ω

)
ds (2.122)

and, integrating along the streamline

1

2
q2 +

∫
dp

ρ
+ Ω = Cs (2.123)

where Cs is the constant of integration, and we give it the subscript s to
emphasize that the constant may vary from streamline to streamline.

Since Eqs. (2.119) and (2.123) must yield the same result in cases of steady,
irrotational barotropic flow, we see that the irrotational assumption is equivalent
to taking the same constant, Cs, for all streamlines:

1

2
q2 +

∫
dp

ρ
+ Ω = constant (2.124)
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and finally if this is also incompressible,

1

2
ρ q2 + p+ ρΩ = constant (2.125)

This will be recognized as Bernoulli’s equation, which is an energy equa-
tion, although we obtained it by integration of momentum equations. In fact,
Eqs. (2.119), (2.120), and (2.121) are also sometimes called generalized forms
of Bernoulli’s equation.

2.3.6 Kelvin’s theorem

In any flow of a barotropic inviscid fluid, the circulation about any closed path
does not vary with time if the contour is imagined to move with the fluid, that is,
always to be made up of the same particles. 12 We give here a different proof,
which offered more generality. We begin by considering the contour integral

Γ =

∮
C

q · d` where q is any vector quantity and C (material contour) is carried

by the fluid. Now consider the time derivative of the circulation for a closed
curve following the motion:

dΓ

dt
=

d

dt

∮
C(t)

q(x, t) · s(x, t) d` (2.126)

where s(x, t) is the unit tangent vectors along the integration path of the con-
tour C. This differential is similar to the starting point in our derivation of the
Reynolds transport theorem in Chapter 1, but for a moving curve instead of a
moving volume. We make the same transformation from spatial (x) to initial

12See Lamb, H. (1932), Hydrodynamics, sixth ed., Dover.
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coordinates (ξ):

dΓ

dt
=

∮
C(0)

∂

∂t

[
q∗(ξ, t) ·

dx∗(ξ, t)

d`
d`

]
=

∮
C(0)

[
∂q∗

∂t

∣∣∣∣
ξ

· dx
∗

d`
+ q∗ · ∂

∂t

(
∂x∗(ξ, t)

∂ξj

dξj
d`

)]
d`

=

∮
C(0)

[
∂q∗

∂t

∣∣∣∣
ξ

· dx
∗

d`
+ q∗ ·

(
∂q∗(ξ, t)

∂ξj

dξj
d`

)]
d`

=

∮
C(t)

[
Dq

Dt
· s+ q ·

{
(s · ∇)q

}]
d`

=

∮
C(t)

[
Dq

Dt
· s+

∂

∂`

(
1

2
q2

)]
d`

=

∮
C(t)

Dq

Dt
· s d`

=

∮
C(t)

a · d` (2.127)

Now the total (material) derivative term is the LHS of the momentum equation
allowing us to put the RHS of the momentum equation into the integral:

dΓ

dt
=

∮
C(t)

(
−∇p
ρ

+
F B

ρ
+ ν∇2q

)
· d` (2.128)

For barotropic fluids and conservative body forces, the time rate of change of
the circulation reduces to an integral containing only viscous terms since the
integral of a gradient about a closed curve is zero:

dΓ

dt
= ν

∮
C(t)

∇2q · d` (2.129)

If the fluid is baroclinic, the circulation can be modified because of the baro-
clinic generation of vorticity as

dΓ

dt
= ν

∮
C(t)

∇2q · d`+

∫
S

1

ρ2
(∇ρ×∇p) · d` (2.130)
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where the surface integral on the right-hand side is performed over the area
bounded by material line. 13

Every flow that can be produced (without friction) in a barotropic fluid ini-
tially at rest, initially in a uniform stream, or initially in any irrotational state,
must be an irrotational flow.

2.3.6.1 Viscous diffussion

If we use the vector expansion Eq. (1.72) in Chapter 1 with a solenoidal vector
q of an incompressible fluid:

∇2q = ∇(∇ · q)−∇× (∇× q) = −∇× ω (2.131)

the time derivative of the circulation can be written as:

dΓ

dt
= −ν

∮
C(t)

(∇× ω) · d` (2.132)

In fact, the viscous term on the right-hand side represents the vorticity diffu-
sion that activates the circulation change. We consider a sufficiently thin vortex
tube with outward unit normal n, in which the vortex lines are all parallel. At a
point x on the side surface S of the tube, let e2 = ω/ω be the unit vector along
the vortex line through x such that e1 = e2 × n defines a unit vector tangent to
S. Let x move along the e1-direction around the tube to form a closed line C;
see the sketch of Figure 2.9 . e1 is actually along the direction of shear stress
τ = µ ω × n.

13For details, see Milne-Thomson, L. M. (1968), Theoretical Hydrodynamics, fifth edition, Macmillan, London,
p. 84.
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Figure 2.9 Intrinsic frame e1, e2, n on the side surface S of a vortex tube. From Wu et al.
(2006), p. 139.

For this thin tube, the curvature of S along the tube direction is negligible.
It can then be shown that

(∇× ω) · d` = −e2 ·
∂ω

∂n
d` (2.133)

and hence Eq. (2.132) yields

dΓ

dt
= ν

∮
C(t)

(σ · e2) d` (2.134)

where σ ≡ ν n · ∇ω = ν
∂ω

∂n
. In a 2-D viscous flow, Eq. (2.132) simply be-

comes
dΓ

dt
= ν

∮
C(t)

∂ω

∂n
d` (2.135)

where ν
∂ω

∂n
is the vorticity diffusion flux across the contour. n is the unit normal

outward from the contour.
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2.3.6.2 Cases of inviscid flow

Thus when either the kinematic viscosity or the gradient of the vorticity is small,
the circulation will be preserved about a curve moving with the fluid. Note that
the circulation is not influenced by the pressure or conservative body forces and
that if the fluid were inviscid the equation irrespective of the field vorticity. For
such flows,

DΓ

Dt
= 0 (2.136)

as the theorem states.

Applying this is to the contours that enclose vortex filaments, we see im-
mediately that such vortices do not vary in strength as they move about in any
barotropic inviscid fluid. From the theorem above, it becomes clear that if a
fluid particle in this type of fluid once has zero vorticity it will always have zero
vorticity. For consider a contour surrounding a very small sample of fluid; if ω
is zero for this sample, Γ is also zero, and according to the theorem must remain
so. But this certainly implies that ω remains zero, since the statement is true for
every contour that surround any part of the sample. 14

2.4 Potential Flows

2.4.1 Laplace equation

We shall devote considerable attention to the study of irrotational motions of
incompressible fluids. As we have seen, the irrotational approximation is likely
to be valid throughout much of the flow.

Since the equation of continuity is ∇ · q and q is the gradient of the velocity
potential φ, the differential equation satisfied by φ is Laplace equation:

∇ · (∇φ) = ∇2φ = 0 (2.137)
14See Kuethe, A. M. and Chow, C.-Y. (1976), Foundations of Aerodynamics: Bases of Aerodynamic Design,

Wiley, pp. 53–54.
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The pressure-velocity relation is given by the integrated dynamical equation:

∂φ

∂t
+

1

2
q2 +

p

ρ
+ Ω = C(t) (2.138)

In a more general case, even if we restrict ourselves to barotropic fluids, we
have five dependent variables: u, v, w, p, ρ; and five equations to solve for them:

3 equations of motion, 1 equation of continuity, and 1 equation of state:
ρ = p(ρ)

We see now that an extreme simplification has been achieved in the irro-
tational incompressible case, for the equation of state has degenerated to ρ =

constant, and we have replaced u, v, w by the velocity potential φ, leaving only
two unknowns (φ and p) and two equations, Eqs. (2.137) and (2.138).

Moreover, Eq. (2.138) has been integrated, and constitutes a formula for cal-
culation of pwhen Eq. (2.137) has been solved. The only mathematical problem
that remains is the solution of Laplace’s equation Eq. (2.137), with the appropri-
ate boundary conditions. The most surprising result is that the dynamical equa-
tions do not impose any restrictions on the flow. Any solution of the equation of
continuity Eq. (2.137) is a possible flow pattern, for some set of boundary con-
ditions. Another statement of this situation is that every kinematically possible
flow is dynamically possible.

It is also important to notice that Eq. (2.137) does not involve t. In a case of
unsteady flow, the boundary conditions will vary with time. All that is required
is that we solve Laplace’s equation with the instantaneous boundary conditions.
Another statement of this is that every unsteady flow pattern is a possible steady
flow pattern (and vice versa). Of course, the corresponding pressure will depend
on whether the flow is steady or not.

If f satisfies Laplace’s equation in a region, then f has no maxima or minima
in that region. For any volume V , enclosed in a surface S, lying entirely inside
the region:

0 =

∫
V

∇2f dV =

∫
V

∇ · ∇f dV =

∫
S

n · ∇f dS =

∫
S

∂f

∂n
dS (2.139)
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But if f has a maxima at any point P , we can surely obtain a negative value of∫
S

∂f

∂n
dS by taking V to enclose P and making it small enough. Similarly we

can obtain a positive value by integrating
∂f

∂n
around a minimum. Consequently

there can be neither.

2.4.2 Kinematic boundary condition

In order to determine the velocity field of a potential flow, we need the boundary
condition for velocity on the body surface. For general formulation, we consider
a moving boundary here. x denotes the position vector of a point on the moving
surface, where we take ξ as the initial position vector of the point. The velocity

of the moving surface is then u =
∂x

∂t

∣∣∣∣
ξ

. The boundary condition on the moving

boundary is that the normal component of the fluid velocity must equal the
normal velocity of the moving boundary: u · n = UB · n.

2.4.2.1 Alternative form

When the moving boundary is specified by a function, F (x, t) = 0, the bound-
ary condition can be written in an alternate form. Along the path of motion
x = x(ξ, t) and the moving surface F

{
x(ξ, t), t

}
= 0, the particles are always

located at the material surface:
∂F

∂t

∣∣∣∣
ξ

= 0. It implies that

∂F

∂t
+
∂F

∂xi

(
∂xi
∂t

)∣∣∣∣
ξ

= 0 (2.140)

or
∂F

∂t
+ UB · ∇F = 0 (2.141)
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The normal vector is defined from the function F as 15

n =
∇F
|∇F |

(2.142)

Then,
∂F

∂t
+ UB · n |∇F | = 0 (2.143)

Use the condition for the normal components of the velocities of both fluid and
surface u · n = UB · n, to obtain

∂F

∂t
+ u · n |∇F | = 0. (2.144)

And we find
∂F

∂t
+ u · ∇F = 0 (2.145)

or
DF

Dt
= 0 (2.146)

This expression is valid for all material surfaces and for any flow conditions,
e.g., for unsteady compressible viscous fluids. If F is independent of time, the
expression reduces to the simple one: u · n = 0.

But, if we use a relative coordinate system fixed to a moving body to describe
the flow field, the influence of the frame velocity of the moving coordinate sys-
tem should be added. The detailed formulation is given in Chapter 4.

2.4.3 Dynamic boundary condition: Free surface condition

For inviscid fluids in the absence of surface tension, the pressure is continuous
across any interface between two fluids. Perhaps the most familiar case is the
liquid free surface under the atmospheric air. The boundary condition is that in

15For scalar field F (x), we consider a curve x(σ) on a surface of F (x) = constant, which is specified with

the parameter σ. Then
dF (x)

dσ
=
dx(σ)

dσ
· ∇F (x) Because F is constant along the curve x(σ),

dF

dσ
= 0. Since

dx(σ)

dσ
is tangent to x(σ), it requires either that ∇F = 0 or that ∇F is perpendicular to

dx(σ)

dσ
(namely, to x(σ)).

Therefore non-zero∇F is perpendicular to the surface F = constant.
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the liquid just below the free surface, the pressure is the same as in the air just
above the free surface. The atmospheric pressure pa can generally be taken as
a constant. For a liquid free surface that is at rest far ahead of a body whose
motion creates disturbances on the free surface, the free surface boundary con-
ditions are x3 = ζ(x1, x2, t) and p(x1, x2, ζ, t) = pa. The first condition is the
kinematic condition which describes the free surface height from x3 = 0 and
the second one is dynamic for imposing the atmospheric pressure on the free
surface.

For upstream we can expect disturbance-free condition. Hence Bernoulli’s
equation on the free surface reduces to the expression:

(p− pa)
ρ

+ g ζ(x1, x2, t) +
1

2
(∇φ)2 +

∂φ

∂t
= 0 (2.147)

With p = pa in this equation, we have a suitable form to derive explicitly the
free surface elevation if the velocity potential φ is known:

ζ(x1, x2, t) = −1

g

(
∂φ

∂t
+

1

2
(∇φ)2

)
(2.148)

Note that the vortex sheet trailing behind lifting surfaces is another case,
about which we will describe in detail in Chapter 4

2.4.4 Examples

2.4.4.1 Flow past a sphere

Let us first consider the steady irrotational flow past a sphere. After the doublet
strength µ is replaced in terms of the stream speed U and the radius R of the
sphere, as the student can easily verify, the flow is described by

ψ =
1

2
U

(
r2 − R3

r

)
sin2 θ; φ =

1

2
U

(
2r +

R3

r2

)
cos θ

qr = U

(
1− R3

r3

)
cos θ; qθ = −1

2
U

(
2 +

R3

r3

)
sin θ

 (2.149)
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On the sphere, the velocity is given by

qθ = −3

2
U sin θ (2.150)

so that there are two stagnation points at θ = 0, π, and the maximum local speed
is 50% greater than the stream speed. The pressure is given by

p− p0
1
2 ρU

2
= 1− 9

4
sin2 θ (2.151)

Consequently there can be no force on the sphere.

In describing real-fluid flows, the boundary layer separates from the surface
just forward of the equator θ = π/2 (in agreement with viscous-fluid theory),
and from there back the flow loses its resemblance to perfect-fluid flow. It is
clear that the boundary-layer separation is ultimately responsible for the appre-
ciable drag of the sphere.

2.4.4.2 Flow around a circular cylinder

We shall proceed to the consideration of the plane steady irrotational flow
around a circular cylinder. In terms of the radius of the cylinder, R, the formu-
las for this case are

ψ = U

(
r − R2

r

)
sin θ; φ = U

(
r +

R2

r

)
cos θ

qr = U

(
1− R2

r2

)
cos θ; qθ = −U

(
1 +

R2

r2

)
sin θ

 (2.152)

Thus the maximum surface speed is 2U in this case, and the local pressures
correspondingly lower than on the sphere. Once more the pressure is distributed
symmetrically fore-and-aft, and there is no force on the cylinder.

The boundary conditions satisfied by equation Eq. (2.152) are

qr = 0 when r = R, and q → Ui as r →∞. (2.153)

But these would be just as well satisfied if we were to superimpose a plane
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vortex flow about the origin, of any desired strength; namely,

ψ = U

(
r − R2

r

)
sin θ − Γ

2π
ln r (2.154)

φ = U

(
r +

R2

r

)
cos θ +

Γ

2π
θ (0 ≤ θ < 2π) (2.155)

qr = U

(
1− R2

r2

)
cos θ (2.156)

qθ = −U
(

1 +
R2

r2

)
sin θ +

Γ

2πr
(2.157)

With circulation, the local velocity at the surface becomes −2U sin θ+ Γ/2πR.
Thus the stagnation points have moved to

θ = sin−1 Γ

4πUR
(2.158)

provided that |Γ| ≤ 4πUR. (If |Γ| has a greater value, the stagnation points
merge and occur in the flow outside the cylinder.)

The fluid pressure on the cylinder is now

p = p0 +
1

2
ρU2 − 1

2
ρ

(
2U sin θ − Γ

2πR

)2

(2.159)

and again, we see that there is no force component in the x direction, i.e. no
drag. The force component in the y direction is easily computed:

Y = −
∫ 2π

0

p R sin θ dθ = −ρUΓ (2.160)

We see that there is lift on a circular cylinder with circulation. This is obvi-
ously related to the so-called ‘Magnus effect’, which produces lift on a rotating
cylinder – in a real fluid, the circulation is produced by the action of viscosity
near the spinning cylinder.
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3.1 General Statements

3.1.1 Techniques for solving Laplace equation

Several specific approaches have been categorized:

(1) Separation of variables
This is a standard technique but is limited to systems for which separation
can produce a solution to the Laplace equation. In addition it is desirable
that the boundary condition can be easily applied, usually that the value of
one coordinate fixed describes the surface. The 13 curvilinear orthogonal
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coordinate systems are known to have suitable properties. 1 Elementary
solutions can be found in some texts with this technique. We do not deal
with it further herein.

(2) Superposition
Superposition of elementary solutions of the Laplace equation to satisfy
the boundary condition. The distributions can be specified to be anywhere
inside the body, and this was the approach treated in the undergraduate
courses. It is such an important element of fluid mechanics that elementary
solutions have been given names: source, sink, vortex, dipole(doublet),
etc. For these elementary solutions, several numerical techniques have
been formulated employing singularity distributions entirely within the
body.

(3) Identity
Identities relating surface distributions of various singularities to field val-
ues of the quantity of interest. We have defined two different identities of
interest in the vector analysis review: (i) Green’s second identity for scalar
and (ii) An identity for an arbitrary vector.

Note that (2) and (3) differ in the location of the singularity but not in prin-
ciple. That is, singularities can be distributed anywhere inside the body, up to
and including the surface since it is excluded from the flow field.

Our approach will be to use the identities with a distribution of singularities
on the surface since it is convenient for lift, but we will modify the equations
extensively.

3.1.2 Preview of singularity methods

(1) The solution in the flow field will be unique.

(2) The location, type, and strength of the singularity elements are not unique.

(3) The strength of the singularity distribution is determined by the body
boundary condition.

1See Morse, P. M. and Feshbach (1953), Methods of Theoretical Physics, 2 vols., McGraw-Hill.
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(4) We must find expressions valid as the field point approaches the body.

(5) For simple bodies in specified flows, convergence analysis of the numeri-
cal solutions is demonstrated by comparison with exact analytic solutions
or measured data that are judged to be free of experimental error and sig-
nificant viscous effects.

(6) It is convenient to divide the surface of the body into sub-elements and
make approximations for the integrands to use an intermediate measure
for the Riemann-sum definition for definite integral.

(7) The general concept of subdividing the surface into smaller elements is
valid in both 2-D and 3-D.

(8) If the flow field were inviscid but rotational, it can be considered the sum
of a potential plus a rotational velocity component.

(9) Such an approach can be applied for a general body that has an interior
volume and some other special cases.

(10) It is sometimes convenient to work integro-differential formulations of
the governing equations with a distribution of singularities for solving the
Navier-Stokes equations.

3.1.3 Boundary integral forms

Field values of a quantity of interest (either scalar or vector) may be represented
in terms of integrals over the surface bounding the volume of interest plus vol-
ume integrals, as shown in Chapter 1. For an irrotational solenoidal field (i.e.,
a potential field), the volume integrals provide no contribution and then the fol-
lowing expressions are obtained:
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Scalar

φ(x) =
1

4π

∮
S

[
φ(y)

n(y) · (x− y)

|x− y|3
− n(y) ·∇φ(y)

1

|x− y|

]
dSy in 3-D

(3.1)

φ(x) =
1

2π

∮
C

[
φ(y)

n(y) · (x− y)

|x− y|2
− n(y) ·∇φ(y) ln

1

|x− y|

]
d`y in 2-D

(3.2)

Vector

q(x) =
1

4π

∮
S

[
{n(y)× q(y)} ×

(x− y)

|x− y|3
+ n(y) · q(y)

(x− y)

|x− y|3

]
dSy in 3-D

(3.3)

q(x) =
1

2π

∮
C

[
{n(y)× q(y)} ×

(x− y)

|x− y|2
+ n(y) · q(y)

(x− y)

|x− y|2

]
d`y in 2-D

(3.4)

∇φ(x) =
1

4π

∮
S

[
φ(y)

{
n(y)

|x− y|3
− 3

n(y) · (x− y)

|x− y|5
(x− y)

}
+n(y) ·∇φ(y)

(x− y)

|x− y|3

]
dSy in 3-D (3.5)

∇φ(x) =
1

2π

∮
C

[
φ(y)

{
n(y)

|x− y|2
− 2

n(y) · (x− y)

|x− y|4
(x− y)

}
+n(y) ·∇φ(y)

(x− y)

|x− y|2

]
d`y in 2-D (3.6)

where

(1) x ∈ V, x 6∈ S or C and y ∈ S or C,

(2) derivation of ∇φ from φ is straight forward, e.g., for Eq. (3.5) in 3-D, use
the following expansion:

n · ∇
(

r

|r|3

)
=

n

|r|3
− 3 (n · r) x

|r|5
(3.7)
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(3) 2-D forms can be obtained from the 3-D equations by an integration of the
third coordinate,

(4) n points out of body and into the field volume, 2

(5) these equations are valid for∇2φ = 0,∇× q = 0,∇ · q = 0 for x ∈ V ,

(6) singularities are sources/sinks, vortices, and dipoles centered at y, a point
on the surface bounding V ,

(7) and for the surface of the body given by s = s(σ1, σ2), tangent vectors are
∂s/∂σ1 and ∂s/σ2, and hence we have

n ds = ±
(
∂s

∂σ1
× ∂s

∂σ2

)
dσ1 dσ2 = ±h1 h2 eσ1 × eσ2 dσ1 dσ2 (3.8)

3.1.4 Disturbance flow about a body

We can specify the total velocity vector as the sum of the free-stream velocity
plus a vector representing the disturbance introduced by the presence of the
body:

q = q∞ + u (3.9)

where q∞ = Ui + V j + Wk is constant and u(x) is disturbance velocity in-
troduced by body (not necessarily small). Also called perturbation velocity. If
u = ∇φ, φ is the perturbation potential (i.e., it perturbs the well-understood free
stream). Now the conditions for the irrotational and solenoidal vector q can be
applied:

∇× q = 0⇒ ∇× (q∞ + u) = 0⇒ ∇× u = 0 for x ∈ V (3.10)

∇ · q = 0 ⇒ ∇ · (q∞ + u) = 0 ⇒ ∇ · u = 0 for x ∈ V (3.11)

Hence we can use the vector identity to construct u. This will be more conve-
nient than q for us since u→ 0 for |x| → ∞ and the integration over the surface
at |y| → ∞ will not contribute to the expression for u.

2Note that this orientation for the normal n is different from our original derivation and will be used from now
on unless stated otherwise.
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Now we will prove this argument. Let I be the contribution from the region
at |y| → ∞. Then

I = |I| ≤
∣∣∣∣ 1

4π

∮
S∞

[
(n× u)×

x− y
|x− y|3

+ (n · u)
x− y
|x− y|3

]
dSy

∣∣∣∣
≤ 1

4π

∮
S∞

[|u||x− y|
|x− y|3

+
|u||x− y|
|x− y|3

]
dSy

≤ 1

2π

∮
S∞

|u|
|x− y|2

dSy (3.12)

If we take the surface far from body to be a sphere:

y = s = Rer (R >> |x|) (3.13)
∂s

∂θ
= Reθ,

∂s

∂α
= R sin θ eα (3.14)

|n dS| = dS = R2 sin θ dθ dα ≤ R2 dθ dα (by Eq. (3.8)) (3.15)

|x− y| → R (3.16)

Hence
I ≤ 1

2π

∮
|u| dθ dα (3.17)

So if |u| → 0 for |y| → ∞, |I| → 0 and the only surface that must be consid-
ered is that for the body of interest, SB.

Similar results are found for 2-D flow and for the potential function. 3 Fur-
thermore, if u were only bounded for |y| → ∞ (i.e. |u| ≤ constant), then our
above arguments are not sufficient to show that the integral over the region at
y → ∞ is negligible. For both free-surface problems of waves generated by
a body on a free surface and the shed vortex sheet behind a lifting body, our
inviscid model is one with bounded disturbances at y → ∞i (downstream). If
we had been more careful with our downstream integral we could have found

3The potential for 2-D flows has logarithmic far-field behavior. See Batchelor, G. K. (1967), An introduction
to fluid dynamics, Cambridge University Press, p. 124.
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an alternate form over a disk: ∮
A

|u · i| dS

|x− y|
(3.18)

where A is a disk downstream. It vanishes for y →∞ i. 4

3.2 Surface Distributions of Singularity

3.2.1 Interior flow field

We assume our body in the flow field has thickness so that there is also another
volume internal to it. (See Figure 3.1 ) We consider the disturbance velocity

Figure 3.1 Notation for unbounded flow fields.

introduced by the body in an otherwise uniform onset flow, and write it in the
form:

u(x) =
1

4π

∮
SB

[
{n× u} ×

(x− y)

|x− y|3
+ n · u

(x− y)

|x− y|3

]
dSy in 3-D (3.19)

4Brockett, T. E. (1972), “Propeller Perturbation Problems”, NSRDC Report, no. 3880.
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Recall that for our derivation of this equation, we had x within V , with the
requirement that the region about x be excluded from the flow field (and the
limit of this excluded region vanishing taken to get the left-hand side). Hence,
if x were outside V , either exterior to S∞ or interior to SB, the LHS would
be zero. We are interested in x interior SB. Let this point be xi. Then u(xi)

computed by the above surface integrals would be zero. We say

u(xi) = 0 for xi within SB (3.20)

We are not really interested in the flow internal to a body but the above property
suggests that we may want to think about a flow field consisting of V plus the
volume internal to SB (let’s call this Vi) with a surface (SB) of singularities
separating them.

Now let us postulate that the flow inside SB is also on that satisfies ∇ · ui =

0 = ∇× ui. Hence we can also represent this flow by a similar distribution of
sources and vortices over the inside of SB. If we keep the same direction of the
normal vector n at the boundary (i.e., n is exterior to SB) then

ui(xi) = − 1

4π

∮
SB

[
{n(y)× ui(y)} ×

(xi − y)

|xi − y|3
+ n(y) · ui(y)

(xi − y)

|xi − y|3

]
dSy

(3.21)
Similar to our observation for u(xi), we can state that for a field point outside
of Vi the value of the vector ui is zero. In particular, if x ∈ V were the field
point, then

ui(x) = 0 (3.22)

Thus if we sum the two equations (3.19) and (3.21) for the vectors u and ui, we
will obtain an expression valid for a point in either V or in Vi. Let us call this
more general solution the vector u:

u(x) =
1

4π

∮
SB

[
{n× (u− ui)} ×

(x− y)

|x− y|3
+ n · (u− ui)

(x− y)

|x− y|3

]
dSy

(3.23)
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where by our construction we have

u(x) = u for x ∈ V (3.24)

u(xi) = ui for xi ∈ Vi (3.25)

We have already noted that our concern is not really the flow internal to the body.
Thus we are free to specify this flow as fits our needs. In particular, we can set
the value of ui on the boundary to fit arbitrary conditions. Some choices for
components of ui on SB are of particular interest as explained in the following
subsections.

3.2.2 Source distributions

We consider the case of n × (u − ui) = 0 in Eq. (3.23). This implies that
the tangential velocity component is continuous across SB. Then the equation
becomes

u(x) =
1

4π

∮
SB

τ(y)
(x− y)

|x− y|3
dSy (3.26)

where τ = n · (u − ui). The integrand means a distribution of sources having
strength τ over SB. This strength is unknown since we do not know anything
about n ·ui, i.e., our choice was to select only the equality of tangential compo-
nents n× u = n× ui.

3.2.3 Vortex distributions

We consider the case of n · (u−ui) = 0 in Eq. (3.23). This implies that the nor-
mal velocity component is continuous across SB. Then the equation becomes

u(x) =
1

4π

∮
SB

γ(y)×
(x− y)

|x− y|3
dSy (3.27)

where γ = n× (u− ui). The integrand means a distribution of vortices having
strength γ over SB. This strength is unknown since n× ui is unknown, i.e., our
choice was to select only the equality of normal components n · u = n · ui.



3.2 Surface Distributions of Singularity 129

This equation is called the Biot-Savart Integral for the velocity induced by a
surface distribution of vorticity. Similar forms are available for volume and line
distributions of vorticity.

Either source or vortex distribution for u can be employed to find the velocity
field for flow about a non-lifting body. However we shall see later that vortices
are necessary for lifting bodies.

3.2.4 Source and vortex distributions

For 2-D fields, set n × (u − ui) = γ0 f(y)k where γ0 is constant and f(y) is a
specified function (often f(y) = 1). Then the 2-D induced velocity is

u(x) =
1

2π

∮
CB

τ(y)
(x− y)

|x− y|2
d`y +

γ0

2π

∮
CB

f(y)
k × (x− y)

|x− y|2
d`y in 2-D

(3.28)
where now both the variable source strength τ(y) and single constant vortex
strength γ0 are unknown. Such a form is useful for lifting 2-D bodies as we
shall discuss later. A similar form may be used for symmetric flow, namely, we
may take n × (u − ui) = γ0 et where et is tangent to an axi-symmetric body
in the circumferential direction. We can also specify a similar representation in
3-D flow but must be somewhat careful, e.g., for a planar rectangular wing we
take n × (u − ui) = γ0(x3) f(x1) e3 where x1, x3, and e3 refer to a coordinate
system taken.

3.2.5 Remarks for singularity distributions

Similar expressions can be obtained for the scalar potential φ. 5 Besides the
above 3 types of singularity distribution, We could take n · (u− ui) = τ0 f1(y)

and add this distribution of unknown magnitude τ0, but fixed form f1(y), sources
over the boundary SB to the expression for the Biot-Savart law. This formalism
is not as useful in practice as the case in the previous subsection.

5See Lamb, H. (1932), Hydrodynamics, sixth ed., Dover, pp. 59–61. Also see Hunt, B. (1980), “The Mathe-
matical Basis and Numerical Principles of the Boundary Integral Method for Incompressible Potential Flow over
3-D Aerodynamic Configurations,” Numerical Methods in Applied Fluid Dynamics.
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We could have postulated distributions of only the single type of singular-
ity on the boundary to start with since our equations of motion (continuity and
Euler equations) apply only within V and not on SB. This means we are free
to distribute singularities anywhere outside V up to and including the boundary
of V . Our formal development has confirmed this and also given us explicitly
the information that the source distribution produces a flow that has a contin-
uous tangential velocity component at the body surface and the vortex distri-
bution produces a continuous normal velocity distribution across the surface.
Since we know certain components are continuous across the boundary we are
not surprised to find that the other component will be discontinuous across the
boundary.

As we examine the expressions for the field point tending to a body point
later on, the specific integrals for satisfying the boundary condition will be de-
rived and the continuity properties just observed will be evident.

3.2.6 Doublet distribution and solid angle

We take a doublet distribution with constant density

1

4π

∫
S

φn · ∇
{

1

|x− y|

}
dS. (3.29)

Now consider the volume integral for the region bounded by

(i) the original surface(S) over which the doublet is distributed,

(ii) the spherical surface(S1) of radius 1 centered at x, and

(iii) the conical surface(Sc) passing the vertices of the original surface and x,

∫
V

∇ · ∇
{

1

|x− y|

}
dV. (3.30)

See Figure 3.2 for sketch of the integration region.
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Figure 3.2 Relationship between a constant doublet distribution and the solid angle of the
distributed surface.

Because x is outside the region, the integral∫
V

∇2

(
1

r

)
dV = 0 (3.31)

According to the divergence theorem, the integral becomes∮
S+S1+Sc

n · ∇
(

1

r

)
dS = 0. (3.32)

Then the contribution of the conical surface is zero because of n · ∇
(

1

r

)
= 0

on Sc, so that ∫
S

n · ∇
(

1

r

)
dS = −

∫
S1

n · ∇
(

1

r

)
dS (3.33)

Consequently, the integral represents the area of the spherical surface, namely
the solid angle of the original surface.
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3.2.7 Equivalence of doublet and vortex distributions

For doublets of variable strength µ(y) distributed over a patch of surface S,
define the induced velocity w at a field point x:

w(x) = ∇x φ(x) =
1

4π

∫
S

µ(y)∇x

(
n(y) · (x− y)

|x− y|3

)
dSy (3.34)

and for vortices of variable strength γ distributed over the same patch, define
the induced velocity u at a field point x:

u(x) =
1

4π

∫
S

γ(y)×
(x− y)

|x− y|3
dSy (3.35)

We seek to determine if these expressions be equivalent in some way. 6

In our investigation of expansion formulas in Chapter 1, we derived the formula,

with a = n(y) and v =
(x− y)

|x− y|3
:

∇x(n · v) = n× (∇x × v) + (n · ∇x) v = (n×∇x)× v + n (∇x · v) (3.36)

We have used the expansion formulas,

(n×∇x)× v = nl
∂vl
∂xi
− ni

∂vk
∂xk

, n× (∇x × v) = nj
∂vj
∂xi
− nj

∂vi
∂xj

(3.37)

But for v =
(x− y)

|x− y|3
, we have∇x ·v = 0. Also we note the reciprocal property:

∇x|x− y|n = −∇y|x− y|n. So that

w(x) = − 1

4π

∫
S

µ(y)
{
n(y)×∇y

}
×

x− y
|x− y|3

dSy (3.38)

6The derivation was done by Hess, J. L. (1972), “Calculation of Potential Flow about Arbitrary Three-
Dimensional Lifting Bodies,” Douglas Aircraft Company Report No., MDCJ5679-01, Appendix A.
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We now examine the expansion of a term similar to the integrand of this equa-
tion:{
n(y)×∇y

}
×
{
µ(y) v

}
= µ(y)

{
n(y)×∇y

}
× v +

{
n(y)×∇y µ(y)

}
× v

(3.39)
Rearranging this expression, we substitute for the above integrand:

w(x) = − 1

4π

∫
S

[{
n(y)×∇y

}
×
{
µ(y)

x− y
|x− y|3

}
−
{
n(y)×∇y µ(y)

}
×

x− y
|x− y|3

]
dSy (3.40)

Using the third of Stokes’ integral theorem, we can transform the first term in
the surface integral to a line integral along a curve C bounding the surface S:

w(x) =
1

4π

∮
C

µ(`)
x− `
|x− `|3

× d`y +
1

4π

∫
S

γ(y)×
x− y
|x− y|3

dSy (3.41)

=
1

4π

∮
C

µ(`)
x− `
|x− `|3

× d`y + u(x) (3.42)

where γ(y) = n(y)×
{
∇y µ(y)

}
.

Thus the velocity induced by a distribution of doublets of strength µ is
equivalent to the velocity induced by a distribution of vortices of strength γ =

n×(∇µ) over the surface plus a line integral representing a concentrated vortex
of strength µc at the boundary of the surface as illustrated in Figure 3.3 .

Figure 3.3 Equivalence of doublet and vortex distributions.

If the doublet strength were constant over S, then the induced velocity could
be represented as either the direct integral for the doublets distributed over the
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surface or the line integral of the vortex of strength−µ twhere t is a unit vector.
The result we have derived shows that the vortex lattice procedure commonly
used in numerical analysis is equivalent to having panels of constant strength
doublets.

3.3 Limiting Form of Expressions

3.3.1 Introduction

We now have several forms that are useful to express the general solution of our
fluid flow problem. To find the flow about a given body, the singularity strengths
must be selected such that the boundary conditions are satisfied. The singularity
solutions already satisfy the Laplace equation in the flow field and tend to zero
far from the (non-lifting) body. Hence the solution will be complete once we
satisfy the boundary condition on the body surface (x → x0 ∈ SB). Thus we
need expressions for the integrals as the field point tends to the surface of the
body.

We have already looked at this problem from one standpoint for which we
found the value of the potential was doubled at the surface and the expression for
the integral specifically excluded a circular region around the point x0. We can
expect that in some way an acceptable approach may result in a surface integral
that excludes the region about x0 with a nearly circular boundary centered x0.

However, in practice it may be convenient to integrate in directions along
two axes as illustrated in Figure 3.4 . In this sketch we anticipate that a region
about one of the coordinate axes must be exclude to isolate the singular point.

This approach leads to a formulation of the problem such that integration is
first along the parametric lines parallel to the one that is excluded, and a second
integration that is along the other coordinate direction and having a Cauchy
Principle Value Integral. We write the form of the double integral schematically
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Figure 3.4 Schematic diagram of integration region for singular integrals.

as

I(x0) = lim
ε→0

[(∫ σ10−ε

σ1min

+

∫ σ1max

σ10+ε

)
dσ1

∫ b(σ1)

a(σ1)

F (x0, y(σ1, σ2)) dσ2

]
(3.43)

So we seek to find the explicit forms for the limit:

I(x0) = lim
x→x0

I(x) (3.44)

where I can be either the scalar or vector arising from the distribution of sin-
gularities over the surface. We consider the surface to be the boundary of a
3-D flow field. (Recall we can convert this to the 2-D case by a straightforward
integration of the spanwise coordinate x3 from −∞ to∞.)

We can divide the surface into two regions, one about the point x0 and the
other consisting of the remaining area. For the integral over the remaining area,
the field point x can be set equal to x0 directly since no singularity will occur
(at leat until ε→ 0). Our real task will be to find the integral over the region of
small distance to find the limit value. Let the region of S about x0 be denoted
by Σ(x0, ε) where ε characterizes the dimensions of Σ; let the distance from x0

to x be ηe, i.e., x − x0 = η e; and let F (x, y) be the integrand. Then the limit
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process can be expressed;

lim
x→x0

I(x) = lim
ε→0

lim
η→0

∫
Σ(x0,ε)

F (x0 + η e, y) dSy +

∫
S−Σ(x0,ε)

F (x0, y) dSy


(3.45)

In Figure 3.4 , the area Σ(x0, ε) is the strip of width 2ε centered along the co-
ordinate line x0 = constant. The singularity occurs at only one point along the
centerline of this region. In the second (or remaining) integral over S − Σ we
assume the limit as ε → 0 is straightforward and that the integral exists in the
limit.

3.3.2 Schematic implementation

A schematic diagram of Σ for a surface with curvature and two coordinate lines
(x1, x2) is given by Figure 3.5 .

Figure 3.5 Coordinate definition for region surrounding singular point.

These coordinate lines are locally taken as straight lines but are not neces-
sarily orthogonal. This illustration is general but since the results are nearly the
same as for a surface representation that is planar and the coordinate axes are
perpendicular, we will work with the simpler geometry as shown in Figure 3.6 .
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The simple form of Σ is a rectangle about x0. This is a convenient shape for
our work, but we could have selected Σ as a circle or even an ellipse if such a
coordinate system were appropriate for the problem. 7 To represent the region
of Figure 3.4 , we should let δ and λ be large and α = γ = ε.

Figure 3.6 Planar approximation of surface surrounding singular point.

3.3.3 Scalar functions

We are concerned here with the approximation to the rectangle excluding the
singular point.

φ(x) = − 1

4π

∮
S

[
∂φ(y)

∂n

1

r
− φ(y)

∂

∂n

(
1

r

)]
dSy

= − 1

4π

∮
S

[
n · ∇φ(y)

1

|x− y|
− φ(y)

n · (x− y)

|x− y|3

]
dSy (3.46)

The position vector of the general point in the field is

x = x0 + η eη = x0 + η cosσ n+ η sinσ cos β e1 + η sinσ sin β e2 (3.47)
7See Brockett, T. E. (1972), “Propeller Perturbation Problems”, NSRDC Report, no. 3880.
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and the position vector of the integration point on the planar approximation of
the surface is

y = x0 + x1 e1 + x2 e2 (3.48)

So that

x− y = η cosσ n+ (η sinσ cos β − x1) e1 + (η sinσ sin β − x2) e2

|x− y|2 = η2 cos2 σ + (η sinσ cos β − x1)
2 + (η sinσ sin β − x2)

2

|x− y|3 = (x2
2 − 2 η x2 sinσ sin β − 2 η x1 sinσ cos β + η2)

3
2

dSy = dx1 dx2

For the scalar singularity strengths, τ ≡ n · ∇φ(y) and µ ≡ φ(y)

τ(y) = τ(x0) + (y − x0) · ∇τ
∣∣
x0

+ · · · (3.49)

µ(y) = µ(x0) + (y − x0) · ∇µ
∣∣
x0

+ · · · (3.50)

3.3.3.1 Source distribution

For the source distribution, there is

− 1

4π

∫
Σ

τ(y)
1

|x− y|
dSy = − τ0

4π

∫ α

−γ

∫ λ

−δ

1

|x− y|
dx2 dx1 (3.51)

−(∇τ0) · e1

4π

∫ α

−γ

∫ λ

−δ

x1

|x− y|
dx2 dx1

−(∇τ0) · e2

4π

∫ α

−γ

∫ λ

−δ

x2

|x− y|
dx2 dx1

These integrals can be easily evaluated using integral tables. The first two inte-
grals are zero with the provision α→ 0, γ → 0. The last integral is zero only if
α = γ and the limit γ → 0 is taken. Hence the expression valid for x→ x0 is

φ(x0) = − 1

4π
lim

α=γ→0

∮
S−Σ

τ(y)
1

|x0 − y|
dSy (3.52)
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3.3.3.2 Doublet distribution

For the doublet distribution, we have similarly:

1

4π

∫
Σ

µ(y)
n · (x− y)

|x− y|
dSy =

µ0

4π

∫ α

−γ

∫ λ

−δ

n · (x− y)

|x− y|3
dx2 dx1 (3.53)

+
(∇µ0) · e1

4π

∫ α

−γ

∫ λ

−δ
x1

n · (x− y)

|x− y|3
dx2 dx1

+
(∇µ0) · e2

4π

∫ α

−γ

∫ λ

−δ
x2

n · (x− y)

|x− y|3
dx2 dx1

As η → ± 0, the first of these integrals goes to ±µ0/2 where the (+) sign cor-
responds one side which the field point appproachs and the (-) sign corresponds
the other side. Hence for this integral, it its required only that α→ 0 and γ → 0.
The other two integrals are of the form (η · J) where J is bounded and hence
the integrals go to zero as η → 0. Thus the final expression for the limit of the
integral as x→ x0 is

φ(x0) = ± 1

2
µ(x0) +

1

4π
lim

α=γ→0

∮
S−Σ

µ(y)
n · (x− y)

|x− y|3
dSy (3.54)

3.3.4 Vector functions

Similar procedures applied to the three vector expressions

u(x) =
1

4π

∫
S

τ
x− y
|x− y|3

dSy (3.55)

u(x) =
1

4π

∫
S

γ ×
x− y
|x− y|3

dSy (3.56)

∇φ(x) =
1

4π

∫
S

µ∇x

n · (x− y)

|x− y|3
dSy (3.57)
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produce the following limits:

u(x0) =
1

2
τ0 n(x0) +

1

4π
lim
ε→0

∫
S−Σ

τ
x0 − y
|x0 − y|3

dSy (3.58)

u(x0) =
1

2
(γ × n)x0 +

1

4π
lim
ε→0

∫
S−Σ

Λ×
x0 − y
|x0 − y|3

dSy (3.59)

∇φ(x0) =
1

2
{(n×∇µ)× n}x0

+
1

4π
lim
ε→0

[∫
S−Σ

µ∇x

n · (x0 − y)

|x0 − y|3
dSy −

4µ(x0)n0

ε

]
(3.60)

Note that since n changes sign across a surface, these forms have the previously
discussed discontinuities. When the flow is 2-D and the boundary S is a straight
line from a to b, the limit operation in the last equation is the classic expression

with replacing
4µ(x0)n0

ε
by

2µ(x0)n0

ε
. 8

3.4 Example : Circular Cylinder in Uniform Flow

So fa we have presented integral formulations for scalar and vector fields. Be-
fore we proceed an actual numerical implementation, we consider an analytic
example, namely, we solve the boundary value problem for a circular cylinder
using the methods based on the aforementioned mathematical backgrounds.

Let us consider the flow about a circular cylinder in a uniform, ideal stream.
(See Figure 3.7 ). We apply the various formulations to determine the distribu-
tion of sources, dipoles, or vortices.

3.4.1 Point doublet at center

First it is well-known that the velocity potential of the distributed flow is repre-
sented as a singularity of a doublet at the center of the circular cylinder with the

8For self-induced movement of a line vortex, see Batchelor (1967), pp. 509–510 and Brockett, T. E., (2005),
“Inviscid duct-rotor interaction elements for a decelerating ducted propulsor,” ISP, vol. 52, no. 3, pp. 245–271.
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Figure 3.7 Notation for flow about a circular cylinder in a uniform stream.

strength µ in polar coordinate, i.e.,

φ =
µ

2π

cos θ

r
(3.61)

Thus the total velocity potential is

Φ = φ∞ + φ = Ur cos θ +
µ

2π

cos θ

r
(3.62)

and the velocity becomes

q = ∇Φ =
∂Φ

∂r
er +

∂Φ

r ∂θ
eθ

=

(
U cos θ − µ

2π

cos θ

r2

)
er +

(
−U sin θ − µ

2π

sin θ

r2

)
eθ (3.63)

Now we apply the kinematic (no-penetration) body boundary condition on the
cylinder surface, i.e., q · n = 0 at r = R where R is the radius of the cylinder

U cos θ − µ

2π

cos θ

R2
= 0, (3.64)

from which we find the doublet strength

µ = 2πR2U (3.65)
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and the distribution of the perturbation velocity potential on the cylinder surface

φb = φ|r=R = UR cos θ. (3.66)

The subscript b refers to the body surface point. The velocity at any field point
in entire domain including the interior and the exterior regions of the cylinder
is reduced to

q = U cos

(
1− R2

r2

)
er − U sin θ

(
1 +

R2

r2

)
eθ (3.67)

A typical streamline pattern is illustrated in Figure 3.8 .

Figure 3.8 Streamlines around/inside a circle (about a doublet ) in a uniform stream.
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3.4.2 Potential distribution

The Green’s scalar identity for the perturbation velocity potential in 2-D fields
can be written as

φ =

∮
C

(
φ
∂G

∂n
− ∂φ

∂n
G

)
d` (3.68)

where the Green function in polar coordinates for a source point y on the circular
cylinder surface is

G = − 1

2π
ln |x− y| = 1

2π
ln
√
r2 +R2 − 2rR cos(θ − α) (3.69)

and the normal derivative of G is

∂G

∂n
=
∂G

∂r
= − 1

2π

R− r cos(θ − α)

r2 +R2 − 2rR cos(θ − α)
. (3.70)

Use the kinematic body boundary condition to replace (
∂φ

∂n
) by (−U · n) and

take the limiting form of the given integral form as a field point approaches a
body point (i.e., r → R) in order to establish the integral equation for unknown
contour distribution of φ :

φb =
φb
2

+−
∫
C

{
φb
∂G

∂n
+ (U · n)G

}
d` (3.71)

or
φb
2
−−
∫
C

φb
∂G

∂n
d` = −

∫
C

(U · n)Gd` (3.72)

Inserting G and
∂G

∂n
obtained previously into this equation gives

φb
2

+
1

2π

∫ 2π

0

φb
R {1− cos(θ − α)}

2R2 {1− cos(θ − α)}
Rdα

= −UR
2π

∫ 2π

0

cosα ln
√

2R2 {1− cos(θ − α)} dα (3.73)
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Rearrange this equation to obtain

φb +
1

2π

∫ 2π

0

φb dα = −UR
2π

∫ 2π+θ

θ

cosα ln {1− cos(θ − α)} dα (3.74)

Now the integral on the RHS becomes 9

∫ 2π+θ

θ

cosα ln{1− cos(θ − α)} dα =

∫ 2π+θ

θ

cosα ln

{
2 sin2 θ − α

2

}
dα

= 2

∫ 1

0

cos(θ + 2πx) ln(sin πx) 2π dx

= −2π cos θ (3.75)

Here, we have put (θ − α)/2 = −πx, and used
∫ 2π

0

sin(2πx) ln(sin πx) dx =

0 and
∫ 2π

0

cos(2πx) ln(sin πx) dx = −1

2
. Therefore the integral equation is

reduced to

φb +
1

2π

∫ 2π

0

φb dα = UR cos θ (3.76)

It is easily seen that the solution of this equation is

φb = UR cosα, (3.77)

since, for which,
∫ 2π

0

φb dα = 0. With the surface distribution of φ, the poten-

tial at any point either outside or inside the cylinder can be written as 10

φ(r, θ) =

∮
C

(
φ
∂G

∂n
− ∂φ

∂n
G

)
d`

= − 1

2π

∫ 2π

0

(UR cosα)
R− r cos(θ − α)

r2 +R2 − 2rR cos(θ − α)
Rdα

− 1

2π

∫ 2π

0

(UR cosα) ln
√
r2 +R2 − 2 rR cos(θ − α)Rdα

= UR2 cos θ/r (3.78)

9Gradshteyn, I. S. and Ryzhik, I. M. (1965), Table of Integrals, Series and Products, Academic Press, Inc.,
New York and London, p. 584.

10Ibid, pp. 366–367, 593.
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Of course, this solution is the same as that presented in the previous case of a
point doublet at the center of a cylinder.

3.4.3 Stream function formulation

For comparison to the potential-based formulation, we introduce herein the
stream function based formulation. The Green’s scalar identity for the pertur-
bation stream function in 2-D fields can be written as

ψ =

∮
C

(
ψ
∂G

∂n
− ∂ψ

∂n
G

)
d` (3.79)

The limiting form as a field point approaches a body point would be, in the same
manner as the potential-based formulation,

ψb =
ψb
2

+−
∫
C

{
ψb
∂G

∂n
− ∂ψb

∂n
G

}
d` (3.80)

Now, the total stream function Ψ = ψ∞ + ψ, where ψ∞ = Uy = Ur sin θ, can
be set zero at the (closed, non-lifting) body surface, from which

ψb = −ψ∞b, i.e., ψb = −UR sin θ (3.81)

Insert this relation into the above integral equation

−UR sin θ

2
+

1

2π

∫ 2π

0

(−UR sinα)
R {1− cos(θ − α)}

2R2 {1− cos(θ − α)}
Rdα

= − 1

2π

∫ 2π

0

∂ψb
∂n

ln
√

2R2 {1− cos(θ − α)}Rdα (3.82)

This is the integral equation for unknown distribution of
∂ψb
∂n

at the contour, in
which the solution can be obtained from the same procedure as in the case of
the potential-based formulation.

∂ψb
∂n

= +U sin θ (3.83)
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Consequently, the total tangential speed at the body surface is the same:

Vs =
∂Ψb

∂n
= 2U sin θ (3.84)

3.4.4 Source distribution

Take the normal component of the gradient of potential and then the limiting

form as x→ xb, noting that τ =

(
∂φ

∂n
− ∂φ′

∂n

)
and n = er:

∂φ

∂n

∣∣∣∣
x=xb

= +
τ

2
−−
∫
C

τ
∂G

∂n
d` (3.85)

Apply the body boundary condition and insert ∂G/∂n into the resulting equa-
tion:

−U · n|r=R = +
τ

2
−
∫ 2π

0

τ

(
−1

2π

R−R cos(θ − α)

R2 +R2 − 2RR cos(θ − α)

)
Rdα (3.86)

Namely,

U cos θ = −τ
2
− 1

2π

∫ 2π

0

τ
1

2
dα (3.87)

Again, by intuition, we can see that the solution for τ is

τ = −2U cos θ (3.88)

Similarly, the surface distribution of φ over the circle is

φb = −
∮
C

τ G d`

=
1

2π

∫ 2π

0

(−2U cos θ) ln
√

2R2 (1− cos(θ − α))Rdα

= −UR
2π

(−2π cos θ) = UR cos θ (3.89)

Here we have used the equation (3.75) as in the case of the potential distribution.
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3.4.5 Vortex distribution

We take the total velocity formulation for only vortex distribution:

q = q∞ +

∮
C

γ ×∇Gd` (3.90)

where the gradient of G in polar coordinates is

∇G =
∂G

∂r
er +

∂G

r ∂θ
eθ

=
1

2π

[{
R− r cos(θ − α)

r2 +R2 − 2rR cos(θ − α)

}
er

+

{
−rR sin(θ − α)

r2 +R2 − 2rR cos(θ − α)

}
eθ

]
(3.91)

Set γ = γ k for 2-D cases and then

γ ×∇G =
γ

2π

r sin(θ − α) er − {R− r cos(θ − α)} eθ
r2 +R2 − 2rR cos(θ − α)

(3.92)

Now apply the body boundary condition on the exterior surface:

0 = q · n = U · n+ n ·
∮
C

γ k ×∇Gd` (3.93)

Recalling U · n|r=R = +U cos θ and n = er, we have

U cos θ =

∫ 2π

0

γ

2π

−R sin(θ − α)

2R2 {1− cos(θ − α)}
Rdα

= −
∫ 2π

0

γ

2π

2 cos
(
θ−α

2

)
sin
(
θ−α

2

)
4 sin2

(
θ−α

2

) dα

= − 1

4π

∫ 2π

0

γ cot

(
θ − α

2

)
dα (3.94)

The solution of the above integral equation is, 11

γ = 2U sin θ (3.95)
11According to Tricomi, F. G. (1957), Integral Equations, Interscience Publishers Inc, p. 167.



148 SINGULARITY DISTRIBUTION METHODS

3.5 Direct Formulation for Surface Speed

3.5.1 Boundary condition for interior flow

To develop a procedure (for 2-D and axisymmetric flow) for which we can di-
rectly solve for the surface speed, we have to do a bit more analysis. 12 This ap-
proach is not necessarily the best either conceptually or numerically and hence
is only illustrative. Consider the past a body with an interior volume. We can
represent this flow as a surface distribution of any vortices:

q(x) = q∞ +
1

4π

∮
SB

γ ×
x− y
|x− y|3

dSy (3.96)

Now if we let x→ x0

q(x0) = q∞ +
1

2
γ(x0)× n∗(x0) +

1

4π
−
∫
SB

γ ×
x− y
|x− y|3

dSy (3.97)

If we set n to be the exterior normal (pointing from the body into the fluid), then
n∗ = n for x→ x0 from outside the body and n∗ = −n as x→ x0 from inside
the body. The flow external to the body satisfies the B.C.: q → q∞ as x → ∞
and also the body B.C. : q · n = 0 (i.e., q(x0) is only tangential to SB).

Our formulation of the problem is such that q · n is continuous across the
body surface, so q · n = 0 inside the surface of the body also. If we require that
the flow inside the body be such that q = 0 for any x = xi, then (q · t)i = 0 also
along the inside of SB. We will have to see what will require the interior flow
to be 0 later. So on the inside,

0 = t(x0)·q∞−
1

2
t(x0)·

[
γ(x0)× n∗(x0)

]
+
t(x0)

4π
·−
∫
SB

γ×
x− y
|x− y|3

dSy (3.98)

12Lewis, R. I. and Ryan, P. G. (1972), “Surface vorticity theory for axisymmetric annular aerofoils and bodies of
revolution with application to duct cowls,” Journal of Mechanical Engineering Science, vol. 14, no. 4, pp. 280–291.
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and on the outside,

t(x0)·q(x0) = t(x0)·q∞−
1

2
t(x0)·

[
γ(x0)× n∗(x0)

]
+
t(x0)

4π
·−
∫
SB

γ×
x− y
|x− y|3

dSy

(3.99)
If we subtract the equation for the inside tangential speed from the equation for
the outside tangential speed, then

t(x0) · q(x0) = t(x0) ·
[
γ(x0)× n∗(x0)

]
(3.100)

Hence for 2-D and axi-symmetric problems, we say |γ| = |q| on the surface.
Thus we have only the one scalar γ to find and, except for sign, it will be the
surface speed.

Since the tangential component of velocity is zero inside the body, its integral
around the contour is also zero. From Stokes theorem, the flow field contained
within this volume must be irrotational on average. We have already specified
that the flow be irrotational, so nothing new is gained from this information.

The divergence theorem (Gauss theorem) requires that the integral of the
normal component of the velocity integrate to zero over the bounding surface for
an incompressible fluid. We also have that the value of the potential is constant
along the inside of the body since the contour integral of q · d` is zero. Then
Green’s first identity with ψ = φ gives∫

Vi

[
φ∇2φ+∇φ · ∇φ

]
dV =

∮
Si

φ n · ∇φ dS = φ

∮
Si

n · ∇φ dS (3.101)

Since the flow is potential and the RHS is zero, we have only∫
Vi

[∇φ · ∇φ] dV = 0, (3.102)

for which the integral must be zero since it is a positive definite quantity. Thus
there is no flow inside the body and hence both q·n and q·t are zero on the inside
of the surface and we have established that if the tangential velocity component
be zero on the inside of the surface then the normal velocity component must
also be zero.
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3.5.2 Example: Vortex distribution over a circle

We take, again, the flow problem aorund a circular cylinder in uniform inflow.
The velocity formulation for only vortex distribution becomes, as Eq. (3.90)
before,

q = q∞ +

∮
C

γ ×∇Gd` (3.103)

where the gradient of G in polar coordinates is given by Eq. (3.91).
For γ = γk, use Eq. (3.98), i.e., apply the body boundary condition that the
total tangential velocity component on the inside of the body surface is zero:

0 = q · t = U · t+ t ·
∫
C

γ k ×∇Gd` (3.104)

Then, we rearrange this:

U sin θ =
γ

2
+

∫ 2π

0

γ

2π

R {1− cos(θ − α)}
2R2 {1− cos(θ − α)}

Rdα (3.105)

The solution of the above integral equation is the same as the previous one, as
expected:

γ = 2U sin θ (3.106)

This distribution corresponds to one of the surface speed.

3.6 Numerical Error

3.6.1 Error measures

With an approximation numerical solution, it would be desirable to check the
solution for arbitrary point x0 in the solution domain; i.e., we seek to find a
numerical solution that in some way has converged to a standard or reference
value for number of terms (or steps), M > M0, in our numerical solution:

|fS(x0)− fM(x0)| ≤ ε all x0 ∈ SB and all M > M0 (3.107)
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where fS(x0) is the standard of comparison (perhaps an exact solution for a
special case; experimental data judged to be free of viscous effects; or some

other numerical solution that one trusts), fM(x0) =
M∑
i=1

fi(x0) and fi(x0) are

the subelements in our numerical analysis that sum to the solution.

Generally numerical solutions are not for arbitrary points in the field of in-
terest but a set of discrete points x0n, 1 ≤ n ≤ N , that may be specified prior to
solution. The criterion for convergence for the set x0n may be stated

|fS(x0n)− fM(x0n)| ≤ ε all x0n ∈ SB and all M > M0 (3.108)

This criterion is necessary but may not sufficient since the set x0n may not be
distributed appropriately. An error measure indicative of this type of conver-
gence is the maximum difference between the standard and our numerical so-
lutions that we find as a result of a search over the entire set of points available
(x0j). Define the error measure in terms of the relative maximum norm of the
local errors:

E∞ =

[
max |fS(x0j)− fM(x0j)|

]
[
max |fS(x0j)|

] (3.109)

Such an error measure defines the maximum non-dimensional error that occurs
to the maximum value of the standard.

Perhaps we are more interested in some measure of the average error. Two
error measures of the relative cumulative errors are defined:

E1 =

[∑N
j=1

∣∣∣fS(x0j)− fM(x0j)
∣∣∣][∑N

j=1

∣∣∣fS(x0j)
∣∣∣] (3.110)

E2 =

[∑N
j=1

∣∣∣fS(x0j)− fM(x0j)
∣∣∣2]1/2

[∑N
j=1

∣∣∣fS(x0j)
∣∣∣2]1/2

(3.111)
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The measureE1 may be representative of the upper bound of error in the compu-
tation of the circulation about the foil section. Actually the panel element length
should be included if this were to represent the circulation but still this is some
measure of it. The measure E2, the relative square error of the approximation
or Euclidean norm, is a popular measure of error in a numerical solution.

It may be representative of the error in the lift coefficient computed from an
integration of the pressure over the foil surface. Hence this physical quantity
may also be better represented if the local panel length were included. Some-
times a particular point on the surface can be troublesome in terms of conver-
gence. Such may be the case near the trailing edge (although some fixes such
as providing rounded trailing edges may be helpful) and near the tips on three-
dimensional wings.
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4.1 Introduction

We have provided the integral formulations for the flow analysis so far. Our
first discussion will be an extended line concerning numerical analysis by panel
methods. The key to this approach is the recognition that the surface integrals
can be represented as a sum of integrals over elementary regions of the surface
with no loss of generality.
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We will require the elementary regions to sum to the real surface and make
approximations in the calculations. In the limit as the number of elementary
regions(or panels) tends to∞, we expect this procedure to converge to the exact
solution since it becomes the Riemann-sum definition of an integral. The utility
of this analysis can be assessed by comparison with more exact procedures and
with appropriate experimental data. In both analytic and numerical solutions,
one seeks to solve a well-posed, or reasonable, problem.

For analytic problems this well-posed condition has been defined as that
quality for which a bounded solution exists, the solution is unique, and the so-
lution depends continuously on the data(in particular, small changes in the data
produce small changes in the solution).

An extension of these concepts to numerical analysis is given by other re-
searchers who point out that a well-posed computing problem(or algorithm a
set of rules specifying the order and kind of arithmetic operations to be used on
specific data) is existence, uniqueness in the sense that repeated runs produce
the same result, and that the solution depends continuously on the data. In prac-
tice there is often more concern with existence than the other two properties of
a well-posed problem.

We have a number of representations of the flow field that can be used to
derive a solution for the specified boundary conditions. We need satisfy only
the body boundary condition since the Laplace equation is already satisfied and
the disturbances die off as x→∞(so we have left only the body B.C. to meet).

One of the choices might be to use the results of the formulation in the pre-
vious chapter: In particular, we must consider our singularity distribution to be,
in 3-D and in 2-D, respectively,

1

2
φ(x0)−

1

4π
−
∫
S

φ(y)
n(y) · (x0 − y)

|x0 − y|3
dSy = − 1

4π
−
∫
S

n · ∇φ(y)
1

|x0 − y|
dSy

(4.1)
1

2
φ(x0)−

1

2π
−
∫
C

φ(y)
n(y) · (x0 − y)

|x0 − y|2
d`y = − 1

2π
−
∫
C

n · ∇φ(y) ln
1

|x0 − y|
d`y

(4.2)
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where n is directed from the body into the fluid field, n · ∇φ is known from the
body B.C.: n · q = 0 = n · (q∞ +∇φ)⇒ n · ∇φ = −n · q∞.

On the RHS we set a known value for a given shape and onset flow and we
would select a suitable discretization and approximation of the surface SB and
representation of the unknown φ, say φ is linear, bilinear, or even constant in
each panel.

4.2 Discretization of a Body Surface

For 2-D flows, recall that our formulation would be

1

2
φ(x0) =

1

2π
−
∫
C

[
φ(y)

n(y) · (x0 − y)

|x0 − y|2
− n · ∇φ(y) ln

1

|x0 − y|

]
d`y (4.3)

The essence of the panel method approximation is to subdivide the surface into
small elements. We can do this without loss of generality by specifying

1

2
φ(x0) =

1

2π

N∑
j=1

−
∫
Cj

[
φ(y)

n(y) · (x0 − y)

|x0 − y|2
− n · ∇φ(y) ln

1

|x0 − y|

]
d`y

(4.4)
where the Cj are a subdivision of the surface that will be sequentially ordered
and one with some sort of formalism such that as N becomes large the maxi-
mum length of any Cj becomes arbitrarily fine. As N →∞, we know that one
expression for the integral is the Riemann sum.

In using this representation, our interest is to approximate the integrals over
Cj in some manner such that a relatively few number of elements is sufficient to
provide an acceptable value for the integral. One of our choices is to consider a
portion of the surface of the body. The element is defined to be bounded by the
end points of the interval.

With this approach we would find a system of linear equations and solve
them for φ(y). Once the values of φ(y) are known, a differentiation of the val-
ues obtained would give the surface speed. We can call such a procedure a
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low-order panel method. 1 Such procedures are reported to be cost effective,
accurate, and simple to formulate. Note we solve for only the one scalar quan-
tity even for 3-D flow (rather than 3 vector components)

The two-step process required to find the surface speed: that is, first, we
must solve for the singularity distribution and then do another step (here taking
the gradient) to find one of the quantities of great interest (the surface speed).
Recall that once the surface speed is known we can use the Bernoulli equation
to obtain the surface pressure and integrate the pressure to find loads.

4.2.1 Evaluation of the integrals for a line element

Figure 4.1 Notation for evaluation of induction integrals on a line element.

The symbols shown in Figure (4.1 ) are defined as follows:

l =
∣∣∣y
o
− y

1

∣∣∣ , ro = y
o
− x , r1 = y

1
− x

lo = −ro · e , l1 = r1 · e , h = ro · n = r1 · n

θ = arctan
lo
h

+ arctan
l1
h

= arctan
2 l h

r2
o + r2

1 − l2

Here, x is the point to calculate the value and y is defined on the body Panel as
y = y

o
+ s e.

1See Maskew, B. (1982), “Prediction of Subsonic Aerodynamic Characteristics of Panel Methods,” J. of Air-
craft, vol. 19, no. 2, pp. 157–163.
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The Green function is written as

G =
1

2π
ln r (4.5)

∇G =
1

2π

r

r2
=

1

2 π

s e+ ro

(s− lo)2 + h2
(4.6)

Then the associated integrals can be evaluated as follows:

(1) Calculation of
∫
n · ∇Gdl

∫
n · ∇Gdl =

1

2π

∫ l

o

n · (s e+ ro)

(s− lo)2 + h2
ds

=
h

2π

∫ l

o

ds

(s− lo)2 + h2

=
1

2π

(
arctan

l1
h

+ arctan
lo
h

)

=


0 (if h = 0)

θ

2 π
(if h 6= 0)

(4.7)

(2) Calculation of
∫
Gdl

∫
Gdl =

1

2 π

1

2

∫ l

o

ln
[
(s− lo)2 + h2

]
ds

=


1

2π

[
−l +

1

2
lo ln r2

o +
1

2
l1 ln r2

1

]
(if h = 0)

1

2π

[
−l +

1

2
lo ln r2

o +
1

2
l1 ln r2

1 + h θ

]
(if h 6= 0)

(4.8)
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4.3 Trailing Wake Sheet Behind a Lifting Body

4.3.1 Boundary condtions

Assuming an inviscid fluid, the wake generated by time-varying flow around a
lifting body appears as a discontinuity in the tangential flow velocity. In this
case the infinitely thin wake sheet must be treated as a physical free boundary
of the fluid region, or mathematically as a discontinuity of the domain. From a
mathematical standpoint, a difference between two- and three-dimensional flow
field disturbed by bodies is that the region occupied by fluid is double-connected
in the two-dimensional case and single-connected in the three-dimensional case.
2 To ensure a unique solution, two boundary conditions are required; one is the
kinematic boundary condition which states continuity of the velocity compo-
nent normal to the vortex sheet:

(q+ − q−) · n = 0. (4.9)

The other is the dynamic condition of no net stresses on the vortex sheet; i.e.,
the vortex sheet is a free surface. For inviscid fluid, this leads to the requirement
that pressure be continuous across the sheet:

p+ − p− = 0. (4.10)

4.3.2 Vortex distribution on wake sheet

A wake vortex sheet of vortex strength (γ) is composed of vortices continuously
produced at the T. E. according to the Kutta condition. The wake vortex sheet
satisfying both the kinematic and the dynamic conditions, is deformed with time
as flow conditions change. Let us denote the quantities in two regions separated
by the wake sheet with the superscripts + and −. Then, from the kinematic
condition the relative acceleration vectors on either side of the wake sheet in the

2See, e.g., Morino, L., Kaprielian, Z. and Sipcic, S. R. (1985), “Free Wake Analysis of Helicopter Rotors,”
Vertica, vol. 9, no. 2, pp. 127–140.
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moving frame in the two regions can be written:

a+ =
∂q+

∂t
+ q+ · ∇q+ =

∂q+

∂t
+
(
q
m
− γ

2
t
)
· ∇q+, (4.11)

a− =
∂q−

∂t
+ q− · ∇q− =

∂q−

∂t
+
(
q
m

+
γ

2
t
)
· ∇q−, (4.12)

where q
m
≡
q+ + q−

2
is the mean velocity on the wake sheet and the vortex

strength γ is defined by γ t = q− − q+, the tangential vector being taken as
pointing downstream along the vortex sheet. From the Euler equations for the
two regions, knowing that the additional acceleration terms resulting from tak-
ing the moving frame have the same value across the wake sheet, it follows
that

(a+ − a−) = −1

ρ
(∇p+ −∇p−), (4.13)

where ρ is the (uniform) fluid density. The inner product of (4.13) with the sheet
tangential vector gives

(a+ − a−) · t = 0. (4.14)

This is because (∇p+−∇p−) ·tmust be zero along the sheet by the dynamic
condition of pressure continuity. Therefore, the governing equation for γ from
(4.11), (4.12) and (4.14) becomes,

∂(γ t)

∂t
· t+

{
q
m
· ∇(γ t)

}
· t+ γ

(
t · ∇q

m

)
· t = 0, (4.15)

or
∂γ

∂t
+ q

m
· ∇γ + γ t ·

∂q
m

∂`
= 0, (4.16)

where
∂

∂`
denotes the differential in the tangential direction (t) along the sheet.

The last term represents the effect of the local stretching of the sheet on the
variation of the vortex strength with time.
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4.3.3 Doublet distribution (potential jump) on wake sheet

A second alternate wake sheet singularity is that of doublets with strength cor-
responding to the jump in disturbance potential (4φv). This distribution is also
governed by the kinematic and dynamic conditions ((4.9) and (4.10)). The sub-
script v will be used to refer to values at the wake sheet.

If the pressure relation given by (4.74) is applied to the upper and the lower
sides of the sheet, respectively, the following two equations are obtained:

p+

ρ
+
∂φ+

∂t
− 1

2
q2
F

+
1

2
q+2

+ q
o
· q

F
= C(t), (4.17)

p−

ρ
+
∂φ−

∂t
− 1

2
q2
F

+
1

2
q−

2

+ q
o
· q

F
= C(t). (4.18)

Subtracting (4.18) from (4.17), and knowing that the other terms without a su-
perscript have the same value on the both sides of the sheet under the assumption
of zero thickness of the sheet, we have(
D(4φv)

Dt

)
m

=

(
D(φ+ − φ−)

Dt

)
m

=
∂(φ+ − φ−)

∂t
+ q

m
· ∇(φ+ − φ−) = 0.

(4.19)
Here the kinematic and dynamic conditions have been used. Equation (4.19)
implies that the fixed value of the jump in disturbance potential across the wake
vortex sheet is convected with the mean velocity on the sheet. This statement is
equivalent to Kelvin’s circulation theorem describing the constancy of circula-
tion round any closed material curve. The disturbance potential jump across the
sheet corresponding to a doublet distribution with strength µ(xv, t)(= 4φv =

φ+ − φ−) can be replaced by an equivalent vorticity distribution.

4.3.4 Shedding vortex at trailing edge

When including the influence of the wake sheet in the derivation of an ana-
lytic solution, the use of (4.19) for the doublet distribution might be easier in
manipulation than that of (4.16) for the vorticity distribution on the sheet. The
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reason is that we need an extra consideration of the sheet geometry caused by
the third term of (4.16) representing the local stretching of the vortex sheet. An-
other advantage of the numerical implementation of (4.19) is that the value of
the potential jump at the T. E. determined by the Kutta condition at each time
step can be directly assigned to a fixed value on the wake sheet that just left the
T. E.

Meanwhile the position vector xv(t) of a point of fixed 4φv value on the
shed-vortex sheet that left the T. E. at time to (to > 0) is given by the non-linear
relation:

xv(t) =

∫ t

to

q
m

(xv(τ)) dτ + xTE . (4.20)

To calculate the mean velocity (q
m

) in (4.19), the position of the wake sheet
must be prescribed by using the integral form given by (4.20). There appears
to be a non-linear coupled effect between the mean velocity and the position of
the wake sheet.

One of the important features related to the wake sheet in unsteady flow
about the foil is a time-varying bound circulation. Applying (4.19) as a point
on the wake sheet approaches the T. E. becomes

dΓB

dt
= −q

m
· t
∣∣∣
TE

γTE, (4.21)

where we define the (disturbance) bound circulation by ΓB = −(φ+ − φ−)|
TE

(with positive taken as counterclockwise) and the shed vorticity at the T. E. by
γTE t = −∇(φ+ − φ−)TE. Equation (4.21) is closely related to the unsteady
Kutta condition as described in the next section.

4.4 Kutta Condition

4.4.1 Steady Kutta condition

The Kutta condition has been applied originally in the steady two-dimensional
flow case for uniqueness of solution mathematically and for regular flow in the
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vicinity of the T. E. physically. It eventually implies that the rear stagnation
point is at the T. E. for a non-cusped sharp-edged foil in order to satisfy both
the pressure-equality condition and the condition of finite velocity at the T. E.

Figure 4.2 Flow past a foil without circulation, and with a properly selected circulation so
that a stagnation point is at T.E. From Newman (1977).

There are two commonly used types of the steady (and possibly unsteady)
Kutta condition in a panel method. One type, say ‘wake-tangency type’, con-
sists of selecting a point at a short distance out in the fluid along the wake sheet
element attached to the T. E. with a given inclination angle and requiring the
flow at that point to be tangent to that element.
The other type, say ‘pressure-equality type’, consists of requiring equal values
of velocity at the control points on the two panel elements adjacent to the T. E.
In some cases, significant variations in the overall circulation and local flow
properties may result from different choices for the type and/or the location of
the application point of the numerical Kutta condition.

4.4.2 Unsteady Kutta condition

But if we applied this interpretation in unsteady flow (in which we have a shed
vortex sheet trailing downstream and a time derivative term in the pressure
relation), an unacceptable situation will occur; either infinite vortex strength
(γTE = ∞) or dΓB/dt = 0 at the T. E. as is easily seen in (4.21), whereas shed
vorticity (γTE) as well as the mean velocity (q

m
) at the T. E. should remain finite.
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Unlike the steady two-dimensional flow cases, the two conditions of pressure
equality and finite velocity can not be applied exactly at the T. E., unless one of
the two conditions is sacrificed to save the other one. The reason is that there is
inherently a velocity difference (shed-vortex strength) across the sharp T. E.

Following the concepts based on the pressure-equality condition and the
finiteness of velocity, Mangler & Smith 3 have investigated the trailing-edge
flow for steady three-dimensional lifting problems. The essential result is that
the flow leaves the T. E. parallel to either the upper or lower surface depending
on the sign of the vorticity in the sheet as it leaves the T. E. The possible ori-
entation of the sheet is limited to be between the tangents of the foil surface at
the T. E., otherwise an infinite velocity will occur. As an extension of Mangler
and Smith’s approach to the unsteady two-dimensional flow case, the so-called
‘Maskell’ trailing-edge flow is discussed by Basu & Hancock and Morino et al.
4

There is no rigorous model of the unsteady Kutta condition for general un-
steady motions unless the viscous effect is fully investigated. However it is
considered acceptable to employ a numerical scheme by which a resulting solu-
tion should satisfy nearly the condition of finite velocities and the condition of
zero loading in the neighborhood of the T. E. or at the T. E. The unsteady Kutta
condition adopted possibly in the numerical method is

(1) to introduce the wake sheet as a ‘barrier’ for the existence of a single-
valued potential function in the fluid region about the foil,

(2) to assume a parabolic form for potential values (φ) along the upper and
lower foil surfaces so that the potential jump can be extrapolated to the
T. E. as points on the foil surface approach the T. E. (the stagnation point
can be located at either the upper or the lower trailing edge, depending on
the sign of dΓB/dt), and

3Mangler, K. W. and Smith, J. H. B. (1970), “Behaviour of the Vortex Sheet at the Trailing Edge of a Lifting
Wing,” Aeronautical Journal of the Royal Aeronautical Society, vol. 74, pp. 906–908.

4Basu, B. C. and Hancock, G. J. (1978), “The Unsteady Motion of a Two-Dimensional Aerofoil in Incompress-
ible Inviscid Flow,” Journal of Fluid Mechanics, vol. 87, pp. 159–178.
Morino, L., Kaprielian, Z. and Sipcic, S. R. (1985), “Free Wake Analysis of Helicopter Rotors,” Vertica, vol. 9,
no. 2, pp. 127–140.
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(3) to select a point at a short-distance off the T. E. along a straight-line wake
sheet element attached to the T. E. and require the flow at that point to be
tangent to the sheet. This model requires an iteration procedure to deter-
mine the potential jump and the orientation of the straight-line wake sheet
element at the T. E. The iteration process for the orientation of the straight-
line element is similar to that of Basu & Hancock. 5 The difference in
calculated global forces between the scheme using the ‘Maskell’ local be-
havior and the present scheme using the Basu & Hancock procedure for
the orientation of the straight-line element is small to negligible (although
not illustrated herein) except that if the former is used, the results against
time is not smooth at a few time steps near instants at which the sign of
the rate of the bound circulation changes. The numerical implementation
of the Kutta condition will be described in Appendix A.

4.5 Analytic Solution for Elliptic Section in Steady Uni-

formly Sheared Flows

4.5.1 Conformal mapping

It is desirable to obtain some exact solutions for steady uniform shear-flow
about specific profiles in order to confirm the validity of numerical methods
used in the present work. 6 For uniformly sheared onset flow with an inviscid
incompressible fluid in 2-D, the disturbance potential exists and its governing
equation is the Laplace equation.

A typical solution method is the extension of the classical conformal map-
ping technique where the foil in the physical plane is mapped into a circle in
the complex plane. The known flow about the circle is then transformed to that
about the physical shape. Among many available conformal transformations,

5Basu, B. C. and Hancock, G. J. (1978), “The Unsteady Motion of a Two-Dimensional Aerofoil in Incompress-
ible Inviscid Flow,” Journal of Fluid Mechanics, vol. 87, pp. 159–178.

6The details are refered to Suh (1990).
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Figure 4.3 Foil configuration for steady uniformly sheared onset flow. Uo is a reference
velocity of undisturbed flow at y′ = 0 parallel to x′-axis. CR is a control surface of a circle with
a radius R.

the Moriya conformal mapping function suggested by Moriya 7 might be used
for the purpose of validating the numerical methods developed against analyti-
cal results.

The conformal transformation is specified generally as

z = x+ i y = C−1
ζ

a
+ Co +

∞∑
n=1

Cn
an

ζn
, (4.22)

where z = x + i y is the complex coordinate of a point in the physical plane
(z-plane), ζ = ξ + i η is the complex coordinate in the circle plane (ζ-plane),
a is a characteristic length dimension (taken as the radius of a circle that is set
to 1 for non-dimensionalization), and Cn = An + i Bn are complex mapping
constants. Specially for an ellipse with thickness-chordlength ratio τ , all Cn’s
are zero except A−1 = (1 + τ)/4, A1 = (1− τ)/4.

Then the x-coordinates of the surface points can be expressed as xs(θ) =
c

2
cos θ

where θ is polar coordinates in the circle plane where c is chordlength. The y-

7Moriya, T. (1941), “On the Aerodynamic Theory of an Arbitrary Wing Section,” Journal of the Society of
Aeronautical Sciences, vol. 8, no. 78, pp. 1054–1060, English version: Selected Scientific and Technical Papers,
University of Tokyo, 1959, pp. 48–59.
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coordinates of the points on the upper surface are defined as:

ys(θ) =
c

2
τ sin θ (4.23)

4.5.2 Mapping coefficients

Now, we assume the complex disturbance potential F1(ζ) as, satisfying the
Laplace equation and the far-field behavior:

F1(ζ) = φ1 + i ψ1 = −i ΓB

2π
ln ζ + c1

1

ζ
+ c2

1

ζ2
+ · · · , (4.24)

where φ1 is the disturbance potential and ψ1 is the disturbance stream function.
Here the disturbance bound circulation ΓB (with positive as counterclockwise)
and the complex coefficients cn (= αn + i βn) are to be determined by using the
kinematic body boundary condition and the Kutta condition at the T. E.

The kinematic boundary condition on the circle in the ζ-plane becomes

1

r

∂ψ1

∂θ

∣∣∣∣
r=1

= −
(
q∞ · n

∣∣∣∣dzdζ
∣∣∣∣)∣∣∣∣

ζ=eiθ
, (4.25)

where the undisturbed (sheared onset) velocity q∞ in the z-plane is given by:

q∞ = Uo

{
1 +

K

c
(y cosα− x sinα)

}
i′ (4.26)

where K is the gradient of shear inflow velocity. From (4.25), the coefficients
αn and βn (non-dimensionalized by the chordlength c, the radius of the circle a
and the reference speed Uo) are determined (calculation is lengthy but straight-
forward):

α1 = (A−1 − A1) cosα,

β1 = (A−1 + A1) sinα,

α2 = −A2 cosα− K

4

(
A2
−1 − A2

1

)
sin 2α,

β2 = A2 sinα +
K

4

[
(A−1 − A1)

2 cos2α− (A−1 + A1)
2 sin2α

]
(4.27)
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where the coefficients with n greater than 2 in Eq. (4.24) are zero.

Now, to find ΓB, a stagnation point should be imposed at the T. E. (as the
Kutta condition): (

−∂ψ1

∂r
+ q

o
· t
∣∣∣∣dzdζ
∣∣∣∣)∣∣∣∣

r=1
θ=0

= 0. (4.28)

Inserting (4.27) for the coefficients αn and βn into (4.28) and arranging for ΓB,
we find

ΓB

2πUo c
= −

[
2∑

n=1

nβn + (A−1 − A1)

(
1− K

2
sinα

)
sinα

]
. (4.29)

The total surface qs in the direction of increasing θ is

qs(θ)

Uo
=

[
{1 +K (y cosα− x sinα)}

(
dx

dθ
cosα +

dy

dθ
sinα

)

+

{
ΓB

2π
+

2∑
n=1

n(−αn sinnθ + βn cosnθ)

}]/√(
dx

dθ

)2

+

(
dy

dθ

)2

∣∣∣∣∣∣
r=1

(4.30)

Here
dx

dθ

∣∣∣∣
r=1

and
dy

dθ

∣∣∣∣
r=1

are the x- and y-component of the surface tangential

vector in the direction of increasing θ, respectively:

dx

dθ

∣∣∣∣
r=1

= − (A−1 + A1) sin θ,
dy

dθ

∣∣∣∣
r=1

= (A−1 − A1) cos θ. (4.31)

4.5.3 Pressure, lift and moment

A Bernoulli equation for two-dimensional steady flow with constant vorticity is
given by, 8

p

ρ
+
q2

2
+ ωo ψ = constant. (4.32)

8See Yih, C.-S. (1977), Fluid Mechanics, McGraw-Hill, p. 70.
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where ψ denotes stream function value that depends on streamlines concerned.
Then the pressure coefficient along the profile is,

Cp

(
≡ p− p∞

1
2 ρU

2
o

)
= (1 + 2KCψ)− q2

s

U 2
o

, (4.33)

or within an additive constant,

Cp = 1− q2
s

U 2
o

. (4.34)

The force components Fx and Fy (in the x- and y- direction of the coor-
dinate system fixed on the foil) and the moment acting on the foil (about the
origin) are expressed as an integral of the pressure and velocity distribution on
the enclosing circle from the conservation theorem for momentum and angular
momentum: 9

Fx = −
∫
CR

p dy −
∫
CR

ρ qx (qx dy − qy dx),

Fy =

∫
CR

p dx−
∫
CR

ρ qy (qx dy − qy dx), (4.35)

Mo =

∫
CR

p (x dx+ y dy)−
∫
CR

ρ (x qy − y qx) (qx dy − qy dx),

where qx and qy are, respectively, the x- and y- component of the total velocity
on the contourCR with a sufficiently large radius (R) in the physical plane. (See
Figure 4.3 ).

First the inversion of the mapping function is given by

ζ =
z

A−1
− Ao

A−1
− A1

z
− AoA1 + A2

2

z2
+ · · · . (4.36)

Then (4.24) for the complex (disturbed) velocity potential is inverted as a power

9See, for details, Tsien, H.-S. (1943), “Symmetrical Joukowsky airfoils in shear flow,” Quarterly of Applied
Mathematics, vol. 1, pp. 130–148.
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series of z:

F1(z) = −i ΓB

2π
ln

z

A−1
+

{
i

ΓB

2π
Ao + (α1 + i β1)A−1

}
1

z

+

{
i

ΓB

2π

(
A−1A1 +

1

2
A2
o

)
+ A−1Ao (α1 + i β1) + A2

−1 (α2 + i β2)

}
1

z2

+ · · · . (4.37)

Then, the disturbance velocity u can be expressed as

ux − i uy =
dF1

dζ

dζ

dz

∣∣∣∣
ζ=reiθ

(4.38)

Now using (4.36) and (4.37) together with (4.27), (4.32) and (4.38) for the
velocity components and the pressure, we find the lift and the moment coeffi-
cients (about the mid-chord point):

CL = 4π(ao −K b1), (4.39)

CMo
= −4π(a1 +K b2), (4.40)

where

ao = −ΓB

2π
, (4.41)

a1 = A−1 β1 cosα− A−1 α1 sinα, (4.42)

b1 = −A−1 β1 sinα− A−1 α1 cosα, (4.43)

b2 = −A2
−1 α2 cos 2α−

(
A−1A1

ΓB

2π
+ A2

−1 β2

)
sin 2α. (4.44)

Here it is noted that ΓB , An , αn and βn have been non-dimensionalized by Uo , c
and a.

4.5.4 Summarized results

For an ellipse with the thickness ratio τ , the quantities qs, Cp, CL and CMo
can

be expressed simply in terms of K,α, τ as:
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qs
Uo

=
(eo + e1 sin θ + e2 cos θ + e3 sin 2θ + e4 cos 2θ)√

sin2θ + τ 2 cos2θ
, (4.45)

Cp =

{
1 +

K2

8

(
τ 2 cos2α + sin2α

)}
− q2

s

U 2
o

, (4.46)

CL = π

{
2(1 + τ) sinα +Kτ

(
τ cos2α− sin2α +

1

2

)}
, (4.47)

CMo
=

π

64
(1− τ 2) sin 2α {16 + 8K(1 + τ) sinα

+K2(1 + 3τ) (τ cos2α− sin2α)
}
, (4.48)

where

eo = −(1 + τ)

{
sinα +

K

4

(
τ cos2α− sin2α

)}
, (4.49)

e1 = −(1 + τ) cosα, (4.50)

e2 = (1 + τ) sinα, (4.51)

e3 =
K

4
(1 + τ)2 cosα sinα, (4.52)

e4 =
K

4
(1 + τ) (τ cos2α− sin2α). (4.53)

For uniform onset flows, we can simply set K = 0 in the above results to
have the solution. The exact value of the surface speed is given, for a general
angle of attack α, by

qs
U

= (1 + τ)

[
sin θ cosα + (1− cos θ) sinα√

sin2 θ + τ 2 cos2 θ

]
(4.54)

The lift coefficient is CL = 2π(1 + τ) sinα .
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4.6 Unsteady Lifting Flows for Two-Dimensional Hydrofoils

4.6.1 Equations of motion in a moving frame

Let q(x, y, z, t) describe the flow field in a moving coordinate system that is
in motion relative to a space fixed system x′, y′, z′. In general, the relations be-
tween coordinates, velocities, and accelerations are those of Eqs. (1.208–1.211);

x′ = x+R (4.55)

q′ = q + Ṙ + Ω× x (4.56)
d′q

dt
=

dq

dt
+ 2 Ω× q + Ω̇× x+ Ω× (Ω× x) + R̈ (4.57)

Thus the left-hand side of Eq. (4.57) must be augmented by addition of
four new terms, in general, in order to constitute a differential equation for
q(x, y, z, t).

On the other hand, space derivatives such as grad, div, and curl are unaffected
in form by the transformation of axes. The only change in such terms therefore
arise from the process of carrying out these operations on quantities, such as q,
which have additional terms. There are no such terms in the scalar quantity p;
hence Eq. (4.57) are altered only by addition of the four new left-hand terms
mentioned.

Before writing down the new equation of motion, let us consider the equation
of continuity. Consider the term∇·′q, and let∇· denote the divergence operator
in the moving system:

∇′ · q′ = ∇ · q′ = ∇ ·
(
q + Ṙ + Ω× x

)
= ∇ · q (4.58)

because the divergences of the last two terms are zero (see Eq. (1.67)). The
physical meaning of this result should be clear to the reader.

Thus the equations for the general case of fluid motion described in a moving
coordinate system are

Dρ

Dt
+ ρ∇ · q = 0 (4.59)



4.6 Unsteady Lifting Flows for Two-Dimensional Hydrofoils 173

and

Dq

Dt
+ 2 Ω× q + Ω̇× x+ Ω× (Ω× x) + R̈ = −1

ρ
∇p+ FB + ν∇2q (4.60)

4.6.2 Representation of unsteady motion of a hydrofoil

A two-dimensional foil of finite thickness and/or camber with a fixed mean
angle of attack in uniform onset flow of an incompressible inviscid fluid is as-
sumed to undergo combined unsteady periodic motions (and/or sudden start-up
motion).

Since the first effort is concerned with the disturbance velocity field, this sec-
tion now gives the formulation of the boundary value problem for the unknown
disturbance velocity potential.

In most unsteady problems it is convenient to adopt a moving reference
frame fixed relative to the body and then to define the flow field relative to
the moving body, for which the geometric definition of a rigid body is time-
independent.

Figure 4.4 represents a relative configuration of a body in the inertial and
moving frames with appropriate notations to be used for the formulation of the
boundary value problem. Note that the prime notation (′) refers to the quantities
expressed in the inertial frame. Here the origin (O) of the moving frame is
located at the mid-chord point of the foil and the x-axis is taken as an extension
of the chordline.

The vectors ρ
F
(t) and xp(= xp i+ yp j) are the position vector of a reference

point (herein taken as the pivot point of a pitching motion) measured in the
inertial and the moving frame, respectively.

The vector Ω(t) (= Ω(t) k for two-dimensional motion, with positive taken
as counterclockwise) is the angular velocity of the moving frame about the ref-
erence point. Then q

F
(= ρ̇

F
(t) + Ω(t)× (x− xp)) represents the velocity (ob-

served in the inertial frame) at a field point (xp) in the moving frame due to its
translational and angular motions relative to the inertial frame. We shall call q

F
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Figure 4.4 The coordinate systems and a combined unsteady flow situation.

frame velocity. Here the overdot (·) in ρ̇
F

denotes the time derivative. α(t) is
the angle of attack at an instant of time related to the pitching motion which can
be expressed as

α(t) = αm − tan−1 rLE sin(θLE − αp)− rTE sin(θTE − αp)
rLE cos(θLE − αp)− rTE cos(θTE − αp)

. (4.61)

Here rLE and rTE are the distance from the pivot point of the pitching motion
(i.e. xp) to the leading edge and the trailing edge respectively (hereafter L. E.
and T. E. stand for the leading and the trailing edge, respectively). θLE and
θTE are the angle between the line joining the pivot point to the corresponding
edge respectively and the positive Ox-axis, αm is the angle of attack at the
mean position of the foil (fixed in time), and αp(t) is the instantaneous pitch
angle specified by the pitching motion about the pivot point xp (herein α̇p(t) =

−Ω(t)).

Then the coordinates and unit vectors between the two frames can be recov-
ered from the relations:

x′ = ρ
F
(t)+(x−xp), i′ = i cosα(t)+j sinα(t), j′ = j cosα(t)− i sinα(t).

(4.62)
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4.6.3 Representation of velocity field in a moving frame

It is important to note that the vorticity is not the same in the two systems. Using
the primes as before, we see that, according to Eq. (1.68),

∇′ × q′ = ∇× q′ = ∇×
(
q + Ṙ + Ω× x

)
= ∇× q + 2 Ω (4.63)

We find the physical meaning of this result. An important case is one of flow
that is irrotational but is viewed in a rotating coordinate system; it appears to be
rotational. The case of a rotating propeller frame is typical.

The total velocity, observed in the inertial frame fixed in space is made up of
two parts:

q′
T
(x′, t) = q′

o
(x′) + u′(x′, t), (4.64)

where q′
o
(x′) is an onset velocity field that satisfies the continuity equation itself

(a steady potential flow when measured in the inertial frame) and u′(x′, t) is the
disturbance velocity component to be determined herein.

In the moving frame the total velocity is the sum of the frame velocity (q
F
)

and the fluid velocity (q) measured by an observer in the moving frame:

q
T
(x, t) = q

F
(x, t) + q(x, t), (4.65)

where x and q are measured relative to the moving frame.

Equating the two different expressions of Eqs. (4.64) and (4.65), the relative
velocity (q) is expressed by

q(x, t) = q
o
(x, t)− q

F
(x, t) + u(x, t) (4.66)

4.6.4 Formulation of boundary value problems for the disturbance poten-
tial.

According to the representation of the foil motion and the velocity field as out-
lined in the previous subsection, the flow characteristics about a foil can be
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determined by solving the boundary value problem for the disturbance velocity
(u) relative to the known undisturbed velocity field (q

o
-q

F
).

Now, let the foil be assumed to undergo unsteady (not necessarily sinusoidal)
rigid motions in a uniform, unbounded onset flow field of an inviscid incom-
pressible fluid, with any static effects due to the gravity ignored.

Then the continuity equation applied to the total velocity (q′
T
) in the inertial

reference frame becomes (since the differential operators with respect to space
coordinates have the same value)

∇′ · q′
T

= ∇ · (q
F

+ q) = 0. (4.67)

Since ∇ · q
F

= ∇ · (ρ̇
F

+ Ω × (x − xp)) = 0 and ∇ · q
o

= 0, the continuity
equation applied to the relative velocity (q) in the moving frame is expressed by

∇ · q = ∇ · (u− q
F

+ q
o
) = 0. (4.68)

Thus the continuity equation in the moving frame for the disturbance velocity
reduces to ∇ · u = 0, which implies that working in a moving frame does not
affect the expression of the continuity equation.

For uniqueness, there remain conditions to be imposed on the boundary of
the fluid region. The kinematic body boundary condition (tangency condition or
no-penetration condition) on the rigid body surface (represented by B(x)) can
be expressed in terms of the disturbance velocity (u) observed in the moving
frame:

u · n
(
≡ ∂φ

∂n

)
= −(q

o
− q

F
) · n (4.69)

In the presence of an elastic deformation (which is not considered in the present
work), the normal component of the local velocity of deformation is added on
the right-hand side of the above equation.

In addition, the far-field condition (i.e., u → 0 far away from the body),
the Kutta condition at the T. E., and the kinematic and the dynamic conditions
on the shed-vortex sheet (represented by W (x, t)) should be satisfied for the
existence of a unique disturbance velocity (u) or velocity potential (φ) for any
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lifting problem.

The fluid potential (φ) is determined by solving the boundary value problem
at discrete time steps in a step-by-step fashion, or at arbitrary time, either ana-
lytically or numerically. Once the potential is known, the disturbance velocity
field is obtained by taking the gradient of the disturbance potential (φ). The
velocity field is then obtained by adding the undisturbed velocity field and the
disturbance velocity as in (4.66). Finally the surface pressure distributions, and
the forces and the moments acting on the foil section can be computed, respec-
tively, by using a Bernoulli-like equation (which is described in the following
subsection) and integrating the pressure on the body surface.

4.6.5 Bernoulli-like equation in a moving frame

The Euler equation in an inertial reference frame may be put in the form, ne-
glecting external body force potential terms:

∂′q
T

∂t
− q

T
× (∇′ × q

T
) = −∇′

(
p

ρ
+

1

2
q2
T

)
. (4.70)

Knowing that the gradient operators have the same form in either inertial or
non-inertial reference frame, we reduce this equation to

∂′(q
o

+ u)

∂t
− (q + q

F
)× (∇× (q

o
+ u)) = −∇

(
p

ρ
+

1

2
(q + q

F
)2

)
. (4.71)

Because the onset velocity distribution q
o

is usually a function of only the space
position in the inertial reference frame (i.e., ∂q′

o
(x)/∂t = 0) and the disturbance

velocity (u) is irrotational (i.e. u = ∇φ), Eq. (4.71) becomes

∇
(
∂′φ

∂t

)
− (q + q

F
)× (∇× q

o
) +∇

(
p

ρ
+

1

2
(q + q

F
)2

)
= 0. (4.72)
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We can convert the operator
(
∂′

∂t

)
in the inertial frame into

(
∂

∂t
− q

F
· ∇
)

in

the moving frame. 10 This indicates that the rate of change of a quantity (say
φ) at a point fixed in the space-fixed frame is measured by an observer in the
moving frame. We can then write Eq. (4.72) as

∇
(
p

ρ
+
∂φ

∂t
+

1

2
q2 − 1

2
q2
F

+ q
o
· q

F

)
− (q + q

F
)× (∇× q

o
) = 0. (4.73)

For irrotational onset flow, the pressure equation can be written as

p

ρ
= −∂φ

∂t
+

1

2
q2
F
− 1

2
q2 − q

o
· q

F
+ C(t). (4.74)

For the case of marine propellers, we may take C(t) =
p∞
ρ

+
1

2
V 2
s and q

F
=

Ω× x = −2π n r eθ for right-hand rotation, where Vs is ship speed and eθ is the
unit vector of the propeller-rotation direction.

The resulting expression for the unsteady pressure coefficient (Cp) non-
dimensionalized by a reference speed Uo (which is typically taken as an undis-
turbed main uniform velocity or the moving speed of a body) is

Cp

(
≡ p− p∞

1
2 ρU

2
o

)
=
ρHo − p∞

1

2
ρU2

o

− 2

U 2
o

∂φ

∂t
+
q2
F

U 2
o

−
q2

U 2
o

−
2 q

o
· q

F

U 2
o

, (4.75)

where Ho is a Bernoulli constant representing total energy-head at the reference
point far away from the body, and p∞ the reference pressure in the inertial frame
far away from the body. To within an additive constant, it becomes

Cp = − 2

U 2
o

∂φ

∂t
+
q2
F

U 2
o

−
q2

U 2
o

−
2 q

o
· q

F

U 2
o

. (4.76)

10See Milne-Thomson, L. M. (1968), Theoretical Hydrodynamics, fifth ed., Macmillan, London, p. 89, and
Kochin, N. E., Kibel, I. A. and Roze, N. V. (1964), Theoretical Hydrodynamics, Interscience Publishers Inc.,
p. 116.
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4.6.6 Integral equation for disturbance potential

We will consider two-dimensional lifting flow field for a hydrofoil for our spe-
cific examples and general formulation. The problem of defining the velocity
field has been reduced to solving the Laplace equation for the disturbance (per-
turbation) potential (φ);

∇2φ = 0 in the fluid region, (4.77)

being subject to the no-penetration condition on the body surface;

u · n
(
≡ ∂φ

∂n

)
= −

(
q
o
− q

F

)
· n on B(x) (4.78)

the Kutta condition at the T. E. given by (A.10), the combined kinematic and
dynamic conditions on the shed-vortex sheet;

∂(φ+ − φ−)

∂t
+ q

m
· ∇(φ+ − φ−) = 0 on W (x) (4.79)

and a far-field decay condition;

φ→ constant as r →∞. (4.80)

The disturbance velocity potential (φ) which satisfies the Laplace equation in
the fluid region with a ‘barrier’ representing the wake sheet can be represented
in the form of an integral equation based on Green’s scalar (second) identity:

φ(x, t) =
1

2π

∫
B

(
∂φ(y, t)

∂n
ln |x− y|+ φ(y, t)

n(y) · (x− y)

|x− y|2

)
d`y

+
1

2π

∫
W

4φv

n · (x− y)

|x− y|2
d`y . (4.81)

Here the range of integration of the position vector of the source point (y )
representing the dummy variable of the integrals is the body surface contour
B(x) and the wake sheet W (xv, t). The contribution of the integration along
the contour of infinite radius enclosing the body goes to a constant as the radius
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of the circuit goes to infinity because the net flux of volume of fluid becomes
zero for a closed rigid body. 11

The unit normal vectors (n) point outward from the body surface and upward
at the wake sheet, and 4φv is the jump in the disturbance potential (φ+ − φ−)
across the wake sheet of zero thickness. The superscripts + and − indicate the
limit on the upper and the lower side, respectively, of the sheet. This integral
representation is more efficient in computation time than direct solution of the
Euler equation (say, by a finite difference scheme) (since only the surface values
of the physical quantities are concerned).

Evaluating the limit of the integral as a field point (x) approaches a point on
the body surface (xo) gives the integral equation for the unknown distribution
of the disturbance potential (φ): 12

φ(xo, t) =
1

2π

∫
B

(
∂φ

∂n
ln |xo − y|+ φ

n · (xo − y)

|xo − y|2

)
d`y

+
1

2
φ(xo, t) +

1

2π

∫
W

4φv

n · (xo − y)

|xo − y|2
d`y , (4.82)

where the first integral denotes a Cauchy principal value integral. Also, in-
serting (4.78) for ∂φ/∂n (equivalent source strength) into (4.82) gives a two-
dimensional Fredholm integral equation of the second kind for the disturbance
potential (φ):

1

2
φ(xo, t)−

1

2π

∫
B

φ
n · (xo − y)

|xo − y|2
d`y =

1

2π

∫
B

(
q
F
− q

o

)
· n ln |xo − y| d`y +

1

2π

∫
W

4φv

n · (xo − y)

|xo − y|2
d`y.

(4.83)

If the shape of the wake sheet and the potential jump (4φv) are specified
11It may be chosen arbitrarily without failure of uniqueness of the velocity field. In the present work this

constant is taken to be zero as the far-field value along the circuit far away from the body. See also Batchelor, G.
K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, p. 126.

12For the limiting forms for integral expressions of surface distribution of various singularities (source, vortex
and doublet), see Brockett, T. E., Kim, M.-H. and Park, J.-H. (1989), “Limiting Forms for Surface Singularity
Distributions When the Field Point is on the Surface,” Journal of Engineering Mathematics, vol. 23, pp. 53–79.
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from the Kutta condition at the T. E. (Eq. (A.10)) and the combined kine-
matic and dynamic conditions on the shed-vortex sheet ((4.79)), the surface
potential distribution can be obtained by solving this integral equation. The
velocity field is obtained by taking the gradient of the disturbance potential
(φ) to find the disturbance velocity and then adding the undisturbed velocity
(q(x, t) = q

o
(x, t) − q

F
(x, t) +∇φ(x, t)). Equation (4.83) is non-linear in the

sense that the normal component of the undisturbed velocity on the actual body
surface ((q

o
− q

F
) · n)) is included (geometric non-linearity), and the jump in

the disturbance potential on the shed-vortex sheet (4φv) and the sheet position
(xv(t)) depend on the disturbance potential (φ(xo, t)) distribution on the body
surface (solution non-linearity and memory effect).

In practice the integral equation (4.83) can rarely be solved analytically, thus
an appropriate numerical evaluation of the integral and an appropriate repre-
sentation of the body surface and the wake sheet are required. One possible
approach is that a panel-method approximation is used just as in the steady flow
case and a suitable model is employed to represent the wake sheet. Then the
boundary value problem is solved at discrete time steps with a small time in-
crement during which the quantities of interest are assumed to be constant in
time.

4.6.7 Vortex model of shed wake sheet: Typical example

To include the influence of the shed-vortex sheet, the singularity strengths and
the sheet geometry should be known. Among various computational schemes,
the series of vortices can be used to represent the sheet geometry and to evaluate
the equivalent potential on the body surface induced by a doublet distribution
(potential jump across the sheet) on the shed vortex sheet. Giesing (1968a) 13

presented comparisons of the calculated location of the vortex sheet with pho-
tographs by Bratt (1953). 14

13Giesing, J. P. (1968a), “Nonlinear Two-Dimensional Unsteady Potential Flow with Lift,” Journal of Aircraft,
vol. 5, no 2, pp. 135–143.

14Bratt, J. B. (1953), “Flow Patterns in the Wake of an Oscillating Aerofoil,” Aeronautical Research Council,
Reports and Memoranda, no. 2773.
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The comparisons show that this model for the shed-vortex sheet produces
remarkably good predictions of sheet position. Thus it is reasonable to adopt a
concentrated vortex model because our approach here is aimed at a satisfactory
solution rather than a rigorous one. In order to include more precisely the wake
influence in the near region of the T. E., a small straight-line element attached
to the T. E. is introduced exceptionally, over which a potential jump (doublet
strength) is linearly distributed.

The potential and the velocity induced by a linear variation of doublet distri-
bution (µ(k) = µ

(k)
o + δ

(k)
o λ where λ is the projected coordinate onto Ox-axis,

the mid-point being an origin as depicted in Figure 4.5 ) over the straight-line
element are given by (with the same notation as in the previous sections),

Figure 4.5 A doublet straight-line element attached to the trailing edge and a series of con-
centrated vortices. The superscripts denote the time steps, (k) referring to the present time
step.

The orientation of the element leaving the foil at the time of solution is un-
known. For fixed values of the element length (4v1) as an input parameter, the
time increment (4t(k)) between t(k) and t(k−1) and the inclination of the element
to Ox-axis (θ(k)

1 ) are to be determined as a part of the solution by an iteration
procedure described in the next section. The vorticity on the straight-line wake
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element attached to the T. E, (γTE) is given by

γ
(k)
TE =

Γ
(k−1)
B − Γ

(k)
B

4v1
(4.84)

where4v1 =
dv

cos θ1
as indicated in Figure 4.5 .

A downstream wake of concentrated vortices is formed from the vorticity
shed at earlier times, which is assumed to be concentrated into discrete vor-
tices whose strength is given by Γ

(k)
v = γ

(k)
TE4v1. These discrete vortices are

convected with unchanged strengthes from the previous position according to
the (total) resultant velocities calculated at the center of each vortex at each
successive time interval. The time increment4t(k) is calculated approximately
by dividing by 4v1 the local total velocity at the mid-point of the straight-line
wake element attached to the T. E.

The orientation of the straight-line element is determined such that it is par-
allel to the local resultant velocity at the mid-point of that element. This model
is shown pictorially in Figure 4.5 .

Now the last integral of (4.83) leads equivalently to the potential induced
by the series of concentrated vortices, which is written down as the sum of
the potential induced by each concentrated vortex. This equivalent replacement
demands a determination of reference value of the angle involved in the vortex-
potential.

The reference orientation of each vortex potential is taken as a line parallel
to the Ox-axis. The difference of phase does not affect directly the velocity and
the time derivative because all values of φ(k)

j differs uniformly in the amount
of the phase difference as an additive constant and the pure effect of the total
vortex system becomes eventually the phase of the cut extending from the end
of the wake sheet to far downstream which may initially be taken as zero. It is
easily seen that the phase difference leads to the increment of constant values
of φ over the closed body surface, from the identity

1

2π

∫
B

n(xv) · (x− xv)

|x− xv|2
dlx = 0, (4.85)
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for a point xv outside a closed body. It should be noticed that the contribution
of the point vortex at the downstream end point of the doublet straight-line
element (labelled ‘−Γ

(k−1)
B ’ in Figure 4.5 ) should be included in the equivalent

replacement of this concentrated vortex model.

As the number of point vortices shed increases with time steps, the compu-
tations for induction between them grow with the square of their number. To
reduce the computation time, one can simply ignore the vortices beyond a given
number or distance behind the T. E. (about 10 times of the chordlength), since
their influence on the body decreases with distance. Another way is, although it
is still an approximation, that the two of the oldest shedding vortices beyond a
given number (say 250 herein) are amalgamated to reduce the number of point
vortices (actually in a computer code it keeps the same number after this time
step).

For this operation, two point vortices of strengths Γ1 and Γ2 at x1 and x2,
respectively, are replaced by one point vortex of strength Γ1 + Γ2 at the position
given by (x1|Γ1| + x2|Γ2|)/(|Γ1| + |Γ2|). However in most calculations with
moderately reasonable input parameters, it is better to avoid this amalgamation
possibly because of lack of its physical equivalence.

4.6.8 Solution procedures

The numerical solution procedures are similar to that in the steady panel method
approximation except that there is an another contribution due to a series of
concentrated vortices (equivalent to the potential jump (doublet distribution)
on the geometrically time-varying vortex sheet). The solution for the unsteady
flow about a body is calculated starting at t = 0 and continuing the process at
successive time steps.

The unsteadiness of the flow is assumed to start from the mean position for
harmonic motions of a foil or with zero circulation for a sudden start-up prob-
lem.

At successive time steps a shed vortex is defined and is convected with the
local mean velocity without change of its strength. Hence this will induce a
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known potential back on the body and this effect must be included in the solu-
tion of the integral equation.

This approach is carried out as follows. At time t(k), the basic set of equa-
tions for N + 1 unknowns (φ(k)

j , j = 1, · · · , N and θ
(k)
1 ) can be formulated.

First the N algebraic equations associated with the integral equation (4.83) can
be written down in a matrix form with unknowns φj :

[Amj]
{
φ

(k)
j

}
=
{
B(k)
m

}
+
[
C

(k)
ml

]
{(Γv)l}+

{
D(k)
m

}
, (4.86)

for m, j = 1, · · · , N & l = 1, · · · , (k − 1),

where [Amj] is the coefficient matrix of the set of linear equation which approx-
imates the integral equation and each of which represents the induced potential
at the m-th control point due to the unit density doublet distribution on the j-th
panel, {B(k)

m }, [C
(k)
ml ], {(Γv)l} and {D(k)

m } represent the effect due to the equiva-
lent source distribution with strength (q

F
−q

o
) ·n on the body surface, the effect

due to the series of concentrated vortices with strength Γv on the downstream
wake and the effect due to the doublet distribution with a linear variation over
the straight-line wake sheet element attached to the T. E. (with unknown θ(k)

1 ),
respectively.

Another condition to determine θ(k)
1 is that the local resultant velocity at the

mid-point of the straight-line wake sheet element attached to the T. E. is parallel
to its orientation. This requires an iteration process together with an allowable
tolerance, using the previously updated φ(k)

j and 4φv|TE to calculate the local
resultant velocity.

The initially guessed values for starting this iterative process are taken as
those obtained at the previous time step to reduce the iteration process time.
Thus with these guessed values, the N linear equations are solved to obtain
φ

(k)
j , (j = 1, · · · , N).

Once the temporary values of φ(k)
j are known during the iteration process,

4φv|TE and the local resultant velocity can be calculated, from which the newly
updated value θ(k)

1 is found. Such a procedure is repeated until θ(k)
1 and 4φv|TE

have converged within the desired allowance. This results in a relatively rapid
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convergence, for example, requiring usually 2-5 iterations for convergence
within 1 % change relative to the previously updated value for 4φv|TE and 0.1o

change for θ(k)
1 .

Once the final values after the iteration procedure have been determined, the
tangential component of the disturbance velocity at the body surface is com-
puted (in the moving frame). The disturbance tangential speed can be obtained
by numerical differentiation of the surface potential in the local tangential di-
rection at the actual surface point at which the constant value of φ(k)

j over the
panel is assumed to be representative.

A piecewise constant representation of φ must be fitted with a polynomial
form over several nearby panels before being differentiated. Here for improve-
ment of the numerical accuracy (especially near the L. E.) in the calculation of
the disturbance surface speed (∇φ · t), the cubic spline (e.g., the B-spline or the
tension cubic spline) 15 might be used for curve-fitting of the discrete values of
the disturbance potential.

If the discrete values of φ(k)
j versus the angular parameter ϕ (that is the

transformed variable used for ‘cosine-spacing’ previously) instead of the co-
ordinate x were fitted, the disturbance surface speed is obtained by the chain

rule;
dφ

ds
=
dφ

dϕ
· dϕ
ds

. The reason for the choice of the parametric spline with ϕ

is that we can avoid fitting the rapid change of φ near the L. E. and the T. E.
from the use of the x-coordinate of the discrete points. Therefore the discrete
values of φ are fitted smoothly with higher-order accuracy when using a uniform
spacing (i.e.,4ϕ = 2π/N ) over the interval of the parameter (2π).

Now the total tangential speeds are obtained by adding the tangential com-
ponent of the undisturbed velocity (q

o
− q

F
). In the unsteady pressure relation

(4.74), the time derivative term
∂φ

∂t
is approximated as

∂φ
(k)
j

∂t
=
φ

(k)
j − φ

(k−1)
j

t(k) − t(k−1)
. (4.87)

15The tension cubic spline was suggested by McCartin, B. J. (1983), “Applications of Exponential Splines in
Computational Fluid Dynamics,” AIAA Journal, vol. 21, no. 8, pp. 1059-1065.
It is used to get rid of unwanted wiggles (extraneous inflection points), that might occur in some intervals when
fitting the discrete values by the original cubic spline, by applying local tensions additionally to those intervals.
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By direct integration of the pressure coefficient distribution, the force and mo-
ment coefficients are obtained. The integration is also performed after fitting
the integrand of the integral expressions ((4.89) and (4.90)) for the forces and
moment coefficients by integrating the fitting values by the spline. It is noted
that the required slopes at the end points of the spline interval are estimated
by parabolically fitting of three points—each end point and two neighboring
points. Once the solution at time t(k) has been determined, the model is set up
for time t(k+1) with the wake pattern as calculated from the solution at time t(k).

The distributed vorticity on the straight-line wake sheet element attached to
the T. E. at time t(k) is now assumed to be concentrated into a vortex of strength
γ

(k)
TE4v1 at time t(k+1) situated at the next moving point convected with the local

mean velocity at the mid-point of the wake element. The resultant velocity at
the center of each of the other concentrated vortices in the wake is calculated
from the solution at time t(k) and then the position of that vortex at time t(k+1)

follows directly.

Especially for a 2-D foil, the force components in the x- and y-direction, of
the moving frame and the moment about xm (positive is taken as counterclock-
wise) acting on the foil are given by, respectively,

Fx i+ Fy j = −
∮
B

Cp (x, t)n dlx , (4.88)

and
CM k = −

∮
B

(x− xm)× Cp (x, t)n dlx . (4.89)

These are non-dimensionalized by the chordlength c, the fluid density ρ and the
reference speed (Uo) with a factor 1/2. Fx and Fy are the force components in
x- and y-direction, respectively, in the moving frame (see Figure 4.6 ). Lift and
drag coefficients are resolved relative to an orientation usually specified in the
inertial frame at a given instant:

CL = Fy cosα(t)− Fx sinα(t), (4.90)

CD = Fx cosα(t) + Fy sinα(t), (4.91)
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where α(t) is an angle of attack at an instantaneous time.

Figure 4.6 Force diagram of 2-D foil.

Each individual step of the numerical solution process is outlined as follows:

(1) Read the body geometry, the mean angle of attack, the type of unsteady
motions and/or flows. For application of the combined flow situation, the
motions and/or flows are decomposed into harmonic components specified
by amplitude, frequency and phase of each component. Also the number of
discretized panels on the body surface, the number of the time steps to be
performed and the length of the straight-line wake sheet element attached
to the T. E. are input parameters.

(2) Discretize the body surface by ‘cosine-spacing’ to generate the panel ge-
ometry and each geometrical parameter such as control point, (approxi-
mate) representative surface point and tangential vector.

(3) Calculate the influence coefficients at the control points induced by the flat
panels representing the body surface.

(4) Calculate the results of the steady flow case at the mean position or at an
ultimate time which will be used as the initial starting value or for normal-
ization.
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(5) Guess initially at the (k)-th time step the orientation of the wake sheet
element, the shed vorticity at the T. E. and the potential jump at the T. E.
by assigning those values computed at the previous time step.

(6) Calculate the undisturbed velocity specified by the unsteady motion and/or
the flows observed in the moving frame, from which the no-penetration
condition is imposed at each control point.

(7) Calculate the right-hand side of the matrix system of the linear algebraic
equations, including the effect of the concentrated vortex system newly
updated in position from the previous time step.

(8) Solve the N × N matrix system of linear equations for the N unknowns
φ

(k)
j (j = 1, 2, · · · , N) by using the inversion by the decomposition of the

matrix.

(9) Compute the orientation of the straight-line wake sheet element, the shed
vorticity strength and its associated potential jump at the T. E.

(10) Repeat steps (6) through (9) until the converged values of the above quan-
tities are obtained within a given allowance or until a prescribed allowable
number of iteration are processed.

(11) Calculate the convective velocities at the vortex cores at the present time
step to update their positions for process at the next step. An amalgamation
of two distant vortices is carried out at this stage if desired.

(12) Find the surface speed and pressure distribution, the force components and
the moment about a given point, by using the exponential spline to differ-
entiate the values of the surface potential and to evaluate the associated
integrals.

(13) Repeat steps (5) through (12) until a given or enough number of time steps
are executed to achieve the steady-state solution or to carry the solution far
downstream.
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4.6.9 Numerical results: Steady flow cases

Numerical and analytical surface (disturbance) potentials on an ellipse of 10%

thickness-chord ratio at 10o angle of attack in steady uniform (K = 0) and shear
(K = 1) onset flow are compared in Figure 4.7 . The total surface speeds in the
same flow situation are also compared in Figure 4.8 .

Figure 4.7 Comparison of numerical and analytical disturbance potentials on the surface
of an ellipse (τ = 10%) in steady uniform (K = 0) and shear (K = 1) flow (at α = 10o).
The broken and the solid lines denote the analytical results for K=0 and for K=1, respectively.
The symbols denote the numerical results, using two different number of panels (+, N = 36;
◦, N = 72).

For the convergence check of the numerical model, two different number of
panels (N = 36, 72) have been chosen. Good convergence of the solution is
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Figure 4.8 Comparison of numerical and analytical total surface speeds on the surface of an
ellipse in steady uniform and shear flow. Legends are the same as those in Figure 4.7 .
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observed over the entire foil surface. It is seen that the numerical results are
locally in good agreement with the analytical ones obtained by the conformal
transformation, even when using a moderate number of straight-line elements
for representation of foil geometry.

Figure 4.7 shows that the circulation (4φ|TE) for the case K = 1 is less
than that of the case K = 0. Increased speed on the upper surface in the case
of K = 1 tends to stimulate the flow downstream toward to the T. E. so as to
satisfy the Kutta condition with the reduced value of ΓB than that in the uniform
flow case.

Figure 4.8 shows a difference in shape of the surface speed distribution be-
tween the uniform and shear flow cases. This figure compares velocities rather
than pressure coefficients to look directly at the shear-flow effect on velocity
distribution and to avoid uncertainty about the reference pressure for shear-flow
case. The velocity curve of the shear flow case (K = 1) seems to be obtained
by rotating that of the uniform flow case (K = 0) in the rotational direction of
the shear flow.

In Figure 4.9 , numerical and analytical lift and moment (about the mid-
chord) coefficients versus angle of attack for various velocity gradient values
(K) are compared for a Moriya foil (ε = 0.05, δ = 0.1) whose profile shape is
symmetric conventional with thickness-chord ratio of 10 % (see Moriya (1941)
or Suh (1990) for details). It is seen that the numerical results agree well with
the analytical ones, which expected since there is good agreement of surface
speed as shown in Figure 4.8 . The results indicate that lift coefficient is fairly
linearly proportional to angle of attack over its moderate range.

4.6.10 Numerical results: Unsteady flow cases

4.6.10.1 Start-up problems

There are two non-linear aspects to be considered when employing numerical
methods for combined flow situations proposed herein— finite thickness of a
foil and distortion of the wake sheet (both of which have been neglected in
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Figure 4.9 Comparison of numerical and analytical lift and moment coefficients (about the
mid-chord point) versus angle of attack for a Moriya (1941) foil (ε = 0.05, δ = 0.1) in steady
shear flow. ——, analytical; +, numerical.

the derivation of the classical linear analytical solutions). Figures 4.10 shows,
with varying thickness of a foil, numerical lift growths for start-up problems
of NACA 4-digits foil sections, 16 together with the linearized analytic solution
(i.e., Wagner function, W(σ)). These test cases have been chosen to empha-
size the non-linear aspects. The effect of foil thickness on growth of lift seems
to be more significant quantitatively than that of the angle of attack from the
viewpoint of realistic flow situations.

To see the distorted shedding vortex sheet, Figure 4.11 shows the calculated
positions of vortex cores for an NACA0012 foil at α = 10o. It is seen that the
roll-up behavior occurs together with stretching near the end of the vortex sheet.

16To generate closed round shape at the T. E. instead of originally defined blunt shape (Abbott & Doen-
hoff (1959), p. 113), we have used a modified thickness distribution near the T. E. with a parabola of the form
specified by matching the conditions of the offset and slope at x = 0.492404: Yt/to = ±

√
0.5− x (0.231902 −

1.316268 (0.5− x)), x > 0.492404.
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Figure 4.10 Growth of lift for sudden start-up of NACA0006, NACA0012 and NACA 0018
foils in uniform onset flow (at α = 10o). The solid line denotes the linearized analytical solution
for a flat plate (Wagner (1925)). The symbols denote the present numerical results with N =
36,4v1 = 0.05 (+, NACA0006; ◦, NACA0012; 4, NACA0018).
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Figure 4.11 Calculated location of vortex cores for start-up of an NACA0012 foil at α =
10o with 4v1 = 0.05. The non-dimensionalized time t′s correspond to the time steps (k) =
10, 20, 30, 40, 50, 60.
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4.6.10.2 Harmonic heave motion

Figure 4.12 presents the calculated location of the vortex cores representing
the shed-vortex sheet for harmonic heave motion (with a reduced frequency
k = 2.15 and a heave amplitude ho = 0.018) of an NACA0015 foil in uniform
flow. It shows that the numerical model for calculation of position of the sheet
predicts a shape similar to that calculated by Giesing (1968a) and similar to that
observed by Bratt (1953). Therefore this distortion of wake sheet shape may
affect significantly on the flow characteristics of an interferance problem (like
that between two moving foils).

Figure 4.12 Calculated location of vortex cores for harmonic heave motion of an NACA0015
foil in uniform flow (for α = 0o, k = 2.15, ho = 0.018).

With varying thickness of an NACA 4-digits foil section, time variation of
lift coefficient and its fluctuation magnitude for various reduced frequencies k
for heave motion are shown in Figure 4.13 . For a comparison purpose, the
linearized analytical solution is also presented: 17

CL(t) = −4πho k [Re(C(k)) cos(2 kt+ ϕ)− {Im(C(k)) + 0.5 k} sin(2 kt+ ϕ)]

(4.92)
where C(k) is the Theodorsen function, ho is an amplitude of heave motion
and ϕ is a phase of heave motion. The magnitude of fluctuating lift decreases
with increasing thickness of a foil. This thickness effect becomes larger as k
increases, but a relative difference is mostly the same over a wide range of k.

17Küssner (1960), Hewson-Browne (1963), and van de Vooren & van de Vel (1964) have addresed second-order
corrections by considering the separate influence of finite foil thickness at zero mean angle of attack.
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For the case of an NACA0012 foil, there is about 7% change of the magnitude
of fluctuating lift relative to the magnitude for an NACA0006 foil.

Figure 4.13 Magnitude of fluctuating lift with various reduced frequencies for heave motion
of NACA0006, NACA0012, NACA0018 and NACA0024 foils in uniform flow (K = 0) (for
α = 0o, ho = 0.01). +, NACA0006; ◦, NACA0012; Y, NACA0018 4, NACA0024. The solid
line denotes the linearized analytical solution (Theodorsen (1935)).

4.6.10.3 Concluding remarks on combined motions

Although not presented herein, the present numerical algorithm can be exten-
sive to arbitrary combined flow situations that is usually composed of heave,
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pitch motions and vertical gusts. This combined flow situation can be modeled
as that of a foil moving with a forward speed and undergoing the assumed pe-
riodic motion in uniform onset flow and the vertical gust. The lift coefficient
obtained by superposition of each classical linearized analytic solution plus the
numerical steady value at the mean flow condition (i.e., αm = 0o) is available.
The superposed linearized solution gives fairly good agreement in trend of the
overall forces with the non-linear numerical results.

This flow situation may be considered as that about the blade section of a
marine propeller, for which there is a large multiple blade-order frequency com-
ponent of non-uniformity in ship wake flow. Therefore a superposition (of mul-
tiple gusts) of fluctuating lift coefficient (which has been used in many practical
propeller problems) might be appropriate in combined flow case.

4.7 Formulation in Three-dimensions

4.7.1 Extension to 3-D wing

Like 2-D foils, Figure 4.14 represents a relative configuration of a wing in
the inertial and moving frames with appropriate notations to be used for the
formulation of the boundary value problem. The coordinate system is the same
as the 2-D system, but we add the z-axis in third (vertical) direction.

Recall that the continuity equation for the disturbance velocity reduces to
∇ · u. The present concern is one whether the disturbance velocity is irrota-
tional in the moving frame when the total velocity is irrotational and then the
present procedure for solving the potential flow can be applied extensively. The
vorticity of the inherent irrotational flow can be expressed by, in the inertial
frame,

0 = ∇′ × q′
T

= ∇′ × (q
F

+ q) = 2 Ω +∇× q, (4.93)

or
∇× q = −2 Ω (4.94)

This indicates that the vorticity of a flow in the non-inertial (moving) reference
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Figure 4.14 The coordinate systems and a combined unsteady flow situation for a 3-D wing.

frame is different from that of a flow in the inertial frame.
However, let us express q in terms of the disturbance caused by a body, then the
expression reduces to

∇× q = ∇× (q
o
− q

F
+ u) = −2 Ω +∇× u (4.95)

From Eqs. (4.94) and (4.95), ∇ × u = 0 must be statisfied which means that
the disturbance velocity field measured in the moving frame is also irrotational.
Hence we can introduce a disturbance velocity potential (u = ∇φ) which is
governed by the Laplace equation:

∇2φ = 0 (4.96)

The computational procedures for solving a related problem are similar to those
for 2-D foil.
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4.7.2 Velocity components at a panel surface

Suppose that the velocity components in direction of two non-orthogonal coor-
dinates (s1, s2) on a panel surface have been computed.

v1 =
∂φ

∂s1
, vs =

∂φ

∂s2
(4.97)

Now we should know the orthogonal velocity components from these non-

Figure 4.15 Velocity component calculation for local non-orthogonal coordinates of panel
surface.

orthogonal components. Take an orthogonal coordinate system (e1, e2) where
e1 = s1 with the corresponding unit vectors. (See Figure 4.15 ). Then

vs s2 = v1 e1 + v2 e2

vs s2 · s2 = v1 (e1 · s2) + v2 (e2 · s2)

v2 =
vs − v1 (e1 · s2)

(e2 · s2)
(4.98)
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4.7.3 Non-lifting flow about an ellipsoid

The analytic solution of the disturbance potential about an ellipsoid at zero an-
gle of attack are given in Milne-Thomson (1968). 18 By superposing the an-
alytic solutions at zero angle of attack relative to the different axes, we obtain
the analytic solution for an oblique onset flow q

0
= (U, V,W ). Then the sur-

face speeds are found by differentiating the potential along the surface. For an
ellipsoid whose geometry is specified as (x/a)2 + (y/b)2 + (z/c)2 = 1 where
a, b, c are the length of the semi-axes, respectively, the surface speed q

s
is given

by

q
s

=

(
x2

a4
+
y2

b4
+
z2

c4

)−1

·

·
[
U

(
1 +

α0

2− α0

){(
y2

b4
+
z2

c4

)
i− x y

a2 b2
j − z x

c2 a2
k

}
+V

(
1 +

β0

2− β0

){(
z2

c4
+
x2

a4

)
j − y z

b2 c2
k − x y

a2 b2
i

}
+W

(
1 +

γ0

2− γ0

){(
x2

a4
+
y2

b4

)
k − z x

c2 a2
i− y z

b2 c2
j

}]
(4.99)

where

α0 = a b c

∫ ∞
0

(a2 + λ)−3/2 (b2 + λ)−1/2 (c2 + λ)−1/2 dλ

β0 = a b c

∫ ∞
0

(b2 + λ)−3/2 (c2 + λ)−1/2 (a2 + λ)−1/2 dλ (4.100)

γ0 = a b c

∫ ∞
0

(c2 + λ)−3/2 (a2 + λ)−1/2 (b2 + λ)−1/2 dλ

Figure 4.16 shows the chordwise distributions of the surface speed of an
ellipsoid in an oblique onset flow. The numerical results at the three diffreent
spanwise positions have good agreement with the analytic solutions. Some dis-
crepancy is observed near the leading edge anf the trailing edge where the nu-
merical resolution does not fairly follow the rapid change in the potemtial. In
the numerical calculation, the bilinear distribution over each quadrilateral panel

18See, for details, Suh, J.-C., Lee, J.-T. and Suh, S.-B. (1992), “A bilinear source and doublet distribution over a
planar panel and its application to surface panel methods,” Proc. 19th Symp. Naval Hydro., pp. 102–112.
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was used to specify the singularity distribution on the surface. No-penetration
condition (kinematic boundary condition) was applied at the nodes of the panels
as the collocation points in the potential-based panel emthod. The resulting lin-
ear system of equations forms for the unknown nodal values of the disturbance
potential. The surface speeds are calculated numerically using a second order
fitting of the potential.

Figure 4.16 The surface speed of an ellipsoid a = b = 1, c = 0.1 in an oblique onset flow by
using the quadrilateral panels with the bilinear singularity distribution. The onset flow velocity
q

0
= (1, 0, 0.1736); The number of chordwise and spanwise panels: N ×M = 40× 40.



4.7 Formulation in Three-dimensions 203

4.7.4 Lifting flow about a circular wing

In numerical implementation of the potential-based panel method for solving
the potential flow around the lifting body, the trailing wake sheet is represented
approximately as the doublet distribution of potential jump. One possible way
to include the effect of the local variation of these doublet strengths is to use a
bilinear distribution over each wake panel which is uniquely determined from
imposed potential jump values at its four vertices.

The use of the bilinear distribution over the quarilateral panels eliminates the
discontinuity problem of singularity that is associated with the piecewise con-
stant distribution. Then the singularity strength will be chosen to vary bilinearly
across the panel. Therfore it is necessary to derive explicit and elegant closed
forms of the induced potential and velocity due to the bilinear distribution. The
closed forms are much computer-oriented and explicit so that we can obtain,
with easier implementation, the matrix element of the linear system of alge-
braic equations in application of the surface panel methods. Chapter 5 presents
the closed forms for computing the induced potential and velocity due to the
bilinear distibution of source and/or doublet singularities over a planar panel. 19

The bilinear distribution cases includes, of course, both the constant and/or the
linear distribution cases.

We calculated the circulation distribution for a circular wing, for which the
linearized analytic solutions are available. 20 Numerical and analytical circula-
tion distributions for a circular wing with NACA 4-digits section at 5o angle of
attack are compared in Figure 4.17 . For the implementation of the Kutta con-
dition described previously, the constant sigularity density was used for wing
panels and the bilinear distribution for the trailing wake sheet elements extend-
ing on the xy-plane.

It is seen that the numerical method gives fair values compared to the lin-
earized analytic solution using the moderate number of panels. Particularly the
numarical results are in good agreement with the analytic ones near the tip

19See also Suh, J.-C., Lee, J.-T. and Suh, S.-B. (1992), “A bilinear source and doublet distribution over a planar
panel and its application to surface panel methods,” Proc. 19th Symp. Naval Hydro., pp. 102–112.

20See Jordan, P. F. (1972), “Exact solutions for lifting surfaces,” AFOSR Scientic Report, AFOSR-TR-72-1737.
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where the circulation changes raplidly. The bilinear representation of the wake
sheet singularity in the numerical method would be appropriate to include this
local variation. Figure 4.17 shows that the circulation decreases as the thick-
ness chord ratio increases. This feature is also found in the results provided by
Lee, J.-T. (1987).

Figure 4.17 Circulation distribution of a circular wing at α = 5o angle of attack. The number
of chordwise and spanwise panels: N ×M = 40× 40.
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5.1 Introduction

The fundamental problem of fluid mechanics for inviscid incompressible flow is
to determine velocity potential φ in simply connected fluid domain V bounded
by the boundary S (S is composed of a body surface and non-realistic surface).
The governing equation of the velocity potential becomes the Laplace equation,

∇2φ = 0, (5.1)

satisfying certain proper conditions on S.

With the Green’s scalar identity, the potential φ within the domain V is ex-
pressed in terms of the proper value of φ and its normal derivative n ·∇φ on the
boundary S;

φ(xp) = − 1

4π

{∫
S

1

r
n · ∇φ− φn · ∇

(
1

r

)
dS

}
. (5.2)

Here r is a distance between an integration point xξ on S and a field point xp
located in V . Namely, r = xξ − xp.

The first surface integral is interpreted as the potential by surface distribution
of source-type singularities with density σ ≡ n ·∇φ, the second surface integral
as the potential by surface distribution of doublet-type singularities, µ ≡ −φ. 1

1Recall that the doublet strength is defined as µ ≡ φ in the preceding chapters.
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Such a singularity method can be applied for solution of this problem. In
numerical implementation, the integration over the bounding surface S is ap-
proximately performed by summing up each contribution in terms of the proper
value of φ and its normal derivative n · ∇φ on each panel element of the dis-
cretized boundary surface S;

φ(xp) = − 1

4π

∑
j

∫
Sj

{
1

r
n · ∇φ− φn · ∇

(
1

r

)}
dS (5.3)

Applying the boundary condition at collocation points to this equation results
in a linear system of algebraic equations for unknown doublet strengths on each
panel. 2

Evaluations of the associated integrals at the collocation points should be
performed to obtain the matrix elements. The fast and accurate computation of
these elements is very important in the numerical solution.

The velocity components can be derived by differentiation of Eq. (5.3) with
respect to the coordinates of the field point. We may take without loss of gener-
ality one planar panel as the integration region concerned herein, which can be
regarded as a part of the discretized boundary surface.

5.2 Transformation of the Surface Integrals to Contour Inte-

grals

As will be shown in the followings, using the integral theorems, the surface in-
tegrals of the singularity method can be transformed into contour integrals for
planar facets. Furthermore, for a planar polygon element with the uniform or
linear or bilinear or higher-order density distribution of singularities, the ana-
lytical evaluation is possible. The numerical integration is then very precise at
less calculation cost.

This section is especially prepared to show all the mathematical derivations
2The basic idea of the singularity method has been introduced by Hess, J. L. and Smith A. M. O. (1966),

“Calculation of potential flow about arbitrary bodies,” Progress in Aeronautical Science Series, vol. 8, pp. 1–138.
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and proofs of the related equations. A few of test calculations will show the
superiority of these analytic evaluations to numerical integrations. A subroutine
program based on the analysis is also provided in Appendix C for computations
of the influence coefficients in applications of the panel method.

Cantaloube & Rehbach (1986) 3 show that the surface integrals for constant
and/or linear distributions of sources and doublets over a planar facet can be
transformed into line integrals along contour of the panel: 4

(1) for source distributions,

φ(σ) = − 1

4π

[
n ·
∮
C

σ
r

r
× dl − (n · r)

∮
C

σ A · dl + (n · r)(n · e)n·

·
{
∇σ ×

∮
C

ln(r + e · r) dl
}
− n ·

(
∇σ ×

∮
C

r dl

)]
(5.4)

q(σ) = − 1

4π

[
n

∮
C

σ A · dl + n×
∮
C

σ

r
dl − n(n · e)(n×∇σ)·

·
∮
C

ln(r + e · r) dl +∇σ
{
n ·
∮
C

r × dl
r
− (n · r)

∮
C

A · dl
}]

(5.5)

(2) for doublet distributions,

φ(µ) = − 1

4π

{
−
∮
C

µA · dl + (n · e)(n×∇µ) ·
∮
C

ln(r + e · r) dl
}

(5.6)

q(µ) = − 1

4π

{∮
C

µ∇
(

1

r

)
× dl −∇µ

∮
C

A · dl − (n×∇µ)×

×
(
n×

∮
C

dl

r

)}
(5.7)

3Cantaloube, B. and Rehbach, C. (1986), “Calcul des Integrales de la Methode des Singularites,” Recherche
Aerospatiale, no 1, pp. 15–22, English Title: “Calculation of the Integrals of the Singularity Method,” Aerospace
Research, no. 1, pp. 15–22.

4See Appendix B for derivation in detail, and also Suh, J.-C. (1990b), Review of the Paper; Calculation of
the Integrals of the Singularity Method by Cantaloube and Rehbach, KRISO Propulsor Technology Laboratory
Report, 22-90. Suh, J.-C. (1990c) Analytic Evaluations of the Induction-Integrals for Distributions of Sources and
Doublets over a Planar Polygon Element, KRISO Propulsor Technology Laboratory Report, 23-90.
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where the vector
A =

e× r
r(r + e · r)

, (5.8)

is introduced by Guiraud (1978), 5 the distance vector r = xξ−xp and e = ±n.
Note that the distance vector is the position vector of the source point relative to
the field point, whose direction is opposite to direction of conventionally defined
position vectors. The contour integrals are performed along the perimeter of the
element in counterclockwise sense.

The details on the derivation of the transformation of the surface integral is
given in Appendix B.

For a planar polygon element, the line integrals can be reduced to closed-
form expressions. Derivation of these analytic evaluations is the main scope
of Appendix B. The computer program based on the analytic evaluation of the
contour integrals as outlined in the following section is provided in Appendix C.

5.3 Constant Density Distributions over a Planar Polygon

5.3.1 Source distribution: Potential

The potential at a field point xp(x, y, z) induced by a distribution of sources
with unit density (i.e. σ = 1) over a planar element is, from Eq. (5.4),

φ(σ) = − 1

4π

{
n ·
∮
C

r

r
× dl − (n · r)

∮
C

A · dl
}
. (5.9)

Rearrange Eq. (5.9) to yield

φ(σ) = − 1

4π

{
n ·
∮
C

r

r
× dl − (n · r)

∮
C

(
1

r
− 1

r + e · r

)
e× r
e · r

· dl
}

= − 1

4π

∮
C

n× r
r + e · r

· dl = − 1

4π

∮
C

r · (dl × n)

r + e · r
. (5.10)

5Guiraud, J. P. (1978), “Potential of Velocities Generated by a Localized Vortex Distribution,” Aerospace Re-
search, English Translation-ESA-TT-560, pp. 105–107.
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Because r · (dl × n)/dl and e · r are constant for the respective side lines (each
of which is a straight-line), it can be written as

φ(σ) = − 1

4π

Ns∑
i=1

bi

∫
Ci

1

r + a
dl, (5.11)

where Ns is the number of sides of the polygon element, for example, Ns = 3

for triangular elements, a = e · r is a positive constant value for all sides, and
bi = r · (eli × n) is constant for one side whose directional vector eli = dl/dl is
chosen counterclockwise direction. The vertices composed of the element and
the side of directional vector eli are numbered in counterclockwise order. The
field point is at an arbitrary position except on the side lines. It is seen that each
integral for the respective side is related to the relative position of the field point.

Figure 5.1 Schematic diagram of a planar element.

In the self-induction case that the field point is just above or below the el-
ement, we take n · r = 0 in Eq. (5.9) and then the second term of Eq. (5.9)
vanishes:

φ(σ) = − 1

4π
n ·
∮
C

r

r
× dl. (5.12)
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It is reduced to, by setting a = 0 in Eq. (5.11)

φ(σ) = − 1

4π

Ns∑
i=1

bi

∫
Ci

1

r
dl. (5.13)

This expression is also applied for the case that the field point is on the extension
plane of the planar element.

5.3.2 Source distribution: Velocity

The velocity at a field point xp(x, y, z) induced by a distribution of sources with
unit density (i.e. σ = 1) over a planar element is, from Eq. (5.5),

q(σ) = − 1

4π

{
n

∮
C

A · dl + n×
∮
C

1

r
dl

}
. (5.14)

Rearrange this equation to yield

q(σ) = − 1

4π

{
n

∮
C

e× r
r(r + e · r)

· dl + n×
∮
C

1

r
dl

}
= − 1

4π

{
n(n · e)

∮
C

n× r
r(r + e · r)

· dl + n×
∮
C

1

r
dl

}
= − 1

4π

{
n(n · e)

∮
C

r · (dl × n)

r(r + e · r)
+ n×

∮
C

1

r
dl

}
= − 1

4π

{
n(n · e)

Ns∑
i=1

bi

∫
Ci

1

r(r + a)
dl +

Ns∑
i=1

emi

∫
Ci

1

r
dl

}
,(5.15)

where emi
= n× eli.

In the self-induction case that the field point is just above the element, the
first integral of Eq. (5.14) is reduced to, with e = −n (representing the approach
of the field point toward the upper surface) and a = 0,∮

C

A · dl =

∮
C

−n× r
r2

· dl =

∮
C

−n× r er
r2

· (er dr+ r eθ dθ) = −2π (5.16)

Here we have introduced the unit vectors er and eθ of the local polar coordinates,
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xp being its origin, to define the line segment dl. Therefore Eq. (5.15) is reduced
to

q(σ) =
1

2
n− 1

4π

Ns∑
i=1

emi

∫
Ci

1

r
dl (5.17)

On the other hand, when xp approaches toward the lower surface of the element,
the sign of the first term of Eq. (5.17) is opposite. If xp is on the (outside)
extension plane of the planar panel, the first term in Eq. (5.17) vanishes.

5.3.3 Doublet distribution: Potential

The potential at a field point xp(x, y, z) induced by a distribution of doublets
with unit density (i.e. µ = 1) over a planar element is, from Eq. (5.6),

φ(µ) = +
1

4π

∮
C

A · dl, (5.18)

where µ is defined as µ ≡ −φ. Rearrange Eq. (5.18) to yield

φ(µ) = +
1

4π

∮
C

e× r
r(r + e · r)

· dl =
1

4π

∮
C

(
1

r
− 1

r + a

)
e× r
e · r

· dl

=
1

4π

1

n · r

∮
C

(
1

r
− 1

r + a

)
r · (dl × n)

=
1

4π
(n · e)

Ns∑
i=1

bi

∫
Ci

1

r(r + a)
dl (5.19)

In the self-induction case that the field point is just above the element, we

take e = −n and the same manner as in derivation of Eq. (5.16) for
∮
C

A · dl.
It follows that

φ(µ) = −µ
2

(5.20)

For the case that the field point is on the (outside) extension plane of the planar
element, this expression is replaced by φ(µ) = 0.
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5.3.4 Doublet distribution: Velocity

The velocity at a field point xp(x, y, z) induced by a distribution of doublets
with unit density (i.e. µ = 1) over a planar element is, from Eq. (5.7),

q(µ) = − 1

4π

∮
C

∇(
1

r
)× dl (5.21)

Rearrange this equation to yield

q(µ) = +
1

4π

∮
C

r

r3
× dl = +

1

4π

Ns∑
i=1

di

∫
Ci

1

r3
dl, (5.22)

where di = r × eli.

Either in the self-induction case that the field point xp is just above the el-
ement or in the case that xp is on the (outside) extension plane of the planar
element, Eq. (5.22) becomes, with di = din,

q(µ) = +
1

4π
n

Ns∑
i=1

di

∫
Ci

1

r3
dl (5.23)

5.3.5 Basic integrals

In the preceding sections, we have derived closed-form expressions for the sim-
pler cases, in terms of only the geometric parameters for each side of a polygon
i.e., Eqs. (5.11), (5.15), (5.19), (5.22) for field points off the element surface
and Eqs. (5.13), (5.17), (5.20), (5.23) for field points on the element surface
(for the self-induction cases). There are four types of basic integrals to be eval-

uated;
∫
Ci

1

r
dξ,

∫
Ci

1

r + a
dξ,

∫
Ci

1

r(r + a)
dξ and

∫
Ci

1

r3
dξ. For the purpose

of these evaluations, we define local relative coordinates (X ′, Z ′), as shown in
Figure 5.2 , for each side of the polygon in the plane through the field point xp
and that side, such that without loss of generality the side line corresponds to
the X ′-axis and the path of the line integral becomes the positive X ′-direction.

First the end points of the side of length l are denoted withQ1(x1, y1, z1) and
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Figure 5.2 A local plane coordinate system for integral over the respective side of a panel.
Q1 and Q2 denote two vertices of the side with length l.

Q2(x2, y2, z2) in the global coordinate system, or with Q1(0, 0) and Q2(l, 0) in
the local plane coordinate system. The field point is also defined by xp(xp, yp, zp)
or xp(x′, z′). The local coordinates (x′, z′) are related to the global coordinates
as follows. The vectors Q1Q2 and Q1xp are written as

Q1Q2 = (x2 − x1) i+ (y2 − y1) j + (z2 − z1) k (5.24)

Q1xp = (xp − x1) i+ (yp − y1) j + (zp − z1) k. (5.25)

Then magnitude of cross product of the two vectors is given by

|Q1Q2 ×Q1xp| = |Q1Q2| |Q1xp| | sin(∠xpQ1Q2)| = |Q1Q2| |z′|. (5.26)

Thus

|z′| = |di| =
|Q1Q2 ×Q1xp|
|Q1Q2|

= |el ×Q1xp|. (5.27)

Similarly, from dot product of the two vectors

Q1Q2 ·Q1xp = |Q1Q2| |Q1xp| cos(∠xpQ1Q2) = |Q1Q2|x′. (5.28)
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Then
x′ = el ·Q1xp. (5.29)

Now the basic integrals can be expressed in terms of x′ and z′. For simplicity,
we drop the prime (′) in x′ and z′ in the following analysis. 6

(1) For the integral I1 =

∫ l

0

1

r
dξ,

I1 =

∫ l

0

1√
(x− ξ)2 + z2

dξ =

∫ l

0

1√
ξ2 − 2xξ + x2 + z2

dξ

= ln
{

2
√

(ξ − x)2 + z2 + 2(ξ − x)
}∣∣∣l

0

= ln

√
(l − x)2 + z2 + l − x√

x2 + z2 − x
(5.30)(

or, I1 = ln

√
x2 + z2 + x√

(l − x)2 + z2 − (l − x)

)

This expression also includes the cases of z = 0.

(2) For the integral I2 =

∫ l

0

1

r + a
dξ =

∫ l

0

1√
(x− ξ)2 + z2 + a

dξ, change

the integration variable ξ into t =
√

(x− ξ)2 + z2 + a. Then dξ =√
(x− ξ)2 + z2

ξ − x
dt. Consider three cases for the sign of the denominator

ξ − x.

(a) When ξ − x ≥ 0 in the entire interval [0, l] (i.e., x ≤ 0), dξ =
t− a√

(t− a)2 − z2
dt. With the new integration limitsA =

√
x2 + z2+a

and B =
√

(l − x)2 + z2 + a,

I2 =

∫ B

A

t− a
t
√
t2 − 2at+ a2 − z2

dt

=

∫ B

A

1√
t2 − 2at+ a2 − z2

dt− a
∫ B

A

1

t
√
t2 − 2at+ a2 − z2

dt

6For integral formulas, refer to Gradshteyn, I. S. and Ryzhik, I. M. (1965), Table of Integrals, Series and
Products, Academic Press, Inc., New York and London, pp. 68, 81, 84.
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Namely,

I2 = ln
{

2
√

(t− a)2 − z2 + 2(t− a)
}∣∣∣B

A

−a 1√
z2 − a2

arcsin

{
2(a2 − z2)− 2 a t

t
√

4 z2

}∣∣∣∣B
A

,

or

I2 = ln

{√
(l − x)2 + z2 + (l − x)√

x2 + z2 − x

}
− a√

z2 − a2
·

·

[
arcsin

{
−z2 − a

√
(l − x)2 + z2

|z|(
√

(l − x)2 + z2 + a)

}

− arcsin

{
−z2 − a

√
x2 + z2

|z|(
√
x2 + z2 + a)

}]
(5.31)

(b) When ξ − x ≤ 0 in the entire interval [0, l] (i.e., x ≥ l), dξ =

− t− a√
(t− a)2 − z2

dt.

I2 = −
∫ B

A

t− a
t
√
t2 − 2at+ a2 − z2

dt

= −
∫ B

A

1√
t2 − 2at+ a2 − z2

dt+

∫ B

A

a

t
√
t2 − 2at+ a2 − z2

dt

I2 = ln

{√
(l − x)2 + z2 + (l − x)√

x2 + z2 − x

}
+

a√
z2 − a2

·

·

[
arcsin

{
−z2 − a

√
(l − x)2 + z2

|z|(
√

(l − x)2 + z2 + a)

}

− arcsin

{
−z2 − a

√
x2 + z2

|z|(
√
x2 + z2 + a)

}]
(5.32)

(c) When 0 < x < l, the integration interval is divided into two parts to
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apply the above two cases:

I2 =

∫ l

0

1

r + a
dξ

=

∫ x

0

1√
(x− ξ)2 + z2 + a

dξ +

∫ l

x

1√
(x− ξ)2 + z2 + a

dξ

I2 = −
[

ln
{

2
√

(t− a)2 − z2 + 2 (t− a)
}∣∣∣|z|+a

A

−a 1√
z2 − a2

arcsin

{
2(a2 − z2)− 2 a t

t
√

4z2

}∣∣∣∣|z|+a
A

]
+ ln

{
2
√

(t− a)2 − z2 + 2(t− a)
}∣∣∣A
|z|+a

−a 1√
z2 − a2

arcsin

{
2(a2 − z2)− 2 a t

t
√

4z2

}∣∣∣∣A
|z|+a

Finally, we have

I2 = ln

{√
(l − x)2 + z2 + (l − x)√

x2 + z2 − x

}
− a√

z2 − a2
·

·

[
π + arcsin

{
−z2 − a

√
(l − x)2 + z2

|z|(
√

(l − x)2 + z2 + a)

}

+ arcsin

{
−z2 − a

√
x2 + z2

|z|(
√
x2 + z2 + a)

}]
(5.33)

If z2 = a2, the integral should be performed by the simplified form;

I2 = ln

{√
(l − x)2 + z2 + (l − x)√

x2 + z2 − x

}

−

{
l − x√

(l − x)2 + z2 + a
+

x√
x2 + z2 + a

}
(5.34)
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(3) For the integral I3 =

∫ l

0

1

r(r + a)
dξ, take partial fraction to use the pre-

ceding results:

I3 =
1

a

∫ l

0

(
1

r
− 1

r + a

)
dξ =

1

a
(I1 − I2) (5.35)

But if a = 0 for which this expression is not valid, another form should be
performed;

I3 =

∫ l

0

1

(x− ξ)2 + z2
dξ =

∫ l

0

1

ξ2 − 2xξ + x2 + z2
dξ

=
1

|z|
arctan

(
ξ − x
|z|

)∣∣∣∣l
0

=
1

|z|

(
arctan

l − x
|z|

+ arctan
x

|z|

)
(5.36)

Furthermore if a = 0 and z = 0, then

I3 =

∫ l

0

1

(x− ξ)2
dξ =

1

x− l
− 1

x
. (5.37)

(4) For the integral I4 =

∫ l

0

1

r3
dξ,

I4 =

∫ l

0

1√
(x− ξ)2 + z2

3 dξ =
ξ − x

z2
√

(x− ξ)2 + z2

∣∣∣∣∣
l

0

=
1

z2

{
l − x√

(l − x)2 + z2
+

x√
x2 + z2

}
(5.38)

If z = 0, it should be replaced by

I4 =

∫ l

0

1

|x− ξ|3
dξ =


+

1

2

{
1

(l − x)2
− 1

x2

}
when x > l

−1

2

{
1

(l − x)2
− 1

x2

}
when x < 0

(5.39)
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When the inverse trigonometric functions are implemented in the computational
algorithm, their values are evaluated in the interval [−π/2, π/2] without consid-
ering the separate arguments of the functions.

5.3.6 Test calculations for constant distributions

A planar rectangular element of 12 × 1 is adopted for test calculations herein.
It may be assumed that the element is in the plane z = 0 with the four ver-
tices located at (0, 0, 0),(1, 0, 0), (1, 12, 0),(0, 12, 0), respectively. To check
a sensitivity of the calculation, we take various field points in the vicin-
ity of the element surface or one vertex. The coordinates of the field points
are, with labelling, P1(0.5, 6, 0), P2(0.5, 6,+0.00001), P3(0.5, 6,−0.00001),
P4(0,−0.00001, 0), P5(0, 0,+0.00001) and P6(0, 0,−0.00001). The points
P1, P2 and P3 are on, just above and below, respectively, of the centroid of
the element and P4, P5 and P6 are points very near one vertex of the origin.
The constant densities of source and doublet distributions are taken with 1, (i.e.,
σ = 1, µ = −φ = 1).

First we will compare numerical integrations and analytical evaluations of
the basic integrals described in the preceding subsection. At the field point E,
the evaluations are compared in Table 5.1. The influences of the basic integrals
at the field points by the respective sides of the element are listed. The side 1
denotes the line between the vertices (0, 0, 0) and (1, 0, 0) and the other sides are
numbered in a counterclockwise order in a similar way. In the numerical calcu-
lations, the Gaussian quadrature is used with various quadrature-base points to
show numerical convergence. It is seen that for a field point having a numeri-
cally singular behavior in line integral, a large number of quadrature-base points
are required to reach the same order as the analytical evaluations. It results in
large computing time undesirably.

The numerical and analytical evaluations for the induced velocities and po-
tentials at the selected field points due to the uniform source and doublet distri-
butions over the rectangular element are compared in Table 5.2.
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Table 5.1 Comparison of the Basic Integrals by Analytic and Numerical Calculation at Point
P5(0.0, 0.0, +0.00001).

Gaussian-Quadrature Points, N = Analytic
Side 20 100 500 2500

1 .7195E+01 .1037E+02 .1224E+02 .1221E+02 .1221E+02∫
1
r
dξ 2 .3180E+01 .3180E+01 .3180E+01 .3180E+01 .3180E+01

3 .8324E-01 .8324E-01 .8324E-01 .8324E-01 .8324E-01
4 .7195E+01 .1037E+02 .1356E+02 .1469E+02 .1469E+02
1 .7187E+01 .1018E+02 .1121E+02 .1121E+02 .1121E+02∫

1
(r+a)

dξ 2 .3180E+01 .3180E+01 .3180E+01 .3180E+01 .3180E+01
3 .8324E-01 .8324E-01 .8324E-01 .8324E-01 .8324E-01
4 .7195E+01 .1036E+02 .1320E+02 .1369E+02 .1369E+02
1 .8378E+03 .1893E+05 .1025E+06 .1000E+06 .1000E+06∫

1
r(r+a)

dξ 2 .1488E+01 .1488E+01 .1488E+01 .1488E+01 .1488E+01
3 .6928E-02 .6928E-02 .6928E-02 .6928E-02 .6928E-02
4 .6998E+02 .1674E+04 .3636E+05 .9987E+05 .1000E+06
1 .2211E+06 .1266E+09 .1084E+11 .1000E+11 .1000E+11∫

1
r3 dξ 2 .9965E+00 .9965E+00 .9965E+00 .9965E+00 .9965E+00

3 .5767E-03 .5767E-03 .5767E-03 .5767E-03 .5767E-03
4 .1536E+04 .8856E+06 .5284E+09 .1004E+11 .1000E+11

Table 5.2 Comparison of Potentials and Velocities by Analytic and Numerical Calculation at
Point P2(0.5, 6.0, +0.00001).

Gaussian-Quadrature Points, N = Analytic
20 100 500 2500

φ(σ) -0.6583E+00 -0.6650E+00 -0.6650E+00 -0.6650E+00 -0.6650E+00
q

(σ)
x 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
q

(σ)
y 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
q

(σ)
z 0.4681E+00 0.5000E+00 0.5000E+00 0.5000E+00 0.5000E+00
φ(µ) -0.4681E+00 -0.5000E+00 -0.5000E+00 -0.5000E+00 -0.5000E+00
q

(µ)
x 0.5371E-21 0.2791E-22 0.5166E-21 0.3339E-21 -0.2264E-21
q

(µ)
y -0.5143E-25 0.2006E-25 0.2288E-25 0.2600E-24 0.2309E-24
q

(µ)
z 0.5366E+00 0.6388E+00 0.6388E+00 0.6388E+00 0.6388E+00
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5.3.7 Extension to linear distributions

The preceding analysis can be extended to include a linear distribution of
sources and dipoles on each panel. In order to determine the distribution func-
tion uniquely, we take only three points (that are not collinear) of a polygon.
Therefore we consider a triangular element of a linear source distribution herein.
For the doublet distribution, the following procedure can be applied in a similar
manner. A form of the linear varying source strength is specified as

σ(x, y, z) = Ax+B y + C z +D (5.40)

The coefficients A,B,C and D are determined from the singularity strength
values at the vertices.

Define the unit directional vectors of the respective sides (of length li) of
the element by eli, (i = 1, 2, 3) and the vertex positions by (xi, yi, zi). From
elementary geometry for a corresponding linear source (or doublet) distribution,
we can form a linear equation system for A,B and C;

∇σ·eli ≡
σi+1 − σi

li
=
A(xi+1 − xi) +B(yi+1 − yi) + C(zi+1 − zi)

li
, i = 1, 2, 3

(5.41)
Here the vertices and sides are defined in a counterclockwise sense and the
index 4 corresponds to 1. By the Cramer’s rule, A,B,C and D are determined
;

A = det (σi − σi+1, yi − yi+1, zi − zi+1)/4, (5.42)

B = det (xi − xi+1, σi − σi+1, zi − zi+1)/4, (5.43)

C = det (xi − xi+1, yi − yi+1, σi − σi+1)/4, (5.44)

D = σ1 − (Ax1 +B y1 + C z1) (5.45)

where det (· ··) denotes the determinant of a matrix and4 = det (xi−xi+1, yi−
yi+1, zi − zi+1). For a given distribution shape, we can sum up the contribu-
tion of the associated line integrals for each side, as in the constant distribution
cases. In the linear variation cases, additionally there are integral forms to be



222 ANALYTICAL EVALUATION OF BOUNDARY INTEGRALS

evaluated: ∫ l

0

ξ

r
dξ,

∫ l

0

ξ

r + a
dξ,

∫ l

0

ξ

r(r + a)
dξ,

∫ l

0

ξ

r3
dξ,∫ l

0

r dξ,

∫ l

0

ln r dξ,

∫ l

0

ln(r + a) dξ. (5.46)

These integrals are performed without explicit representation in the follow-
ing manner, by referring to the integrals described in the preceding section and
to some of integral formulas in Gradshteyn & Ryzhik (1965). 7

(1) For J1 =

∫ l

0

ξ

r
dξ,

J1 =

∫ l

0

ξ − x+ x√
(x− ξ)2 + z2

dξ =
√

(ξ − x)2 + z2
∣∣∣l
0

+ x I1 (5.47)

(2) For J2 =

∫ l

0

ξ

r + a
dξ,

J2 =

∫ l

0

ξ − x+ x√
(x− ξ)2 + z2 + a

dξ

=
√

(x− ξ)2 + z2 − a ln
{√

(x− ξ)2 + z2 + a
}∣∣∣l

0
+ x I2

(5.48)

Here we have changed the integration variable: t =
√

(x− ξ)2 + z2 + a.

(3) For J3 =

∫ l

0

ξ

r(r + a)
dξ,

J3 =
1

a

∫ l

0

(
ξ

r
− ξ

r + a

)
dξ =

1

a
(J1 − J2)

= ln
{√

(x− ξ)2 + z2 + a
}∣∣∣l

0
+ x I3 (5.49)

7Gradshteyn, I. S. and Ryzhik, I. M. (1965), Table of Integrals, Series and Products, Academic Press, Inc.,
New York and London.
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But if a = 0 for which this expression is not valid, other form should be
performed;

J3 =

∫ l

0

ξ

r2
dξ =

∫ l

0

ξ − x+ x

(x− ξ)2 + z2
dξ

=
1

2
ln
{

(ξ − x)2 + z2
}∣∣l

0
+ x

∫ l

0

1

r2
dξ (5.50)

The last integral has been already considered in the preceding section as
the special case of the integral I3.

(4) For J4 =

∫ l

0

ξ

r3
dξ,

J4 =

∫ l

0

ξ − x+ x√
(x− ξ)2 + z2

3 dξ = − 1√
(x− ξ)2 + z2

∣∣∣∣∣
l

0

+ x I4 (5.51)

(5) For J5 =

∫ l

0

r dξ,

J5 =

∫ l

0

√
(x− ξ)2 + z2 dξ =

1

2
(ξ − x)

√
(ξ − x)2 + z2

∣∣∣l
0

+
1

2
z2 I1

(5.52)

(6) For J6 =

∫ l

0

ln r dξ,

J6 =
1

2

∫ l

0

ln
{

(x− ξ)2 + z2
}
dξ

=
1

2

[
(ξ − x) ln

{
(ξ − x)2 + z2

}
− 2ξ + 2|z| arctan

(
ξ − x
|z|

)]∣∣∣∣l
0

(5.53)

(7) For J7 =

∫ l

0

ln(r + a) dξ, take an integration by parts and then the same
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procedure as I2:

J7 =

∫ l

0

ln
{√

(x− ξ)2 + z2 + a
}
dξ

= (ξ − x) ln(
√

(x− ξ)2 + z2 + a)− ξ
+a ln(ξ − x+

√
(x− ξ)2 + z2)

+
√
z2 − a2 arcsin

{
−z2 − a

√
(ξ − x)2 + z2

|z|(
√

(ξ − x)2 + z2 + a)

}∣∣∣∣∣
l

0

(5.54)

5.4 Bilinear Source and Doublet Distribution

5.4.1 Introduction

This section deals with evaluations of the surface integrals in the potential-based
panel method, associated with bilinear density distributions of source and/or
doublet singularities over a planar panel. The surface integrals can be trans-
formed into contour integrals by using Stokes’ formulas after simple manip-
ulation on the integrands. We also present the closed-forms for obtaining the
induced potentials and velocities due to those singularity distributions over a
polygon panel.

5.4.2 Transformation of the surface integrals for Stokes’ theorem

Without loss of generality we will consider the domain of one planar panel for
the integration region as a part of the discretized boundary surface in Eq. (5.3).
We take an orthogonal coordinate system (ξ, η, ζ) to specify a bilinear form,
such that the panel is in the plane ζ = 0 and the direction of ζ-axis is the
same as that of the unit normal vector (n) of the panel, as shown in Figure 5.3
. The unit vectors in the direction of ξ-axis and η-axis are denoted by eξ and
eη, respectively. These two axes may be chosen arbitrarily in the directions but
lying on the panel surface. The coordinates (x, y, z) of the field point xp are
relatively measured from the origin of the coordinate system.
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Figure 5.3 A planar panel defined in a local coordinate system. The present derivation can
be applied to arbitrary polygons. A pentagon is taken with no loss of generality.

The potentials and the velocities at a field point xp(x, y, z) induced by a
bilinear source distribution σ = a0 + a1 ξ + a2 η + a3 ξ η and by a doublet
distribution µ = b0 + b1 ξ + b2 η + b3 ξ η, respectively, can be written as,

φ(σ) = − 1

4π

[
(a0 + a1 x+ a2 y + a3 x y)

∫
S

1

r
dS

+(a1 + a3 y)

∫
S

ξ − x
r

dS + (a2 + a3 x)

∫
S

η − y
r

dS

+a3

∫
S

(ξ − x) (η − y)

r
dS

]
(5.55)

q(σ) = +
1

4π

[
(a0 + a1 x+ a2 y + a3 x y)

∫
S

∇
(

1

r

)
dS

+(a1 + a3 y)

∫
S

(ξ − x)∇
(

1

r

)
dS

+(a2 + a3 x)

∫
S

(η − y)∇
(

1

r

)
dS

+a3

∫
S

(ξ − x) (η − y)∇
(

1

r

)
dS

]
(5.56)
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φ(µ) = − 1

4π
n ·
[
(b0 + b1 x+ b2 y + b3 x y)

∫
S

∇
(

1

r

)
dS

+(b1 + b3 y)

∫
S

(ξ − x)∇
(

1

r

)
dS

+(b2 + b3 x)

∫
S

(η − y)∇
(

1

r

)
dS

+b3

∫
S

(ξ − x) (η − y)∇
(

1

r

)
dS

]
(5.57)

q(µ) = − 1

4π

{∮
C

µ∇
(

1

r

)
× dlξ +

∫
S

(n×∇µ)×∇
(

1

r

)
dS)

}
= − 1

4π

[∮
C

(b0 + b1 ξ + b2 η + b3 ξ η)∇
(

1

r

)
× dl

+

∫
S

[
{b1 + b3 y + b3 (η − y)} eη

−{b2 + b3 x+ b3 (ξ − x)} eξ
]
×∇

(
1

r

)
dS

]
(5.58)

Here Eq. (5.58) has been expressed in the form of the vortex distribution equiv-
alent to the doublet distribution (Lee, J. T. (1987), Brockett (1988)). 8

In the case of a bilinear singularity distribution, eight different integrands
are involved in the surface integrals in Eq. (5.3), which will be described later
on. For use of Stokes’ formulas, all integrands are changed into equivalent ones
either in curl-forms of a vector or in cross product-forms of a vector with the
normal n as follows:

1

r
= e · (∇×B), with B =

e× r
r + e · r

(5.59)

ξ − x
r

= eη · (n×∇r) (5.60)

η − y
r

= −eξ · (n×∇r) (5.61)

(ξ − x) (η − y)

r
= eη · [n×∇{(η − y) r}] (5.62)

8Lee, J. T. (1987), A Potential Based Panel Method for the Analysis of Marine Propellers in Steady Flow, PhD.
thesis, Department of Ocean Engineering, MIT, Report no. 87-13.
Brockett, T. E. (1988), NA 520 Lecture Notes, (unpublished), Department of Naval Architecture and Marine Engi-
neering, University of Michigan.
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∇
(

1

r

)
= −∇× A, with A =

e× r
r(r + e · r)

(5.63)

(ξ − x)∇
(

1

r

)
=

[
eη ·
{
n×∇

(
ξ − x
r

)}
− 1

r

]
eξ

−
[
eξ ·
{
n×∇

(
ξ − x
r

)}]
eη

−z
[
eη ·
{
n×∇

(
1

r

)}]
n (5.64)

(η − y)∇
(

1

r

)
=

[
eη ·
{
n×∇

(
η − y
r

)}]
eξ

−
[
eξ ·
{
n×∇

(
η − y
r

)}
+

1

r

]
eη

+z

[
eξ ·
{
n×∇

(
1

r

)}]
n (5.65)

(ξ − x) (η − y)∇
(

1

r

)
= −eξ ·

[
n×∇

{
(ξ − x)2

r

}]
eξ

−eη ·
[
n×∇

{
(η − y)2

r

}]
eη

+z eξ ·
[
n×∇

{
(ξ − x)

r

}]
n (5.66)

Equations (5.59) and (5.63) have been introduced by Suh (1992) and Guiraud (1978),
respectively, 9 which can be also derived by direct manipulation with starting
from the right sides. Of course, these two relations can be simply used if one
wants to compute the induced potentials and velocities due to the constant
source and doublet distributions.

In the constant distribution cases, although the results are consistent, the
present approach using these key relations is considered simpler than those pre-
sented by Newman (1986) and by Cantaloube & Rehbach (1986). 10 The re-

9Suh, J.-C. (1992a), “Analytical evaluation of the surface integral in the singularity methods,” Trans. Soc.
Naval Arch. Korea, vol. 29, no. 1, pp. 1–17.
Guiraud, J. P. (1978), “Potential of velocities generated by a localized vortex distribution,” Aerospace Research,
English Translation-ESA-TT-560, pp. 105–107.

10Newman, J. N. (1986), “Distributions of sources and normal dipoles over a quadrilateral panel,” J. Eng. Math.,
vol. 20, pp. 113–126.
Cantaloube, B. and Rehbach, C. (1986), “Calcul des Integrales de la Methode des Singularites,” Recherche
Aerospatiale, no 1, pp. 15–22, English Title: “Calculation of the integrals of the singularity method,” Aerospace
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maining equations have been derived by a similar deduction, under hypothesis
of planarity of the panel. The distance vector r is defined as xξ − xp where
the subscripts ξ and p refer to the source point and the field point respectively.
While Eqs. (5.59) and (5.63) hold for any e independent of the integration point
xξ more generally, the unit vector e is taken as ±n for application of Stokes’
transformation, where the sign is chosen such that e · r is not negative.

Using Stokes’ formulas of the surface integrals with the alternative forms
for a polygon panel, we can express the surface integrals as a sum of the associ-
ated line integrals for each side of the panel with independent treatment of the
contribution from the side. Each contribution can be written as closed-forms in
term of only the geometrical parameters of the side as described in the following
section.

5.4.3 Induced potential due to source distribution

The potential at a field point xp(x, y, z) induced by a bilinear source distribution
σ = a0 + a1ξ + a2η + a3ξη, Eq. (5.55) can be written as,

φ(σ) = − 1

4π

∫
S

σ

r
dS

= − 1

4π

∫
S

{
c1

1

r
+ c2

ξ − x
r

+ c3
η − y
r

+ c4
(ξ − x) (η − y)

r

}
dS

(5.67)

where for shortness of expressions we have defined the constants c1 = a0 +

a1 x + a2 y + a3 x y, c2 = a1 + a3 y, c3 = a2 + a3 x, c4 = a3. Using Eq. (5.59)
through Eq. (5.63) for the corresponding integrands and then performing
Stokes’ transformations, we can write Eq. (5.67) as, in terms of line integrals,

φ(σ) = − 1

4π

[
c1

∮
C

r · (dl × n)

r + e · r
+ c2 eη ·

∮
C

r dl − c3 eξ ·
∮
C

r dl

+c4 eη ·
∮
C

(η − y) r dl

]
(5.68)

Research, no. 1, pp. 15–22.



5.4 Bilinear Source and Doublet Distribution 229

The term r · (dl × n)/dl represents the projection of the distance vector r onto
the vector perpendicular to both dl and n. Because it is constant for each side of
a straight-line and e · r (≡ a, that is, the normal distance of the field point from
the panel) is a non-negative constant for all sides of the planar panel, Eq. (5.68)
can be written as

φ(σ) = − 1

4π

NS∑
i=1

[
c1 ti

∫
Ci

1

r + a
dl + c2 vi

∫
Ci

r dl − c3 ui

∫
Ci

r dl

+c4 vi

∫
Ci

(η − y) r dl

]
(5.69)

The index i denotes the integer for identification of the side concerned, NS is
the number of sides of the polygon panel (e.g., NS = 3 for triangular panels),
ti = r ·(eli×n), ui = eξ ·eli and vi = eη ·eli. The directional vector eli = dl/dl is
chosen in a counterclockwise direction as the convention of the contour integral.
Rewriting the last integral in Eq. (5.69) in terms of the local coordinates of the
nodes, we finally obtain the expression for the source-induced potential:

φ(σ) = − 1

4π

NS∑
i=1

[
c1 ti

∫
Ci

1

r + a
dl + c2 vi

∫
Ci

r dl − c3 ui

∫
Ci

r dl

+c4 vi (ηi − y)

∫
Ci

r dl + c4 v
2
i

∫
Ci

l r dl

]
(5.70)

Here l is the integral variable representing the arc-length along the straight-line
of each integration path Ci. The vertices composed of the panel (ξi, ηi) and the
sides are also defined in a counterclockwise order. It is seen that the integral
term for each side is related to the relative position of the field point from the
side. Each integral, as will be shown, depends only on the coordinates of the
two end points of the corresponding side. Equation (5.70) can be directly used
even in the cases of that the field points are just at the panel surface (i.e., in the
self-induction cases), by setting a = 0 in Eq. (5.70) since n·r = 0. Furthermore,
when the field point is just at the side of the panel, the first term vanishes because
ti decays faster than the integral with r approaches zero, while the other terms
have finite values.
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5.4.4 Induced velocity due to source distribution

The source-induced velocity at the field point, Eq. (5.56) is expressed as

q(σ) = +
1

4π

∫
S

σ∇
(

1

r

)
dS

=
1

4π

[
c1

∫
S

∇
(

1

r

)
dS + c2

∫
S

(ξ − x)∇
(

1

r

)
dS (5.71)

+c3

∫
S

(η − y)∇
(

1

r

)
dS + c4

∫
S

(ξ − x) (η − y)∇
(

1

r

)
dS

]
We rearrange the integrand of the first integral in Eq. (5.71):

∇
(

1

r

)
= n

{
n · ∇

(
1

r

)}
− n×

{
n×∇

(
1

r

)}
(5.72)

Like Eq. (5.67), using Eq. (5.63) through Eq. (5.66) and rearranging the result-
ing expressions give us the expression for the source-induced velocity:

q(σ) =
1

4π

NS∑
i=1

[
−c1

{
n(n · e) ti

∫
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1

r(r + a)
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∫
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1

r
dl

}
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∫
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1

r
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∫
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r
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}
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∫
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∫
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}
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∫
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1
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∫
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∫
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}
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∫
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∫
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r
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i

∫
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∫
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r
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(5.73)
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5.4.5 Induced potential and velocity due to doublet distribution

For a bilinear doublet distribution µ = b0 + b1 ξ + b2 η + b3 ξ η, the induced
potentials and velocities can be obtained in a straight-forward manner similar
to one in the case of the source distribution. The final results can be written as,
for the induced potentials,

φ(µ) = − 1

4π

NS∑
i=1

[
−d1(n · e) ti

∫
Ci

1

r(r + a)
dl + d2 vi(−z)

∫
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1

r
dl
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∫
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1

r
dl + d4 ui z

{
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∫
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1

r
dl + ui

∫
Ci

l

r
dl

}]
(5.74)

and, for the induced velocities,

q(µ) =
1

4π

NS∑
i=1

[(
r × eli
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∫
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∫
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∫
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∫
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∫
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∫
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∫
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∫
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∫
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∫
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1

r
dl

}
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1

r
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) ∫
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r
dl

}
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r
dl + eη vi z

∫
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r
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}]
(5.75)

For shortness of expressions, we have also defined the constants d1 = b0 +

b1 x+ b2 y+ b3 x y, d2 = b1 + b3 y, d3 = b2 + b3 x, d4 = b3. It is easily found that
the expression for the induced potential φ(µ) has the same form as the normal
component of q(σ) except notation of the singularity distribution.
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5.4.6 Closed-forms of the basic integrals

In the preceding subsections, we have expressed the induced potentials and
velocities in forms of a sum of the more simplified line integral given in
Eqs. (5.70), (5.73), (5.74) and (5.75). We will derive here closed-forms of
the following line integrals involved in those expressions:

I1i =

∫
Ci

1

r
dl, I2i =

∫
Ci

1

r + a
dl, I3i =

∫
Ci

1

r(r + a)
dl, I4i =

∫
Ci

1

r3
dl

J1i =

∫
Ci

l

r
dl, J2i =

∫
Ci

l

r3
dl, J3i =

∫
Ci

r dl,

K1i =

∫
Ci

l2

r
dl, K2i =

∫
Ci

lr dl, K3i =

∫
Ci

l2

r3
dl (5.76)

The line integrals for each side of the polygon can be treated independently
by the geometric parameters of that side. It is sufficient, therefore, to consider
only one side of the panel, say i = 1, for the purpose of these evaluations. For
simplicity of the presentation, we drop the subscript i used for identifying the
side. We take, without loss of generality, a local plane coordinate system (x′, z′)

in the plane through the field point xp and the side concerned, such that the side
lies on the x′-axis, one end point of the side is at the origin and the integration
path is performed along the positive x′-axis, as shown in Figure 5.2 . Then the
local coordinates (x′, z′) can be expressed, in terms of the global coordinates,
as |z′| = |el ×Q1xp|. and x′ = el ·Q1xp.

In the following development, we define the distances between the end
points and the field point by R1 ≡ |Q1xp| =

√
x′2 + z′2 and R2 ≡ |Q2xp|

=
√

(`− x)′2 + z′2. Expressing the integrals in terms of the local coordinates
x′ and z′ and performing the integration (Gradshteyn & Ryzhik 1965), 11 we

11Gradshteyn, I. S. and Ryzhik, I. M. (1965), Table of Integrals, Series and Products, Academic Press, Inc.,
New York and London.
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get the following results for the integrals.

I1 = ln
R2 + `− x′

R1 − x′
(5.77)

I2 = I1− a√
z′2 − a2

sin−1(H) (5.78)

with H =

√
z′2 − a2

{
z2 `+ a (`− x′)R1 + a x′R2)

}
z′2(R1 + a) (R2 + a)(

I2 = I1− a√
z′2 − a2

{
π − sin−1(H)

}
,

if (R1 + a)2 (z′2 + aR2)
2 + (R2 + a)2 (z′2 + aR1)

2 ≤ z′2 (R1 + a)2 (R2 + a)2
)

I3 =
1

a
(I1− I2) (5.79)

I4 =
1

z′2

{
`− x′

R2
+
x′

R1

}
(5.80)

J1 = R2 −R1 + x′ I1 (5.81)

J2 =
1

R1
− 1

R2
+ x′ I4 (5.82)

J3 =
1

2

{
(`− x′)R2 + x′R1 + z′2 I1

}
(5.83)

K1 =
1

2

{
(`− x′)R2 + x′R1 − z′2 I1

}
+ 2x′ J1− x′2 I1 (5.84)

K2 =
1

3

(
R3

2 −R3
1

)
+ x′J3 (5.85)

K3 = −
(
`− x′

R2
+
x′

R1

)
+ I1 + 2x′ J2− x′2 I1 (5.86)

In the cases of a = 0 and/or z = 0, we can take the limit forms of the above
expressions.

The closed-forms of Eq. (5.70) through Eq. (5.75) can be written as, in terms
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of the basic integrals retaining the index i for the side and vertex:

φ(σ) = − 1

4π

NS∑
i=1

[
c1 ti I2i + {c2 vi − c3 ui + c4 vi (ηi − y)} J3i + c4 v

2
i K2i

]
(5.87)

q(σ) =
1

4π
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+ c3

{
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}
+ c4
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i K1i
}

+ eη vi
{

(ηi − y)2 I1i + 2(ηi − y) vi J1i + v2
i K1i

}
+nui z {(ξi − x) I1i + ui J1i}}] (5.88)

φ(µ) =
1

4π

NS∑
i=1

[d1(n · e) ti I3i + d2 vi z I1i − d3 ui z I1i

− d4 ui z {(ξi − x) I1i + ui J1i}] (5.89)

q(µ) =
1

4π

NS∑
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(r × eli) {b0 (ξi I4i + ui J4i) + b1 (ηi I4i + vi J4i)

+ b2 {ξi ηi I4i + (ξi vi + ηi ui) J4i + ui vi K3i}+ b3 I4i}
+ d2

{
eξ(n · e) ti I3i + (eη × emi

) I1i
}

+ d3

{
eη(n · e) ti I3i − (eξ × emi

) I1i
}

+ d4

{
n
{
vi (ηi − y) I1i + v2

i J1i − ui (ξi − y) I1i − u2
i J1i

}
− eξ ui z I1i + eη vi z I1i

}]
(5.90)

We found the newly useful relation of Eq. (5.59) which can be applied di-
rectly to calculation of the volumetric integral of vorticity distributions given by
the Biot-Savart integral. This integral would often require to be evaluated when
the vorticity-velocity formulation is used in inviscid rotational flow problems
involving shear-flow interaction. For piecewise constant vorticity distribution
within a volumetric element with planar faces, we can first transform the vol-
ume integral into the surface integrals on the enclosed faces by using Gauss
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theorem. The integrand of the transformed surface integrals becomes 1/r and
then Eq. (5.59) (with e = ±n) can be used to transform each surface integral
into the line integrals expressed in a form analogous to the first integral term
in Eq. (5.70). The evaluation of the Biot-Savart integral is presented in Ap-
pendix D.
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6.1 Introduction

In this chapter, we will explain the vorticity-based methods as a tool for the
numerical simulation of unsteady incompressible viscous flows. We will deal
with various numerical methods based on the vorticity-velocity-pressure for-
mulation for solving the Navier-Stokes equations. Specially, the finite volume
method and the vortex particle method are comparatively used for temporal evo-
lution of a vorticity field. The velocity, vorticity and pressure field is calculated
in the time marching process.

In general, there are three separate types of approach in the solution proce-
dure for the velocity field:

(a) to use the Biot-Savart integral for a presumably given vorticity field,

(b) to solve directly the kinematic relation between the velocity and the vor-
ticity, and

(c) to solve the Poisson equation for the stream function potential.

In this course, the schemes based on the differential approaches (a) and (c) will
be employed. The advantage in employing the integral approach (a) is based
on its stability. Integral operators are bounded and smoothing, so that discrete
approximations would be stable even if the discretized mesh is refined. The
approach (c) corresponds to the VIC (Vortex-In-Cell) method.

The present formulation includes the pressure calculation while most of the
existing vorticity-based methods have not treated the pressure field. The main
feature of the formulation is the use of an integral approach for obtaining the
velocity and pressure fields, in conjunction with a finite volume scheme and the
vortex particle method for solving the vorticity transport equation. The integral
approach may reflect more easily the global coupling among vorticity, veloc-
ity and pressure when imposed the boundary condition for vorticity at a solid
surface.

The numerical schemes for computing the vorticity evolution and the integral
approach for solving the velocity and the pressure are given in Chapter 7 and
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Chapter 8. We will take, as test problems, vorticity dominant flows around a
simple geometry such as a circular cylinder, driven cavity and hydrofoil, in
which certain special features are apparent, notably concerned with the vorticity
distribution on the body surface.

Our numerical schemes could be judged by a comparison with the exist-
ing analytical solution and experimental/numerical results provided by other re-
searchers. The demonstrated results indicate that the present integral approach
can be incorporated into the finite volume scheme and the Lagrangian vortex
method from the viewpoint that the evolution of vorticity in the fluid and on the
boundary is accurately predicted and are found to be in good agreement with
the comparable solutions.

6.1.1 Various vortical flows

Some vortical flows are natural and essential for movement of fluid (Lugt 1983).
The vortical flow behavior at a point in space can be related to a vortex defini-
tion. Vorticity is related to the angular velocity of matter at a point in continuum
space. Such a vortical motion is composed of a basic mode of motion due to
deformation along with rigid motion (Batchelor 1967). Figures 6.1 through 6.3
show typical patterns that may be observed in nature and laboratory.

In some aspects, it is convenient to represent the fluid motion in terms of
vorticity together with velocity and pressure. The advantages of the vorticity in-
terpretation and computation rely on the fundamental difference between fluid
and solid. Shearing process of fluid at solid surface can be precisely represented
by vorticity variable as the skew-symmetric part of the velocity gradient. More-
over, a knowledge of vorticity implies knowing not only the fluid motion at a
single spatial point, but also the relation of that motion with those of neighbour-
ing points. Thus, the vorticity reflects the dynamic mechanism of the shearing
process more directly than velocity variable (Wu & Wu 1993).
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Figure 6.1 Various vortex patterns. Concentric circular vortex and asymmetrical vortex;
Cylindrical vortex (perspective view); Spiral vortex; Disk-like and columnar vortices. From
Lugt (1983).

Figure 6.2 Trailing vortices from a rectangular wing. From Van Dyke (1982).
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Figure 6.3 Tip vortex cavitation of a marine propeller.

6.1.2 Recent developments

6.1.2.1 CFD modeling

Application of Computational Fluid Dynamics (CFD) might cover the range
from the automation of well-established engineering design methods to the use
of detailed solutions of the Navier-Stokes (referred to as ‘N-S’ below) equa-
tions as substitutes for experimental research into the nature of complex flows
(Ferziger & Perić (1996)). In recent, the advancement in computer hardware
technology has made it possible to perform numerical treatment of complex
flow fields.

There is yet to be found the most appropriate mathematical formulation of
the Navier-Stokes equations to simulate these flows is still open, considering
the fact that the choice is strictly dependent on the problem domain and the
boundary conditions. For suitable dynamical, spatial and steadiness approxi-
mations of Navier-Stokes equations for incompressible viscous flow, there exist



242 VORTICITY BASED METHODS

so many mathematical models or discretization techniques. The computational
procedures are shown in Figure 6.4 .

Figure 6.4 Computational procedure for solving Navier - Stokes equations. From
Hirsch (1988).

As one candidate for solving Navier-Stokes equations , many researchers
have introduced various numerical methods based on the vorticity-velocity for-
mulation. The vorticity-velocity formulation has a few advantages over the
primitive variable formulation. A particular numerical algorithm developed for
the solution of the vorticity transport equation in an inertial reference frame may
be applied to that in a moving frame with correspondingly redefined bound-
ary and initial conditions without any extra consideration of stability problems
caused by the additional source terms (Speziale 1987).

6.1.2.2 Physical interpretation

Since the physical interpretation by Lighthill (1963) and Batchelor (1967)
of the vorticity dynamics, many researchers have introduced various numeri-
cal methods based on the vorticity-velocity formulation for solving the Navier-
Stokes equations as an alternative to the primitive variable formulation.

The vorticity-velocity formulation has a few advantages over the primi-
tive variable formulation. The vorticity-velocity formulation is mathematically
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natural since the inertia force (including the external body force) term in the
Navier-Stokes equations can be expressed as a Helmholtz decomposition form.
Then, the pressure and the vorticity become a pair of potentials of the inertia
force term (Wu & Wu 1993).

In externally attached flow problems where the viscous region occupies only
the boundary layer and wake, a computational region for vorticity evolution can
be confined to this region of the entire flow field (Wu 976).

Furthermore, the use of the vorticity field may be desirable to understand
certain features of established vortical flows. A particular numerical algorithm
developed for the solution of the vorticity transport equation in an inertial refer-
ence frame may be applied to that in a non-inertial frame with correspondingly
redefined boundary and initial conditions without any extra consideration of
stability problems caused by the additional source terms (Speziale 1987).

The fluid around a solid body adheres to the body surface at any instant
in time. This no-slip characteristics for fluid velocity must produce a proper
quantity of vorticity at the surface. This vorticity then enters and is distributed
throughout the fluid by convection and diffusion. The production and redistri-
bution of the vorticity is governed by the vorticity transport equation. One of
the most difficult problems encountered in the vorticity-velocity formulation is
the introduction of the proper value of vorticity or vorticity flux at the solid
surface (Gresho 1991).

Mathematical identity for a vector or scalar field is used to define field values
of a quantity of interest, which involves an integral of singularities distributed
over a surface and over a field. This concept that was well established for the
potential flow analysis have been extensively introduced to solve viscous flow
problems (see Morino (1990) for general description). This approach has been
recognized to accompany a large amount of computational time, not to ensure
a reasonable accuracy in numerical implementation.

Anderson (1989) was the first to present dynamic boundary conditions ap-
propriate for the vorticity formulation of the two-dimensional ‘N-S’ equations.
The boundary conditions do not reveal the inherent vorticity-pressure coupling
due to an additional compatibility condition, implying a special force balance
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on a solid wall through the N-S equations.

The dynamic mechanism of the viscous shearing process at the solid body
surface must be interpreted in terms of the vorticity and the pressure variables
together (Wu & Wu 1993). From a different approach, Wu et al. (1994) pre-
sented a systematic theoretical analysis for these dynamic boundary conditions.
They proposed a fully decoupled scheme based on fractional step methods (in
which the vorticity transport equation is separated into convection and diffusion
equations) applicable for high Reynolds numbers.

6.1.2.3 Vortex particle method

In recent times, great efforts have been made towards solving this problem es-
pecially in two-dimensional flow cases by Koumoutsakos & Leonard (1995).
In their work, a fractional two-step algorithm is employed in a similar way to
the work of Wu et al. (1994).

In the first step, discrete point-vortices updated at previous time steps in
the time-marching procedure are convected during a time interval (4t) via
the Biot-Savart integral with smoothed integral kernels (see Figure 6.5 ) and
their strength is modified based on the scheme of the particle strength exchange
scheme. In the second step, a spurious vortex sheet (γ) which is observed on
the surface of a body at the end of the first step is computed and related to a vor-
ticity flux (σ) generating from the solid wall in the fluid: σ = γ/4t. In order to
reveal dynamical interaction between the vorticity and the pressure, a tangential
gradient of the pressure on the right-hand side of this equation should be added.

Essentials of the vortex methods are

(1) one of numerical techniques to solve the N.-S. equations,

(2) suitable simulation for vortical flows,

(3) use of vorticity as a variable,

(4) Lagrangian concept computation,
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Figure 6.5 Smoothed integral kernel function in particle methods.

(5) confined computational region of non-zero vorticity,

(6) gridless or regular grid system in flow field, and

(7) automatically satisfied far-field boundary condition.

6.1.2.4 Vortex-In-Cell method

The major category of vortex method is distinguished by the scheme of calcula-
tion of the velocity field. Generally the vortex method can be divided into grid
free method based on the Biot-Savart law (Ploumhans et al (2002)) and vortex-
in-cell method where a grid is used for the velocity calculation but particles are
used to track the vorticity (Cottet & Poncet (2003)). Vortex-in-cell method has
been considered computationally efficient for the evaluation of velocity.

Table 6.1 reproduces the comparison, introduced in Cottet (1999), of the run
parameters used for a VIC(Vortex-In-Cell) code and a second order compact
finite-difference scheme for 2-D driven cavity flow. The table shows that the
VIC method can have economic cost due to the less restrictive time step.

As extentive work, Cottet & Poncet (2003) designed an immersed boundary
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vortex-in-cell method for the investigation of a cylinder wake. They computed
the velocity and the vorticity strain based on grid Poisson solver.

Table 6.1 Comparison of CPU times between vortex-in-cell method and finite difference
method for 2-D driven cavity flow for various Reynolds numbers.

Reynolds number 100 2000 10000

NFDM 64 128 256

NVIC 64 128 256

∆tFDM 0.01 0.008 0.004

∆tVIC 0.01 0.02 0.04

CPUtimeFDM 3 24 225

CPUtimeVIC 5 16 32

6.2 Vorticity-Velocity-Pressure Formulation

6.2.1 Navier-Stokes equations in Helmholz decomposition

In Chapter 2, we have described the equations of motion, being a relation be-
tween the rate of change of momentum of a material volume of a fluid and all
forces acting on that portion of fluid,

d

dt

∫
V

ρ q dV =

∫
V

ρ f dV +

∮
S

τ dS (6.1)

where f is the external body force per unit mass of fluid and τ is the stress
vector (the surface force per unit area).

For incompressible Newtonian fluid, the stress tensor is related to the pres-
sure and the strain rate linearly.

τij = −p δij + 2µDij (6.2)

where

Dij =
1

2

(
∂qi
∂xj

+
∂qj
∂xi

)
(6.3)
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Then, substitution of Eq. (6.2) in Eq. (6.1) gives

ρ
Dqi
Dt

= ρ fi −
∂p

∂xi
+ µ

∂2qi
∂xj∂xj

(6.4)

Eq. (6.4) becomes, in vector notation,

ρ
Dq

Dt
= ρ f −∇p+ µ∇2q (6.5)

Alternatively, for an incompressible flow, Eq. (6.2) can be reduced to

τij = −p δij + µ

(
∂qi
∂xj
− ∂qj
∂xi

)
+ 2µ

∂qj
∂xi

(6.6)

As represented by the surface integral of Eq. (6.1), the stress vector is derived
as

τ = τij nj =

{
−p δij + µ

(
∂qi
∂xj
− ∂qj
∂xi

)
+ 2µ

∂qj
∂xi

}
nj

= −p n+ µ ω × n+ 2µ (∇q) · n (6.7)

The equation of motion Eq. (6.1) then gives∫
V

ρ
Dq

Dt
dV =

∫
V

ρ f dV +

∮
S

{
−p n+ µ ω × n+ 2µ (∇q) · n

}
dS

=

∫
V

ρ f dV +

∫
V

{−∇p−∇× (µ ω)} dV (6.8)

Here we have ignored the contribution of the surface integral J =
∮
S∇q · n dS

because it becomes zero as outlined below.

Contribution of J =

∮
S

∇q · n dS in Eq. (6.8)

From the vector expansion,

(n×∇)× q = ∇q · n− (∇ · q) n (6.9)
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J =

∮
S

{
(n×∇)× q + (∇ · q) n

}
dS (6.10)

For incompressible flow, ∇ · q = 0. Then, dividing the surface region S into
two parts Su and Sl by introducing a line C,

J =

∫
Su

(n×∇)× q dS +

∫
Sl

(n×∇)× q dS (6.11)

Use the Stokes theorem for each term,

J =

∮
C

d`× q +

∮
−C

d`× q = 0 (6.12)

Thus the contribution of 2µ∇q · n to the surface force becomes zero. ���

Consequently, we can introduce the reduced stress vector that has the
Helmholtz decomposition form:

τ ∗ = −p n+ µ ω × n (6.13)

Figure 6.6 shows the directions of the stresses related to the surface vorticity.
Viscous stress makes 45o with principal axes of strain rate tensor.

Figure 6.6 Interaction between shearing process and surface vorticity. The principal axes t1
and t3 rotate around ω′ . From Wu et al. (1993).
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Figure 6.7 shows the erection of the hairpin vortex structures in boundary
layers. Vortex stretching (distortion) interacts on vorticity field. Such interac-
tion provides the physiccal background on generation of turbulent flows. Pri-
mary hairpin vortex may induce a pressure gradient near the wall surface by
which strong secondary or tertiary haipin vortex is ejected and then the multiple
breakup of a single turbulent streak occurs.

Figure 6.7 Possible effect on the hairpin vortex structures. Adapted from Taylor &
Smith (1990).

We also have a natural form of Helmholtz decomposition for the Navier-
Stokes equations:

ρ
Dq

Dt
− ρf = −∇p−∇× (µ ω) (6.14)

Moreover, the first term in Eq. (6.14) can be rewritten as, by using vector iden-
tities:

Dq

Dt
=

∂q

∂t
+ q · ∇q

=
∂q

∂t
+∇

(
1

2
q · q

)
− q × ω (6.15)

According to Eqs. (6.14) and (6.15), the Navier-Stokes equations for an incom-
pressible flow of a Newtonian fluid are written as:

∂q

∂t
+ ∇

(
p

ρ
+

1

2
q · q

)
= f + q × ω − ∇× (ν ω) (6.16)
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6.2.2 Vorticity transport equation

The vorticity transport equation is obtained by taking the curl of Eq. (6.16):

∂ω

∂t
= ∇× f +∇×

(
q × ω

)
− ν∇× (∇× ω) (6.17)

Using the vector expansion formulas:

∇×
(
q × ω

)
= ω · ∇q + q (∇ · ω)− ω

(
∇ · q

)
− q · ∇ω (6.18)

∇× (∇× ω) = ∇ (∇ · ω)−∇2ω (6.19)

Since∇·
(
∇× q

)
= ∇·ω = 0, the vorticity transport equation is equaivalently

represented as

∂ω

∂t
+
(
q · ∇

)
ω = (ω · ∇) q + ν∇2ω +∇× f (6.20)

The corresponding vorticity transport equation for a compressible fluid with
variable viscosity and density is, 1

∂ω

∂t
= −

(
q · ∇

)
ω + (ω · ∇) q + ν∇2ω +∇× f − ω

(
∇ · q

)
+

1

ρ2
(∇ρ×∇p) +

µ

ρ
{∇ρ× (∇× ω)} − 4µ

3ρ2

{
∇ρ×∇(∇ · q)

}
+

[
∇×

{
1

ρ

(
−2

3
(∇ · q) (∇µ) + 2(∇q) · (∇µ) + (∇µ)× ω

)}]
(6.21)

The vorticity transport equation in Eulerian and Lagrangian description can
be expressed as, respectively, ignoring the body force term,

1For details, see Zabusky, N. J. (1999), “Vortex paradigm for accelerated inhomogeneous flows: Visiomet-
rics for the Rayleigh-Taylor and Richtmyer-Meshkov environments,” Annual Review of Fluid Mechanics, vol. 31,
pp. 495–536.
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(1) Eulerian Description

∂ω

∂t
+ q · ∇ω = ω · ∇q + ν∇2ω + ∇× f

Local time rate of Convective rate Stretching effect Viscous Body force
of vorticity of vorticity of vorticity diffusion effect

(6.22)

(2) Lagrangian Description

Dω

Dt
= ω · ∇q + ν∇2ω + ∇× f

Rate of change Stretching effect Viscous Body force
of vorticity of vorticity diffusion effect

(6.23)

The vorticity transport equation for 2-D incompressible flow of a viscous
fluid, ignoring the external body force, is represented as

∂ω

∂t
+
(
q · ∇

)
ω = ν∇2ω +∇× f (6.24)

6.2.3 Pressure Poisson equation

The Poisson pressure equation, by taking the divergence of Eq. (6.16) is also
derived as

∇2

(
p

ρ
+

1

2
q · q

)
= ∇ ·

(
q × ω

)
+ ∇ · f (6.25)

or equivalently
∇2H = ∇ ·

(
q × ω

)
+ ∇ · f (6.26)

Here, the external force is ignored and the pressure p is related to the total
pressure H (the static and the dynamic pressure) defined by

H =
p− p∞
ρ

+
1

2

(
q2 − q2

∞
)

(6.27)

where the constants p∞ and q∞ are the reference pressure and velocity at in-
finity (or at a reference point), respectively. With this definition, the boundary
condition at infinity for H is expressed by H → 0 as |x| = r →∞. Thus the
contribution due to H at infinity is not considered.
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6.2.4 Kinematic boundary condition

Equations (6.24) and (6.26) should be solved in the fluid domain with the
boundary, being subject to the boundary conditions for velocity, vorticity and
pressure on the surface of a solid body.

At a solid boundary, kinematics dictates that the tangential component of the
flow velocity on the wall must be equal to the tangential velocity of the body.

q(xs, t) · t = UB · t (6.28)

where, if a body translates with a speed U∞ and rotates with angular velocity
Ωb around its center of mass located at xb, UB = U∞ + Ωb × (xs − xb). This
boundary condition results from experimental fact and is valid that the fluid
is, to a good approximation, a continuum. This is usually called the no-slip
boundary condition. Also, the normal component of the velocity of the fluid
and the velocity of the body should be the same:

q(xs, t) · n = UB · n (6.29)

This is usually called the no-through-flow boundary condition. Equations (6.28)
and (6.29) are the constituents of the kinematic boundary condition:

q(xs, t) = UB (6.30)

Fluid element in contact with the wall is subject to the flow velocity and the
motion of the wall. This may result in a net torque onto the fluid element that
may in turn impart a rotational motion to the fluid.

6.2.5 Dynamic boundary condition

The boundary condition for the vorticity at the solid surface can be derived by
taking the cross product of Navier-Stokes equations Eq. (6.16) with a normal
vector n:

n× (ρ a) + n×∇p = − n× (∇× (µ ω)) (6.31)
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where the acceleration is expressed as a = dq/dt and the external body force
f is ignored. This condition corresponds to the force equilibrium in the di-
rectiontangent to the solid surface. The second term on the right-hand side of
Eq. (6.31) also becomes by using vector expansion formulas,

n× (∇× (µ ω)) = ∇ (µω) · n− ∂(µ ω)

∂n
(6.32)

Substitution of this relation in Eq. (6.31) then gives

∂(µ ω)

∂n
= n× (ρ a) + n×∇p+∇ (µ ω) · n (6.33)

The boundary condition for the pressure at the solid surface can be derived by
taking the scalar product of N.-S. equations (6.16) with a normal vector n:

n ·
∂q

∂t
+

∂

∂n

(
p

ρ
+

1

2
q · q

)
= n ·

(
q × ω

)
− n · (∇× (ν ω)) (6.34)

This condition corresponds to the force equilibrium in the direction normal to
the solid surface. Equation (6.34) is also expressed by using the total pressure
in Eq. (6.27) and ignoring the external force as

∂H

∂n
= − n ·

∂q

∂t
+ n ·

(
q × ω

)
− n · (∇× (ν ω)) (6.35)

6.2.6 Integral approach of formulation

The governing equations for the unsteady flow of a Newtonian incompressible
fluid can be written as,

∇ · q = 0, (6.36)

ω = ∇× q, (6.37)
∂ω

∂t
+ q · ∇ω = ω · ∇q + ν∇2ω +∇× f, (6.38)

∇2

(
p

ρ
+

1

2
q2

)
= ∇ ·

(
q × ω

)
+∇ · f, (6.39)
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where q, ω and p are the velocity, the vorticity and the pressure, respectively, ν
is the kinematic viscosity, and ρ is the density of the fluid. The set of Eqs. (6.37),
(6.38) and (6.39) is one of the basic differential vorticity-velocity-pressure for-
mulations. In VIC (Vortex-In-Cell) method, a Poisson equation for the stream
function ∇2ψ = −ω, is used instead Eq. (6.37). In the next section, we will
describe in detail about the VIC method to be employed.

According to the mathematical vector identity, an equivalent integral formu-
lation of Eq. (6.37) is written as, with use of Eq. (6.36),

q =

∮
S

[
(n · q)∇G+ (n× q)×∇G

]
dS +

∫
V

ω ×∇GdV, (6.40)

where n is the unit normal pointing into the fluid at the boundary S (C in 2-
dimensions) of a fluid domain V (S in 2-dimensions) and ∇ denotes the dif-
ferential operator with respect to the variable of integration ξ. Here, G is the
fundamental solution of the Laplace equation for an unbounded fluid domain,

defined by G = − 1

4πr
in 3-dimensions and G = +

1

2π
ln r in 2-dimensions,

where r is the distance between a field point x and an integration point ξ.

The velocity field q is considered as the sum of two components: the veloc-
ity of undisturbed onset flows and the disturbance velocity due to the existence
of a solid body. The first integral of Eq. (6.40) represents the contribution from
the irrational component of the flows (i.e., q

o
+∇φ plus the motion of a mov-

ing reference frame if introduced). The second one known as the Biot-Savart
law represents the disturbance velocity field (uω) induced by a vorticity field.
The use of the Biot-Savart law in computing the velocity field guarantees the
enforcement of the boundary condition for the velocity at infinity.

Correspondingly, an integral formulation of Eq. (6.39) can be written as:

H =

∮
S

[
H
∂G

∂n
− ∂H

∂n
G

]
dS +

∫
V

{
∇ · (q × ω) + ∇ · f

}
GdV. (6.41)
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6.2.6.1 Two-dimensional formulation

Ignoring the external body force f , the two-dimensional version of the system
of Eqs. (6.38), (6.40) and (6.41) can be written as, in non-dimensional form,

∂ω

∂t
+∇ · (q ω) =

1

Re
∇2ω, (6.42)

q = q∞ +∇φ− 1

2π

∫
S

ω ×∇(ln r) dS, (6.43)

H = − 1

2π

∮
C

[
H
∂(ln r)

∂n
− ∂H

∂n
(ln r)

]
dl

+
1

2π

∫
S

∇ · (q × ω) (ln r) dS, (6.44)

where Re is the Reynolds number and ω is the scalar plane component of the
vorticity vector (ω ≡ ω k). All non-dimensional quantities are defined based on
the characteristic length of a body (e.g., the diameter of a circular cylinder (D)
for our test problems) and the velocity of oncoming inflows (q∞).

The system of Eqs. (6.42), (6.43) and (6.44) must be solved in the fluid do-
main with a boundary, being subject to the boundary conditions for the velocity,
the vorticity and the pressure on the surface (CB) of a solid body. The no-slip
velocity condition states that the velocity of the fluid (q) is equal to the velocity
of the body (UB) at the surface points (xB) of the body:

q(xB, t) = UB on CB. (6.45)

The two-dimensional version of Eq. (6.33) is represented by

∂(µ ω)

∂n
= n× (ρ a) + n×∇p (6.46)

or equivalently

ν
∂ω

∂n
= s ·

∂q

∂t
+

1

ρ

∂p

∂s
(6.47)

where s is a tangential vector and ν is the kinematic viscosity. This represents an
explicit expression of the process of vorticity production described only verbally
by Lighthill (1963). This quantity of the vorticity flux diffuses into the fluid
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from the body surface.

The boundary vorticity flux (σ) at the solid body for two-dimensional incom-
pressible flow is

σ ≡ − 1

Re

∂ω

∂n
= −k ·

{
n× dUB

dt
+ n×∇

(
p

ρ

)}
on CB. (6.48)

This essential boundary condition for the vorticity at the solid surface can
be derived by taking the cross product of the N-S equations with n, with use
of the velocity adherence condition. It represents an explicit expression of the
process of vorticity production described only verbally by Lighthill (1963).
This quantity of the vorticity flux diffuses into the fluid from the body surface.
The above expression applies for t = 0+ as well, and is therefore applicable
immediately after a solid body is accelerated impulsively. Similarly, the scalar
product of the N-S equations with n gives an expression for ∂H/∂n as:

∂H

∂n
= −n ·

∂q

∂t
+ n · (q × ω)− 1

Re
n · (∇× ω) on CB. (6.49)

It is seen from Eqs. (6.48) and (6.49) that the boundary conditions for the vor-
ticity and the pressure are coupled. A more rigorous and extensive analysis on
these pressure and vorticity conditions for two- or three-dimensional incom-
pressible or compressible flows was given by Wu & Wu (1993).

6.2.7 Stream function approach: VIC method

The velocity field can be decomposed into

q = U∞ + uω + uφ (6.50)

where U∞ is incoming velocity, uω represents rotational field, and vφ represents
solenoidal field. The velocity vector can also be expressed according to the
Helmholtz decomposition due to the incompressibility,

q = U∞ +∇× ψ +∇φ. (6.51)
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The vector potential ψ and the scalar potential φ should vanish in the far field
so that the velocity field recover the free stream velocity.

q → U∞ as |x| → ∞ (6.52)

where x is the spatial coordinate. The vector potential is related to a stream
function in two dimension. If we take the curl of the equation (6.51),

ω = ∇× (∇× ψ) = −∇2ψ +∇(∇ · ψ) (6.53)

If we enforce∇ · ψ = 0, the equation results in Poisson equation,

∇2ψ = −ω (6.54)

and its solution is
ψ =

1

4π

∫
V

ω

r
dV (6.55)

Fially the rotational velocity field is uω = ∇× ψ,

uω = − 1

4π

∫
V

ω ×∇
(

1

r

)
dV, (6.56)

where r is the distance from the volume element dV to the field point. This
equation commonly referred to the Biot-Savart formula.

The rotational velocity field can be evaluated using the Biot-Savart law
(6.56). But, the direct calculation involves O(N 2) cost for N elements. This
is computationally intensive so that fast evaluation method such as multipole
expansion has been developed in order to cut down the cost. The VIC method
reduces the computational cost to O(N logN) by employing grid based fast
Poisson solvers. The VIC method is composed of three basic steps. First, the
vorticity field is projected to the grid using the interpolation kernel. The Pois-
son equation for vector potential (6.54) is solved on the grid with the boundary
value of ψ. The velocity on the grid is computed from the definition uω = ∇×ψ
with the finite difference formula, and then the velocity is interpolated back to
the particles.
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6.2.8 Particle method in solving the vorticity transport equation

Let us start with a simplified conservative form of the vorticity transport equa-
tion, Lω = f with a suitable differential operator L:

Lω =
∂ω

∂t
+∇ · (q ω) + c0 ω = f (6.57)

For a material volume V (t), the integral form would be

d

dt

∫
V (t)

ω dV +

∫
V (t)

c0 ω dV =

∫
V (t)

f dV (6.58)

where we have used the Reynolds transport theorem. Here we introduce the
idea of particle methods in which mass on points is concentrated:

ω(x, t) = α(t) δ(x− xp(t)) (6.59)

With such particle representation, the above integral becomes discrete values,
and then the vorticity transport equation reduces to a set of ordinary differential
equations. As example, for the homogeneous equation Lω = 0, we have the
general solution form:

dα

dt
+ c0(xp(t), t)α = 0, with

dxp
dt

= q(xp, t) (6.60)

Now, the extension of this concept to the vorticity transport equation in 3-D
gives us following govering equations in the vortex particle methods:

ω =
∑
p

αp δ(x− xp(t)) (6.61)

dxp
dt

= q(xp, t) (6.62)

dαp
dt

= ∇q(xp, t) αp + diffusion term (6.63)

The effects of the diffusion term can be employed by the PSE(Particle Strength
Exchange) scheme and the integral formula for the wall no-slip condition. The
overall insights on the PSE scheme and the wall viscous diffusion will be ex-
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plined in Chapter 8.

6.2.9 Hydrodynamic Forces

The force exerted by the fluid on the body can be separated into the hydrostatic
force and the hydrodynamic force. The hydrodynamic force F on the body due
to the motion is defined as

F

ρ
= −dI

dt
(6.64)

The quantity I is called the hydrodynamic impulse that needs to be applied to
the body to set it in motion against the inertia of the fluid (Lamb 1932). Thus,

I =
1

d− 1

∫
V

x× ω dV (6.65)

with d the dimension of the space (d = 3 in 3-D, d = 2 in 2-D). 2 In two-
dimensional case, the position (x̃, ỹ) of vorticity are related to the components
(Ix, Iy) of hydrodynamics impulse

Ix =

∫
y ω dS ≈

∑
i

yi Γi

Iy = −
∫
xω dS ≈ −

∑
i

xi Γi

(6.67)

and then the components of the force (Fx, Fy) is

Fx = −ρ dIx
dt

, Fy = −ρ dIy
dt

(6.68)

where
dI

dt
=
I (t+4t)− I (t−4t)

24t
. The x-component of the hydrodynamic

force is called the drag and the y-component is the lift.
2In Eq. (1.113), we set f = q to find

I ≡
∫
V

q dV =
1

d− 1

∫
V

x× (∇× q) dV − 1

d− 1

∮
S

x× (n× q) dS (6.66)

and then the second integral term would vanish from the no-slip boundary condition (q = UB) for a stationary
body (also for steadily moving bodies) and the far-field boundary condition(q = U∞). Accordingly, the second
term on the right-hand side of Eq. (6.66) does not contribute the hydrodynamic forces.
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Extensively, if we take q = ∇p in Eq. (6.66) and the divergence theorem for
the first volume integral, then the pressure forces can be written as, since the
second volume integral term must vanish (i.e., identically∇×∇p = 0),

F p ≡ −
∮
SB

p n dS =
1

d− 1

∮
SB

x× (n×∇p) dS (6.69)

Using Eq. (6.46), the 2-D version of the pressure forces is represented by, in
terms of the vorticity flux on body surface and the body acceleration,

F (2D)
p ≡ −

∮
SB

p n dS =

∮
SB

x×
{
∂(µ ω)

∂n
− n× (ρUB)

}
dS (6.70)

For the 2-D case of an impulsively started body, the result reduces to, in terms
of vorticity flux distribution on the body surface,

F (2D)
p = −

∮
SB

p n dS =

∮
SB

x× ∂(µ ω)

∂n
dS (6.71)

In derived Eq. (1.113), we have noted that the left-hand side of Eq. (1.112)
and Eq. (1.113) is independent of the choice of the origin of x, so must be
the right-hand side. Namely, if we remove x from the right-hand side of these
equations, the remaining integrals must vanish.
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7.1 Introduction

In this chapter, we focus on a vorticity-based integro-differential formulation
for the numerical solution of the 2-D incompressible Navier-Stokes equations.
A finite volume scheme is implemented to solve the vorticity transport equation
with a vorticity boundary condition. The Biot-Savart integral is evaluated to
compute the velocity field from a vorticity distribution over a fluid domain.
The Green’s scalar identity is employed to solve the total pressure in an integral
approach. The global coupling between the vorticity and the pressure boundary
conditions is considered when this integro-differential approach is employed.
For the early stage development of the flow about an impulsively started circular
cylinder, the computational results with our numerical method are compared
with known analytical solutions in order to validate the present formulation.

A finite volume scheme is implemented to solve the vorticity transport equa-
tion with a vorticity boundary condition. The Biot-Savart integral is evaluated
to compute the velocity field from a vorticity distribution over a fluid domain.
The Green’s scalar identity is employed to solve the total pressure in an integral
approach. The global coupling between the vorticity and the pressure boundary
conditions is considered when this integro-differential approach is employed.
For the early stage development of the flow about an impulsively started circu-
lar cylinder, the computational results with our numerical method are compared
with known analytical solutions in order to validate the present formulation.

We have mentioned in the previous chapter that the governing equations as
well as the boundary conditions are globally coupled. The present method is im-
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plemented in a time-stepping algorithm that proceeds by generating, convecting
and diffusing the vorticity, by computing the corresponding velocity and by cal-
culating the pressure with the vorticity and velocity field. Computationally, in
order to recover the global coupling between the vorticity and the pressure for
their discrete time-dependent solutions, two separate iterative procedures are re-
quired: one for solving the vorticity transport equation and the other for solving
the total pressure equation.

7.2 Numerical Implementation

7.2.1 Vorticity transport equation

In solving the vorticity transport equation, we seek to advance the solution to
the next time step with the velocity and the vorticity fields computed at the
present time step. The vorticity field is then changed via the vorticity evolution
mechanism.

The no-slip boundary condition is enforced in this stage by the production
of a proper amount of vorticity at the body surface. This vorticity production is
expressed in terms of the vorticity flux. The vorticity flux on the body surface
is iteratively corrected until the no-slip condition is achieved within a preset
criterion for the final vorticity field.

During the iteration, only the slip velocity is computed by the Biot-Savart
integration, without computing the whole velocity field. The task is then to
determine the vorticity distribution over a fluid domain at each instant in time,
so that the no-slip condition is satisfied at the solid surface, the vorticity satisfies
the vorticity transport equation, and the total vorticity of the field is conserved.

A finite volume discretization is applied to Eq. (6.42) which results in a con-
sistent approximation to the conservation law, where the time rate of change of
the vorticity within the domain is balanced by the net fluxes of the convective
and the diffusive terms across the boundary surface of the domain. A phys-
ical domain is divided into a finite number of small elements, each element
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serving as a computational cell. The vorticity field is considered as a discrete
sum of the individual vorticity fields over the cells. The discretized solution
to Eq. (6.42) results in a set of cell-averaged vorticity variables which is in bal-
ance with the face-averaged fluxes across the cell sides. Integrating the vorticity
transport equation over an arbitrary but a stationary cell A with a cell boundary
C and then applying the divergence theorem yields an integral form:

∂

∂t

∫
A

ω dS +

∮
C

(
(q · n) ω − 1

Re
n · ∇ω

)
dl = 0, (7.1)

where
(

(q · n) ω − 1

Re
n · ∇ω

)
is the outward flux of ω across the cell bound-

ary.

7.2.1.1 Numerical schemes

Let us assume that at the nth time step (corresponding to time t), the vorticity
field has been computed (respecting the no-slip condition), then we seek to
advance the solution to the n + 1th time step (time t +4t). We approximate
Eq. (7.1) as a discrete integral form for both time and space coordinates, by
replacing the boundary integral with the sum of the flux on the sides of the cell
and using an explicit scheme in time-stepping:

ωn+1 = ωn − 4t
A

∑
k

Fk, (7.2)

where ωn is considered the average value of ω at the nth time stage over the cell
whose area is A, and Fk represents the value of the flux outgoing through the
kth side of the cell.

The diffusive flux term is approximated in its mean value sense in a similar
fashion to the central differential scheme (Hoffman & Chiang 1993). For the
convective term, the second-order TVD (total variation diminishing) scheme
with the flux limiter suggested by Roe (1985) is used (see also Hirsch 1990).
Time is advanced by an explicit forward Euler time stepping scheme during the
time interval 4t. In fact, this is performed by several sub-steps with a smaller
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time interval δt that satisfies the stability condition for this explicit scheme:

δt ≤ d2

4

Re
+
√

2 qs d
. (7.3)

Here, d is the longer diagonal of a cell and qs is the speed at the cell centroid.
For global stability, we take actually a sub-step time increment smaller than the
minimum value of such permissible values for all cells.

As the solution for the vorticity is advanced in time, the no-slip is presumably
enforced at the beginning of each time increment. At the end of a time step,
the distribution for ω would be changed eventually through the integration of
Eq. (6.42). One must then calculate a new slip velocity at the surface. In order
to reduce the slip velocity to zero, we require that the vorticity be produced at
the surface acting as a source of vorticity (Lighthill 1963). The new vorticity
would enter the fluid through the surface as represented by Eq. (6.48) and then
would be allowed to diffuse and convect into the fluid over a finite time interval
4t. The task is to relate the vorticity flux on the surface of the body to this no-
slip condition at the same time considering its coupling effect with the pressure.

7.2.1.2 No-slip boundary condition with vorticity flux

According to Eq. (6.47), vorticity is transferred to the fluid due to the tangential
component of the pressure gradient and an acceleration of the body surface.

Wu et al. (1994) suggested that this pressure gradient is manifested by a
spurious slip velocity observed on the body surface and this slip velocity is
considered as an acceleration equivalent to a vorticity flux generated at the wall.
The vortex sheet on the body surface should account for the modification of the
circulation of the flow field.(

ν
∂ω

∂n

)(k+1)

=

(
ν
∂ω

∂n

)(k)

+
Vs

(k)

∆t
(7.4)

where Vs is spurious slip velocity at the wall.
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Figure 7.1 Iterative adjustment of vorticity flux for vorticity boundary condition. Adpated
from Cottet & Poncet (2003).

In a discrete sense, the vorticity flux may be determined so that the no-slip
condition is satisfied at the end of the time step. The spurious slip velocity
(Vs) that would appear at the end of the time step can be regarded as the cou-
pling term corresponding to the tangential gradient of the surface pressure in
Eq. (6.48). The newly computed Vs can be then used to absorb the coupling
term and consequently to update a time-averaged vorticity flux:

σ̄(k+1) = σ̄(k) +
V

(k)
s

4t
, (7.5)

where the overbar in σ̄ denotes the time-averaged values of σ during a small
time step4t and the superscript notation refers to the iterative step. The itera-
tion continues until the no-slip condition is satisfied, namely, until Vs reduces to
a value within a preset allowance. Although there are practical considerations
which must be observed during the specified time interval4t, Eq. (7.5) implies
that the integrated amount of vorticity flux is produced and remains unchanged
during the time interval.

Now the vorticity (ωb) at the body surface can be obtained from the definition
of the vorticity flux, in a discrete differential sense,

ωb = Re d1 σ + ω1, (7.6)

where d1 is the normal distance of the centroid of a cell adjacent to the body
surface from the surface and ω1 is the cell-centered vorticity value of the cell
(see Figure 7.2 ).
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Figure 7.2 Notations for calculating the vorticty at the body surface.

7.2.2 Biot-Savart integral

In the vorticity-velocity integro-differential formulation, the Biot-Savart inte-
gral must be evaluated at appropriate field points within the discretized fluid
domain. With N elements used in discretizing the fluid domain over which vor-
ticity is distributed, we may require O(N 2) evaluations of the Biot-Savart in-
tegral in order to calculate the velocity field. The evaluation of the Biot-Savart
integral is, therefore, an important task in numerical implementations.

We will herein summarize the content described in Appendix D. See also
Suh (2000) for the more detailed explanation and the extension of the present
derivation to three-dimensions.

7.2.2.1 Evaluation of line integrals

The resulting expressions for the velocity field include the line integrals only
along the boundary contour of the element. Let the value of the line integral
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along each straight edge of the element be I i. Then, it follows that

u = − k

2π
×

(
4∑
i=1

I i

)
, (7.7)

where the subscript i is denoted by the integer of the vertex associated with the
first end point of the individual sides, `i denotes the length of i-th side and

I i =
1

2
ni

∫ `i

0

ω (ln r2 + 1) dl − 1

4
∇ω (ni · r)

∫ `i

0

ln r2 dl. (7.8)

It is seen that the line integral for each side can be treated independently. After
a substantial amount of algebraic manipulations, one may obtain the following
result for I i:

I i =
1

2
ni

{
ωi

(
`i + I(1)

)
+ (∇ω · si)

(
1

2
`2
i + I(2)

)}
− 1

4
∇ω (ni · r) I(1),

(7.9)
where

ri = ξ
i
− x, x′ = −ri · si, y′ = (ri × si) · k, (7.10)

I(1) = (`i − x′) ln r2
i+1 + x′ ln r2

i − 2 `i + 2|y′| θi, (7.11)

I(2) =
1

2

(
r2
i+1 ln r2

i+1 − r2
i ln r2

i

)
− `2

i

2
+ `ix

′ + x′ I(1), (7.12)

and

θi = tan−1 |y′| `i
r2
i − `i x′

(see Figure 7.3 ) (7.13)

7.2.2.2 Computational enhancement

Although this analysis deals with cases of linear distributions, the integration
is much simpler, as a result of this construction, if ω is assumed to be constant
over the cell. The actual numerical implementation in the present work is per-
formed under the assumption that the vorticity density is piecewisely uniform
over discretized cell elements of a fluid domain.
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Figure 7.3 Notations for the contour integral of the quadrilateral element. Here, ωi denotes
the vorticity value at the i-th vertex, si is the unit directional vector of the line integral path,
and we denote the distances between the two end points of the side and the field point by ri and
ri+1, respectively.

The present procedure is believed to be quite accurate, but it is nevertheless
time-consuming to apply computationally because of a few of the transcenden-
tal functions involved in closed-forms. In the present numerical implementa-
tion, therefore, for a vorticity distribution with unit density over each cell ele-
ment, we compute once the induced velocities at desired field points (namely,
at centroids of neighboring cell elements) and then save them (within the limit
of computer memory capacity) so that such time-consuming calculations can
be avoided. Furthermore, when the distance r is sufficiently large (say, more
than five times the diagonal dimension of the fluid element), Eq. (6.43) is ap-
plied directly without such integrations. That is, the vorticity within the region
of area A is treated as a point vortex of strength ωA located at the centroid of
the element. The sum of all of the induced velocities from the vorticity is then
added to the contribution from the onset flow. In this manner, we can calculate
the whole velocity field as well as the slip velocity at the surface.
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7.2.3 Pressure Poisson equation

7.2.3.1 Formulation

Once the vorticity and the velocity field are updated, the integral equation for
the total pressure must be solved to provide a complete set of solutions at the

n + 1th time step. Substituting Eq. (6.49) for
∂H

∂n
into Eq. (6.44) yields the

limiting form for H as a field point approaches the surface points (xB) of a
solid body:

1

2
H +

1

2π

∮
CB

H
∂(ln r)

∂n
dl =

− 1

2π

∮
CB

[
n ·

∂q

∂t
− n · (q × ω) +

1

Re
n · (∇× ω)

]
ln r dl

+
1

2π

∫
S

∇ · (q × ω) ln r dS, (7.14)

where the integrals over CB is evaluated on the surface of a body in the sense of
the Cauchy principal value integral. Using the vector operation for the integrand
of the surface integral in Eq. (7.14), namely,∇·(q×ω) ln r = ∇·(q×ω ln r)−
(q × ω) · ∇(ln r) and applying the divergence integral theorem to the resultant
expression, yield a Fredholm integral equation of the second kind for H:

1

2
H +

1

2π

∮
CB

H
∂(ln r)

∂n
dl = − 1

2π

∮
CB

[
n ·

∂q

∂t
+

1

Re
n · (∇× ω)

]
ln r dl

− 1

2π

∫
S

(q × ω) · ∇(ln r) dS. (7.15)

Furthermore, if we assume the body to be either fixed or impulsively started as
in our test problem later on, the equation reduces to a simpler one:

1

2
H +

1

2π

∮
CB

H
∂(ln r)

∂n
dl = − 1

2π

∮
CB

1

Re

∂ωB
∂s

ln r dl

− 1

2π

∫
S

(q × ω) · ∇(ln r) dS. (7.16)
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7.2.3.2 Application of panel methods

Accordingly, we base our pressure calculation on an integral equation formation
of the pressure-Poisson equation. One possible approach for solving Eq. (7.16)
numerically for the total pressure is to use a panel-method approximation in a
similar fashion to a one in potential flow analysis. Among the full variety of the
numerical implementation of the panel methods, we use herein a straight-line
element for the body contour subdivision representation, and a uniform den-
sity distribution of singularity strength on each panel at the boundary and over
each cell in the fluid domain. This low-order panel-method approximation is
relatively robust in the numerical implementation and thus the computing time
can be reduced in comparison with other higher-order panel methods without
significant loss of accuracy in numerical results.

The body is defined by a set of points on the surface and the body surface is
subdivided intoN (normally an even number) straight-line elements (flat panels
or interior facets). This approximate representation for the body surface enables
us to replace the two integrals overCB in Eq. (7.16) by the sum of the individual
integral form for the contribution of each straight-line panel.

The surface integral term on the right-hand side of Eq. (7.16) is similar in
form to the Biot-Savart integral in Eq. (6.43) if we replace (q × ω) · ∇(ln r) by
ω×∇(ln r). In order to include the influence of the field distribution of (q×ω),
we can use the algorithm for evaluation of the Biot-Savart integral described in
Section 3.2 under the assumption that the distribution is piecewisely constant
over each cell element.

Although we have already used the pressure boundary condition Eq. (6.49)

when we derived Eq. (7.16), the term − 1

Re

∂ωB
∂s

must be evaluated in order to
actually impose the boundary condition on the equation. At this stage, we need
the iteration procedure to specify the value, which will be described later on.

Consequently Eq. (7.16) deduces a set of algebraic expressions with un-
known values of the total pressure head (Hi, 1 = 1, · · · , N ) on the panels.
With Hi being solutions of this linear system, the total pressure field can be
obtained by integrating Eq. (7.16). The pressure field, as well as the surface
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pressure distribution, can be determined by subtracting the dynamic pressure
term in Eq. (6.27) from the total pressure.

Figure 7.4 Schematic diagram for calculation of pressure field.

7.2.4 Computational procedure

The above considerations can be summarized in the following algorithm of the
solution of a system of the governing equations.

(1) Integrate the vorticity transport equation, Eq. (6.42), in time with enforce-
ment of the no-slip condition. At the nth time step (corresponding to time
t) the velocity and the vorticity fields are assumed to be computed and we
seek to advance the solution to the n + 1 time step (time t +4t). Given
qn and ωn, the vorticity field ωn+1 at the n + 1th time step is changed via
the vorticity evolution mechanism. The no-slip boundary condition is en-
forced in this stage by assigning the vorticity flux at the solid surface. The
vorticity flux at the surface is assigned as its time-averaged value during
a small time interval as given by Eq. (7.5). We need an iterative process
to introduce a proper amount of the time-averaged vorticity flux in order
to ensure the no-slip condition and accordingly update ωn+1. The spurious
slip velocity is computed by performing the Biot-Savart integration for the
vorticity field obtained at the present iterative stage.

(2) Evaluate the Biot-Savart integral by using the integration scheme proposed
in Section 7.2.2 in order to obtain the velocity field qn+1 corresponding to
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the currently updated vorticity field ωn+1. The vorticity is assumed to be
distributed with a uniform strength over an individual cell element. Since
the job of the Biot-Savart integration is repeated for all time steps, it is
desirable to save computing time by storing the results of the Biot-Savart
integral for a unit vorticity-distribution over an individual cell. Because of
limited storage in a computer, it applies for field points within a certain
distance away from the cell for which we use the exact integration.

(3) Solve the integral equation for Hn+1 by using qn+1 and ωn+1 obtained in

steps (1) and (2). The term − 1

Re

∂ωB
∂s

in Eq. (7.16) must be evaluated
where the differentiation performs in the direction s tangent to the sur-
face of the body. To obtain the vorticity (ωB) at the body surface given by
Eq. (7.6), the vorticity flux must be evaluated in this stage at the end of the
time interval while in step (1), the rate of vorticity production was taken to
be uniform over the time t to t+4t.

Since the vorticity flux is related to the tangential gradient of the pressure
along the body surface and the normal gradient of the total pressure is
incorporated with the tangential gradient of the body vorticity at the current
time, we employ the iterative calculation between the vorticity flux and
the pressure on the surface. With the time-averaged vorticity flux obtained
in step (1), we obtain the body vorticity via Eq. (7.6). Then we use this
body vorticity value as an initial guess and qn+1 and ωn+1 in order to solve
Eq. (7.16) forH and thus to find the pressure at the surface. The tangential
gradient of this surface pressure is used to update the vorticity flux at the
(n + 1)th time step by Eq. (6.48). With this updated vorticity flux at the
end of a time step, we update the body vorticity via Eq. (7.6) again.

This iterative procedure is continued until the surface pressure and the vor-
ticity flux reach a converged state. The convergence of the iteration process
is measured with the difference in their values between two successive iter-
ations. The typical tolerance is taken as 10−4 in our test problem later on.
Up to this point, the principle of conservation of vorticity can be invoked
by integrating Eq. (6.48).

When the pressure gradient is then integrated around the closed contour of
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the a solid body, the result must be zero because the pressure is inherently
a single-valued function. It is the argument leading to the principle of the
vorticity conservation that the total vorticity in the infinite unlimited space
occupied jointly by the fluid and the solid bodies is always zero.

(4) Advance the calculation to the next time step by repeating steps (1), (2)
and (3).

The reconstruction of the surrounding cell-averaged data to a common vertex
or node is performed by a weighted averaging procedure based on an inverse-
distance weighted averaging of the variables from the cell centroid to the cell
vertices.

The above solution procedure is summarized in Figure 7.5 .

Figure 7.5 Flow chart for solution procedure of the present FVM in the vorticity-velocity-
pressure formulation.
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7.3 Lid-driven Cavity Flows

7.3.1 Formulation

As an application of the present scheme, we consider a vorticity-based integro-
differential formulation for the numerical solution of a two dimensioanl cavity
flow driven by shear and body forces (see Figure 7.6 ) (Rida et al. 1997, Shih
et al. 1989).

Figure 7.6 Coordinates and geometry for driven cavity.

The shear motion of the lid of the cavity and the body force are prescribed
as, respectively,

f(x) = x4 − 2x3 + x2 (7.17)

f
b

= 8µ [24F (x) + 2f ′(x) g′′(y) + f ′′′ g(y)] j

+64 [F2(x)G1(y)− g(y) g′(y)F1(x)] j, (7.18)

where

g(y) = y4 − y2, F (x) =

∫ x

0

f(x) dx, F1(x) = f(x) f ′′(x)− [f ′(x)]2,

F2(x) = 0.5 f 2(x), G1(y) = g(y) g′′′(y)− g′(y) g′′(y). (7.19)

This lid-driven square cavity flow is a standard benchmark for testing numerical
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schemes in the context of computational fluid dynamics because of its simplicity
and the availability of the analytical solution.

The governing equations for the unsteady flow of an incompressible Newto-
nian fluid can be written as,

∇ · q = 0, (7.20)

ω = ∇× q, (7.21)

∂ω

∂t
+ q · ∇ω = ω · ∇q + ν∇2ω +∇× f

b
, (7.22)

∇2

(
p

ρ
+

1

2
q2

)
= ∇ ·

(
q × ω + f

b

)
, (7.23)

The corresponding integro-differential vorticity-velocity formulation is given,
in non-dimensional form, by,

∂ω

∂t
+∇ · (q ω) =

1

Re
∇2ω +∇× f

b
, (7.24)

q = q
o
− 1

2π

∫
S

ω ×∇(ln r) dS, (7.25)

H = − 1

2π

∮
C

[
H
∂(ln r)

∂n
− ∂H

∂n
ln r

]
dl

+
1

2π

∫
S

∇ ·
(
q × ω + f

b

)
ln r dS, (7.26)

where p is the pressure, ν the kinematic viscosity, ρ the density of the fluid, Re
the Reynolds number and ω the scalar plane component of the vorticity vector
(ω ≡ ωk). The velocity term q

o
in Eq. (7.25) represents the contribution from

the velocity distributions over the boundary(C) of the cavity, namely:

q
o

=

∮
C

[
(n · q)∇G+ (n× q)×∇G

]
dl, (7.27)

where n is the unit normal pointing into the fluid at the boundary C. The pres-
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sure p is related to the total pressure defined by

H =
p− pr
ρ

+
1

2

(
q2 − q2

r

)
, (7.28)

where the constants pr and qr are the reference pressure and velocity, respec-
tively. In such a formulation, we deal with the Biot-Savart integral in order to
compute the velocity from a vorticity distribution in the square cavity and to
solve the total pressure in a boundary integral approach.

The boundary conditions for the velocity, the vorticity and the pressure sup-
plement the system of Eqs. (7.24), (7.25) and (7.26). The no-slip velocity con-
dition states that the velocity of the fluid (q) is equal to the moving velocity(UB)
of the boundary(xB) of the cavity:

q(xB, t) = UB on C. (7.29)

The boundary condition for the vorticity flux (σ) at the boundary can be derived
by taking the cross product of the Navier-Stokes equations with n and by using
the velocity adherence condition:

σ ≡ − 1

Re

∂ω

∂n
= −k · n×

(
dUB

dt
+∇p− f

b

)
on C. (7.30)

Similarly, the scalar product of the Navier-Stokes equations with n gives an
expression for ∂H/∂n as:

∂H

∂n
= −n ·

(
∂q

∂t
− q × ω +

1

Re
∇× ω − f

b

)
on C. (7.31)

7.3.2 Comparison with analytic solution

For purposes of comparison with the exact steady-state solution, the calcula-
tions are advanced to steady-state. As the initial condition in the time evolution
of the flow, an impulsive start was formulated. A uniform grid of equal size that
divides the cavity flow region was used. The vorticity, the vorticity flux, and the
pressure distributions along the cavity wall for Re = 100 with variation of the
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time interval and the grids are shown in Figs. 7.7 and 7.8 , where the agreement
with the exact solution is excellent.

Figure 7.7 Sensitivity of time interval on vorticity, vorticity flux and pressure along the driven
cavity wall for Re = 100 with the 61× 61 grid. The perimeter(S) along the cavity wall has the
clockwise direction from the origin at the upper left corner of the cavity.
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Figure 7.8 Sensitivity of mesh size on vorticity, vorticity flux and pressure along the driven
cavity wall for Re = 100 with4t = 0.05.

Figure 7.9 shows that the time evolution of the velocity along the vertical
and the horizontal center lines of the cavity at Re = 100 with 4t = 0.05

and the 61 × 61 grid. Figure 7.10 shows the time evolution of kinetic energy
for cavity flow in this case. This is compared with the exact steady-state value
1216/33075(= 0.0367650). The streamline pattern, the vorticity contour, and
the pressure contour in the steady-state are shown in Figure 7.11 , where the
agreement is again very good. (It is difficult to distinguish between the exact
solution and the numerical solution with the present scheme.)
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Figure 7.9 Time evolution of the velocity along the center lines of the driven cavity for
Re = 100 with4t = 0.05 and the 61× 61 grid.

Figure 7.10 Time evolution of kinetic energy of the driven cavity for Re = 100 with 4t =
0.05, and the 61× 61 grid.

Figure 7.11 Streamline pattern, vorticity contour and pressure contour of the driven cavity
for Re = 100 with4t = 0.05 and the 61× 61 grid.
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The above comparison implies that the evaluation of the Biot-Savart integral
works well. In the present numerical implementation, for a vorticity distribution
with unit density over each cell element, we compute the induced velocities at
desired field points once (namely, at centroids of neighboring cell elements)
and then save them (within the limit of computer memory capacity) so that the
time-consuming calculations at successive time steps can be avoided.

7.4 Impulsively Started Circular Cylinder

7.4.1 General aspects

As a numerical example we consider the case of an impulsively started circular
cylinder at certain Reynolds numbers. The numerical simulation for the devel-
opment of two-dimensional, incompressible flow past an impulsively started
circular cylinder has been a challenge to computational fluid dynamicists for
years. Although the geometry is simple, the flow pattern in the proximity of
the circular cylinder is in full variety. Treatment of these special flow problems
requires complex numerical procedures to be applied and often validation is
defined by comparisons with analytical solutions.

A notable theoretical investigation of the initial flow over an impulsively
started circular cylinder was given by Bar-Lev & Yang (1975). They solved the
vorticity transport equation by the method of matched asymptotic expansions
to the third order of a small quantity of non-dimensional time. Their analytical
solution would be reasonably valid for t < 0.25, Re > 50. Only for the purpose
of comparison with the analytical solution, no attempt is made to advance the
calculations to large time values. Rather, the intent is only to provide sufficient
results in the early time stage after the impulsive start, from which the validity of
the present formulation can be demonstrated. Our calculations are concentrated
on those of the vorticity and vorticity flux distribution, the pressure distribution
and the drag coefficient.

As the initial condition in the evolution of the flow, an impulsive start may be
formulated using the potential flow field although there cannot experimentally
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be such a thing as a truly impulsive start. At time t = 0+ the slip velocity
distribution (2 sin θ) obtained from the potential flow analysis is imposed on
the surface of the body. In fact, numerical schemes encounter difficulties in
resolving the initially developed thin boundary layers associated with impulsive
starts. There exists inherently the singular behavior (having infinity value) on
the (drag) force at the time immediately after the impulsive start.

7.4.2 Computational grids

An O-type regular pattern of quadrilateral cells that divides the fluid region
about a circular cylinder is used, but we believe a C-type grid will work as
well. Our computational domain is described by a set of grid points taken as
θi = 2πi/NI and rj = Ro − (Ro − 0.5) cos(πj/2NJ), where NI is the number
of cells in the circumferential direction, NJ in the radial direction and Ro is
the outer radius of the boundary of the computational domain. Since the first
i-index coincides with the last i-index, a periodic boundary condition is ap-
plied along the interface corresponding to that index. On the cylinder surface
(r = 0.5) which corresponds to j = 1, we set the vorticity flux (vorticity pro-
duction) to a suitable value determined iteratively from the no-slip boundary
condition. On the outer boundary, we convect purely ω out of the computa-
tional domain in a naturally upwind sense (i.e., without the diffusion term in

Eq. (7.2), ωn+1 = ωn − 4t
A

∑
k

{
(q · n) ωn

}
k
.

7.4.3 Numerical results

7.4.3.1 Analytic solution in early time stage

In Figures. 7.12 through 7.14 , the effect of numerical parameters on the pres-
sure drag, the friction drag and the total drag coefficients as computed by the
present method is presented for Reynolds number Re = 60, 3000 and 9500.
The analytical solutions given by Bar-Lev and Yang (1975) are also presented
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for the purpose of comparison. The frictional and the pressure drag were calcu-
lated by integrating the vorticity and the pressure, respectively, over the surface

of the cylinder. The drag coefficients are normalized by
1

2
ρ q2
∞D.

7.4.3.2 Time step

In Figure 7.12 we plot the sensitivity of the time interval 4t on the drag for
each Reynolds number. For the convergence check, three different time inter-
vals (4t = 0.0025, 0.005, 0.01) have been chosen. The grid used in these cal-
culations was 600 × 80 and the outer radius of the computational domain was
taken asRo = 1.5. The present results are shown to give good convergence with
respect to4t to the analytical solutions, especially near the immediate time re-
gion (near t = 0+) after impulsive start. The inherently singular behavior of the
solution is precisely captured as 4t becomes smaller. We observe that the nu-
merical results are in good agreement with the analytical solutions for t < 0.25,
even when using a moderate time interval of4t = 0.01.

7.4.3.3 Computational domain

In Figure 7.13 the effect of the size of the computational domain on the drag
is presented. Note that it is difficult to make distinctions between all the sym-
bols in the figures. It seems that the effect is negligible if the computational
domain contains entirely the fluid domain with non-zero vorticity values like
the present cases. But it is apparent that, as time advances, the computational
domain should become larger in order to contain the region with non-zero vor-
ticity values.

Figure 7.14 shows the corresponding effect with respect to a measure of the
mesh size. We see that the grid dependence on the solutions is small enough to
ignore unless grid resolutions for capturing a complicated vortex structure are
required. At the early stage in time for the present cases, the complicated vortex
structure is not exhibited yet. In the following computations, 4t = 0.005, the
600 × 80 grid, and Ro = 1.5 are used, from the viewpoint that these choices
would not greatly affect our numerical results.
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Figure 7.12 Sensitivity of the time interval on the drag coefficients of the impulsively started
circular cylinder at Re = 60, 3000 and 9500 with Ro = 1.5 and the 600× 80 grid.
——, analytical (Bar-Lev & Yang (1975));4,4t = 0.0025; •,4t = 0.005; ◦,4t = 0.01
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]

Figure 7.13 Sensitivity of the outer radius on the drag coefficients of the impulsively started
circular cylinder at Re = 60, 3000 and 9500 with4t = 0.005 and the 600× 80 grid.
——, analytical (Bar-Lev & Yang (1975));4, Ro = 1.5; •, Ro = 2.5; ◦, Ro = 3.5
Note: The results corresponding to Ro = 2.5 are not detectable because of the nearly same
values as the others.
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]

Figure 7.14 Sensitivity of the mesh size on the drag coefficients of the impulsively started
circular cylinder at Re = 60, 3000 and 9500 with4t = 0.005 and Ro = 1.5.
——, analytical (Bar-Lev & Yang (1975));4, grid 800×100; •, grid 600×80; ◦, grid 300×40
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7.4.3.4 Reynolds number

In Figure 7.15 we plot the vorticity distribution on the cylinder surface at t =

0.2 and t = 0.4 for Re = 3000. By comparing these results with the analytical
solutions, we find that the body vorticity obtained is satisfactory. Since this
measure is directly related to the frictional drag, we guarantee the agreement
of the frictional drag with the analytical solution as shown in Figures. 7.12
through 7.14 .

Figure 7.15 Comparison of the computed surface vorticity with the analytical solution of the
impulsively started circular cylinder at Re = 3000 with the 600 × 80 grid, 4t = 0.005 and
Ro = 1.5.

Figure 7.16 shows the time evolution of the primary separation position for
Re = 9500. The position is determined in such a way that the body vorticity
is zero. The separation angle θs is measured from the rear stagnation point.
We observe a rapid development of the separation region at about t = 0.16

and a reasonable agreement of the present results with those obtained from the
analytical solution.

7.4.3.5 Pressure, velocity and vorticity fields

The pressure distribution on the cylinder surface is shown in Figure 7.17 at
several instants.
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Figure 7.16 Time evolution of the primary separation position of the impulsively started
circular cylinder at Re = 9500 with4t = 0.005, the 600× 80 grid and Ro = 1.5.

Figure 7.17 Surface pressure distribution of the impulsively started circular cylinder at several
instants for Re = 9500 with4t = 0.005, the 600× 80 grid and Ro = 1.5.
Note: The front of the cylinder corresponds to the angular position of 180◦ on the horizontal
axis.
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At the early time the pressure distributions represents nearly the distribution
obtained from the potential flow analysis, because we can regard a very thin
layer of vorticity formed around the cylinder as an equivalent vortex sheet. As
this thin layer continues to grow, the pressure distributions are rapidly modified
near the strong vortical flow structures. While the change of pressure near the
front portion of the cylinder surface is not so great, the pressure distribution
near the rear portion is greatly changed. This feature is associated with the
complicated flow experimentally observed or numerically simulated in the wake
region behind the cylinder at such a high Reynolds number.

Figure 7.18 shows the computed streamline pattern at some instants for
Re = 9500. Although their results are not presented herein, the pattern reveals
good agreement with the experiment by Bouard and Coutanceau (1980) and
the computation by Koumoutsakos and Leonard (1995).

In Figure 7.19 , the vorticity contours at several instants for Re = 9500 are
presented. These contours are reasonably compared to other available results
(e.g. those in figure 26 in Koumoutsakos and Leonard, 1995). The complicated
interaction between the vortical structures developed at the cylinder surface is
expected to appear as time advances. This deduction can be also drawn from the
corresponding pressure fields shown in Figure 7.20 . The strong vortical flow
forms a lower pressure region moving downstream and the vorticity strength is
slightly weaker by the viscous diffusion as time advances.

The comparison between the time-averaged vorticity flux and the vorticity
flux at the end of the time interval is presented in Figure 7.21 . It is observed
that their difference is negligible except in their high peak value region. The
vorticity flux defined in the time-averaged sense when we solved the vorticity
transport equation reflects well the global coupling of the vorticity flux with the
pressure. However, in the present method, the calculation of the vorticity flux
at the end of the time step was separately done because we need the calculation
of the pressure drag.

By applying the present numerical algorithm for the impulsively started cir-
cular cylinder problems, we have validated the present formulation.
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Figure 7.18 Streamline patterns of the impulsively started circular cylinder for Re = 9500
with4t = 0.005, the 600× 80 grid and Ro = 1.5.
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Figure 7.19 Vorticity contours of the impulsively started circular cylinder for Re = 9500
with4t = 0.005, the 600× 80 grid and Ro = 1.5.
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Figure 7.20 Pressure contours of the impulsively started circular cylinder for Re = 9500
with4t = 0.005, the 600× 80 grid and Ro = 1.5.
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Figure 7.21 Time-averaged vorticity fluxes (σ) of the impulsively started circular cylinder
in t1 − 4t < t < t1 and vorticity flux (σ) at t = t1, where t1 = 2.5 for Re = 9500 with
4t = 0.005, the 600× 80 grid and Ro = 1.5.
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7.5 Oscillating Circular Cylinder Problems

7.5.1 Key parameters

The motion of circular cylinders in a fluid at rest is especially of interest in fields
of offshore and civil engineering, such as marine risers, subsurface pipelines,
etc. An overall review is given by Williamson (1996) and by Sumer and Fredsøe
(1997).

When the relative flow past a cylinder is undergoing sinusoidal oscillations,
the structure of the flow generated by the cylinder depends mainly on two pa-
rameters, namely, the Keulegan-Carpenter number, KC and the Reynolds num-
ber, Re. The KC number is defined by

KC =
Um T

D
=

2π A0

D
(7.32)

in which Um is the maximum velocity, T is the period of the oscillatory flow,
and A0 is the amplitude of the motion. The Reynolds number is defined as

Re =
UmD

ν
(7.33)

where ν is the kinematic viscosity of the fluid. The ratio

β =
Re

KC
=
D2

ν T
, (7.34)

being the Stokes parameter is a viscous scale parameter(Sarpkaya 1986). Many
researchers measured forces acting on a circular cylinder in oscillatory flow as
a function of KC and β.
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Table 7.1 Regimes of flow around a circular cylinder in oscillatory flow at Re = 103. Source
for KC < 4 is from Sarpkaya (1986), and for KC > 4 from Williamson (1985).

7.5.2 Flow characteristics

Investigating the physical meaning of the KC number , the numerator of the
right-hand side of the Eq. (7.32) is proportional to the stroke of the motion,
namely 2A0, while the denominator of the diameter of the cylinder D, repre-
sents the width of the cylinder. Small KC numbers therefore mean that the
orbital motion of the fluid particles is small relative to the total width of the
cylinder. When KC is very small, separation behind the cylinder may not even
occur. Large KC numbers imply that the fluid particles travel quite large dis-
tance relative to the total width of the cylinder, resulting in separation and prob-
ably vortex shedding. For very large KC numbers (KC → ∞), it is expected
that the flow for each half period of the motion resembles that experienced in a
steady current(Sumer & Fredsøe 1997).

Experimental investigations of the oscillatory flow around a circular cylinder
at small KC have shown that the flow can be classified into a number of dif-
ferent flow regimes governed mainly by KC and with a weak dependency on
Re(Bearman et al. 1985, Williamson 1985, Sarpkaya 1986). At KC � 1, the
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flow remains symmetrical, attached, and two-dimensional. AsKC is increased,
the flow becomes asymmetrical (KC = 4 ∼ 5). AtKC = 10 , a transverse vor-
tex street appears. Table 7.1 summarizes the changes of the flow pattern as the
KC number is increased atRe = 103. Notice that limits ofKC regimes are de-
pendent on Re(Justesen 1991, Summer & Fredsøe 1997). By further increasing
the KC number, the so-called vortex-shedding regimes (KC > 7 , Re = 103)
appear. According to the description of the vortex trajectory patterns in a sys-
tematic manner by Williamson (1985), in the vortex shedding regimes the vortex
shedding occurs during the course of each half period of the oscillatory motion.
There are several such regimes, each of which has different vortex flow pattern,
observed for different ranges of the KC number. These KC ranges include
7 < KC < 15 , 15 < KC < 24 , 24 < KC < 32, etc.

Figure 7.22 illustrates the time development of vortex motions in the regime
at 7 < KC < 15. The major portion of the KC range, namely 7 < KC < 13

(Figure 7.22 a), is known as the transverse vortex street regime. The arrows in
Figure 7.22 refer to cylinder motion. The wake consists of a series of vortices
convecting out to one side of the cylinder in the form of a street. Figure 7.22
b shows the vortex shedding patterns in the regime at 13 < KC < 15. The
wake consists of a series of pairs convecting away each cycle in the direction of
about 45◦ to the flow oscillation direction, from only one side of the cylinder.
In Figure 7.22 a and Figure 7.22 b, shown is always one pair of vortices which
convect away from the cylinder. It is called “the single pair regime”.

Figure 7.23 shows the time development of vortex motions in the case of
15 < KC < 24, that corresponding to “double pair regime”. The resultant
wake is due to two vortices shed during each half cycle. Two trails of vortex
pairs convect away from the cylinder in opposite directions and from opposite
sides of the cylinder.

Figure 7.24 depicts the vortex motions in the case of 24 < KC < 32,
namely “the three pairs regime”. The wake of three vortices shed during a
half cycle becomes three vortex pairings in a cycle. By varying both β and
KC (correspondingly Re) , flow patterns may be classified into several regimes
according to their structure. The KC and β regimes are plotted in Figure 7.25
. Eight regimes are labelled by A∗ through G based on experimental results by
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Figure 7.22 Single pair regime of flow around a circular cylinder in oscillatory motion for
7 < KC < 15. (a) 7 < KC < 13 <; (b) 13 < KC < 15. From Williamson (1985).
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Figure 7.23 Double-pair regime of flow around a circular cylinder in oscillatory motion for
15 < KC < 24. From Williamson (1985).

Figure 7.24 Three-pair regime of flow around a circular cylinder in oscillatory motion for
24 < KC < 32. From Williamson (1985).
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Figure 7.25 Classification of flows around a circular cylinder in oscillatory motion. Flow
patterns are identified within eight regimes indicated A∗ − G. � , A∗ ; � , A ;© , B ;⊕ , C
; + , D; 4 , E ;©| , F;©− , G ; • , critical values for appearance of a streaked flow. From
Tatsuno & Bearman (1989).
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Tatsuno & Bearman (1989). Principal features of the oscillating flow in the
eight regimes are summarized in Table 7.2.

Table 7.2 Principal features of the flows classified in eight regimes of flow around a circular
cylinder in oscillatory motion with KC and β. From Tatsuno & Bearman (1989).

flow regimes principal features

A∗ No flow separation; secondary streaming
two-dimensional

A Two vortices shed symmetrically per half cycle
two-dimensional

B Three-dimensional instability
longitudinal vortices

C Rearrangement of large vortices
three-dimensional

D Flow convected obliquely to one side of
the axis of oscillation; three-dimensional

E Irregular switching of flow convection direction
three dimensional

F Flow convected diagonally
three dimensional

G Transverse vortex street
three dimensional

Another main feature of the oscillating cylinder is the relation between the
vortex shedding frequency and lift frequency. It appears that the peak of the lift
force occurs immediately after the reversal motion of the cylinder is associated
with the return of the most recently shed vortex to the cylinder, while the other
peaks in the lift variation are associated with the vortex shedding. Thus, it is
evident that, in oscillatory flows, the lift force frequency is not identical to the
vortex shedding frequency(Sumer & Fredsøe 1997). One way for determining
lift frequency is by using power spectrum of the lift force and identifying the
fundamental frequency. Williamson (1985)’s work, where the ratio of Re to
KC was kept constant at β = Re/KC ≈ 255 in one series of the experiments
and at β ≈ 730 in the other, has indicated that the fundamental lift frequency
increases with increasing KC, as shown in Table 7.3.
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Table 7.3 Fundamental lift frequencies of the observed flow around a circular cylinder in
oscillatory motion. From Williamson (1985).

Normalized
fundamental

KC regime KC regime Reynolds lift frequency
number (= Number of
Re oscillation in the

lift per flow-cycle)

NL =
fL
fω

Single pair 7 < KC < 15 1.8− 3.8× 103 2

Double pair 15 < KC < 24 3.8− 6.1× 103 3

Three pairs 24 < KC < 32 6.1− 8.2× 103 4

Four pairs 32 < KC < 40 8.2− 10× 103 5

7.5.3 Formulation for moving frame fixed to cylinder

The present calculation provides solutions obtained by the Eulerian FVM
method for the problem of the oscillating cylinder. It is expected to provide
the simulations of vortex shedding from the cylinder. In addition, when inves-
tigating the characteristic of lift frequency, the vortex shedding frequencies are
investigated with the variety of the flow regimes with each other KC and β.

Let us consider the harmonic in-line motion of the cylinder in a fluid at rest.
Position, velocity and acceleration of the local moving coordinate at the center
of the circular cylinder are defined, respectively, as

x = A0 sin(f t) i, (7.35)

ẋ = q
F

= A0 f cos(f t) i, (7.36)

q̇
F

= −A0 f
2 sin(f t) i. (7.37)

The relative velocity to the local moving frame is q = −q
F

+ u where u is
the velocity in the inertia frame. Assume the acceleration of the local moving
frame is not zero, then Navier- Stokes equation at the local moving frame is
represented as

Dq

Dt
+ q̇

F
= −∇

(
p

ρ

)
−∇× (ν ω) (7.38)
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Vorticity transport equation and pressure equation derived from Eq. (7.38) are
not changed at the local moving frame. The vorticity-velocity relation with the
Biot-Savart integral(Eq. (6.43)), however, should be included with the velocity
on the local moving frame. Dynamic vorticity boundary condition and pressure
boundary condition (Eqs. (6.48) through (6.49)), are modified.

The main parameters are non-dimensionalized as

Re =
U0D

ν
, t∗ =

U0 t

D
, U0 = A0 f, KC =

2π A0

D
(7.39)

where U0 is the maximum velocity ,D is cylinder diameter, andA0 is the ampli-
tude of the cylinder. With the non-dimension parameters, the governing equa-
tions are expressed as

∂ω

∂t
+∇ · (q ω) =

1

Re
∇2ω, (7.40)

q = −U 0 cos

(
2π

KC
t∗
)
i+

∮
C

(ω k)×∇Gdl. (7.41)

∇2

(
1

2
q2 +

p

ρ

)
= ∇ · (q × ω k), (7.42)

These equations are equivalent to Eqs. (6.42) through (6.44). The boundary
conditions of vorticity and pressure with no-slip condition are

1

Re

∂ω

∂n
k = n×

{(
Dq

Dt
+∇p

)
− 2π

KC
sin

(
2π

KC
t∗
)
i

}
(7.43)

∂H

∂n
= n ·

{(
q × ω k − 1

Re
∇× ω k

)
+

2π

KC
sin

(
2π

KC
t∗
)
i

}
(7.44)

These are comparable to Eqs. (6.48) and (6.49). (See also Kim et al. (2003).)

7.5.4 Numerical simulation

The calculation for three different conditions of KC and β is performed, each
of which is characterized with the different flow regimes.
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7.5.4.1 Case 1: KC = 7, β = 143 (Re = 1000)

According to Tatsuno and Bearman (1989), the regime of the present parameters
(KC = 7, β = 143) is the regime named G, as shown in Figure 7.25 and
Table 7.2. The principal feature in this regime has transverse vortex street, i.e.,
the vortex is shedding in direction perpendicular to the in-line motion of the
cylinder. The feature of vortex shedding by the present calculation is shown in
Figure 7.26 .

Figure 7.26 Transverse vortex street pattern of flow around a circular cylinder in oscillatory
motion at T = 89 for KC = 7, β = 143.

In this figure, the single vortex pair is captured at time t = 89. The single
vortex pair is convecting out perpendicular to one side of the cylinder. This
result shows a good agreement with the flow pattern of the regime named G.

Figure 7.27 represents the time history of drag and lift coefficients. In order
to analyze the periodic physics of the drag and lift forces, the time domain is
converted into the frequency domain by the Fourier transformation.
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Figure 7.27 Time history of drag and lift forces of flow around a circular cylinder in oscilla-
tory motion for KC = 7, β = 143.

As shown in Figure 7.28 , the peak of drag forces in frequency domain occurs
only once at ω ≈ 0.92.
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Figure 7.28 Power spectra of drag and lift forces of flow around a circular cylinder in oscil-
latory motion for KC = 7, β = 143.

The time cycle of cylinder motion is about 7, and the dominant time cycle
of drag force shown in Figure 7.28 is about 6.8. The cycle of drag force co-
incides with the cycle of motion. On the other hand, the peaks of lift forces in
frequency are appeared twice. The first fundamental frequency is ω = 0.92 and
the second one is ω = 1.76, which corresponding to T = 6.8 and T = 3.6, re-
spectively. The maximum lift force is appeared twice during one cycle motion
of the cylinder. This fact coincides with the characteristic of the fundamental
lift frequency observed by other researchers which is described with Table 7.3
in the previous section.
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7.5.4.2 Case 2: KC = 10, β = 20 (Re = 200)

In Figure 7.25 and Table 7.2, the regime of the present parameters(KC = 10,
β = 20) corresponds to F. The principal feature in this regime is the flow con-
vected diagonally, i.e., when the cylinder moves from right to left, a large clock-
wise vortex is formed on the upper side of the cylinder and a smaller counter-
clockwise vortex on the lower side of the cylinder. As the clockwise vortex
becomes stronger, a transverse flow appears behind the two vortices. When
the cylinder reverses, the stronger clockwise vortex is convected back to the
cylinder which induces a new vortex. The transverse flow developed behind the
cylinder distorts the trail of flow away from the oscillation axis. This causes
one vortex pair of diagonal pattern to shed. In the half cycle from left to right, a
strong clockwise vortex and a flow crossing the axis of oscillation are developed
in the same manner as in the previous half cycle.

Figure 7.29 shows diagonally pattern formed by single-pair vortex. This
result shows a good agreement with the flow pattern of the regime named F.
Figure 7.30 shows the time history of drag coefficient and lift coefficient. In

Figure 7.29 Diagonally convected single-pair vortex pattern of flow around a circular cylinder
in oscillatory motion at T = 211.6 for KC = 10, β = 20.

Figure 7.31 , the peak of drag forces in frequency domain is seen to appear only
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once at ω ≈ 0.61.

Figure 7.30 Time history of drag and lift forces of flow around a circular cylinder in oscilla-
tory motion at T = 211.6 for KC = 10, β = 20.

The time cycle of cylinder motion is about 10, and the dominant time cycle
of drag force observed in Figure 7.31 is about 10.3. The cycle of drag force
coincides with the cycle of motion. The peak of lift forces in frequency is seen
to appear only once. However, the dominant frequency is ω = 1.23 , which
means that the dominant time cycle of lift force is T = 5.1. The maximum
lift force is appeared twice during one cycle motion of the cylinder. This fact
coincides with the characteristics of the fundamental lift frequency observed by
other researchers (Table 7.3).
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Figure 7.31 Power spectra of drag and lift forces of flow around a circular cylinder in oscil-
latory motion for KC = 10, β = 20.
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7.5.4.3 Case 3: KC = 16, β = 62.5 (Re = 1000)

In this case, the vortex shedding mechanism is similar to one in the previous
cases, but the resulting flow around the oscillating cylinder is more complex
due to the larger KC. According to Williamson (1985)(Table 7.1), the remark-
able feature of the flow is that double-pair vortex is shedding. The regime of the
present parameters is between the regime F and the regime G as shown in Fig-
ure 7.25 . This regime appears to be similar to the transverse vortex street, but
the direction of the flow may change intermittently, into longitudinal, oblique,
and transverse direction.

Figure 7.32 shows irregular switching of flow convection pattern formed
by double-pair vortex. Figure 7.33 shows the time history of drag coefficient
and lift coefficient. With the Fourier transformation, the results are shown in
Figure 7.34 . In this figure, the peak of drag forces in frequency domain appears
once at ω ≈ 0.38. The time cycle of cylinder motion is about 16, and the
dominant time cycle of drag force in Figure 7.34 is about 16.5. The cycle
of drag force coincides with the cycle of motion. The peak of lift forces in
frequency appears once. The fundamental frequency is ω = 1.15, namely, the
dominant time cycle of lift force is T = 5.46. The maximum lift force appears
three times in one cycle motion of the cylinder. This fact coincides with the
characteristics of the fundamental lift frequency (see Table 7.3).

Figure 7.32 Double-pair vortex convection pattern of flow around a circular cylinder in
oscillatory motion at T = 192.6 for KC = 16, β = 62.5.
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Figure 7.33 Time history of drag and lift forces of flow around a circular cylinder in oscilla-
tory motion for KC = 16, β = 62.5.
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Figure 7.34 Power spectra of drag and lift forces of flow around a circular cylinder in oscil-
latory motion for KC = 16, β = 62.5.
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8.1 Introduction

This chapter describes a vortex particle method for the solution of the incom-
pressible Navier-Stokes equations. In the early stages of development of flows
around a circular cylinder, a hydrofoil section, a sphere and a rectangular wing
undergoing an impulsively started motion, the computational results obtained
by the vortex particle method (including the vortex-in-cell method) are com-
pared with those obtained by the Eulerian finite volume method. The compari-
son is performed separately for the pressure fields as well. The results obtained
by these methods give a better understanding of the vorticity-based methods.

The vortex method is based on the Lagrangian description of the vorticity
field. Its the main idea is one that a vortical flow field is represented by vor-
tex particles. This representation is very attractive for numerical simulations
of viscous flow around a body with complex geometry. It is then possible to
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avoid the nonlinear convection term of the vorticity transport equation, which
involves difficulties associated with numerical diffusion for its discretization in
grid-based methods.

We will focus on the two-dimensional formulation but partly some extension
of the formulation to three-dimensions will be made.

Figure 8.1 Schematic diagram of the vortex particle method in two-dimensions.

8.2 Numerical Implementation

8.2.1 Particle representation of vorticity field

There are several kinds of Lagrangian elements to discretize the vorticity field
in vortex methods, such as particles(blobs), sheets, and filaments. In this work,
a set of N vortex particles is introduced, of strength αi and position xi(t), to
represent the vorticity field
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8.2.1.1 Two-dimensions

In the case of two-dimensional flows, a Lagrangian form of Eq. (6.38) is repre-
sented as

Dω

Dt
= ν∇2ω, (8.1)

where ω is the scalar plane component of the vorticity vector (ω ≡ ω k). The
vorticity field is represented by N scalar-valued particles:

ω(x, t) =
N∑
i=1

ζε(x− xi)αi. (8.2)

Each particle is characterized by its position, xi(t), and its strength, αi(t) =

αi(t)k, i.e., its circulation, αi =
∫
Si
ωdS ≈ ωiSi, with Si the area of fluid

associated with the particle i. The regularized particle representation of the vor-
ticity field has been used by various researchers (Leonard 1980, Winckelmans
1989,1993). The distribution functions ζε associated with each particle are de-
fined by

ζε(r) =
1

εi2
ζ

(
|r|
εi

)
, (8.3)

where εi is the smoothing parameter denoting the blob (particle) size which is
usually taken as the grid size. In the present study, we choose Gaussian smooth-
ing as the distribution function for its physically appealing properties:

ζ(ρ) =
1

2π
exp

(
−ρ

2

2

)
. (8.4)

8.2.1.2 Three-dimensions

In a similar way to two-dimensions, a set of N vortex particles is introduced to
represent the vorticity field:

ω(x, t) =
N∑
i=1

ζε(x− xi)αi, (8.5)
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where the strength αi =
∫
Vi
ω dV = ωiVi and Vi is the volume associated with

the particle i. The regularization function, ζε, associated with each particle is
defined by

ζε(r) =
1

ε3i
ζ

(
|r|
εi

)
(8.6)

where εi is the smoothing parameter. The function ζ is usually taken to be ra-
dially symmetric with normalization to conserve circulation. The Gaussian dis-
tribution can be used, for instance,

ζ(ρ) =
1

(2π)3/2
exp

(
−ρ

2

2

)
(8.7)

8.2.2 Velocity field

In three dimensional flow, Eq. (6.40) is expressed as

q =
1

4π

∮
S

[
(n · q) r

|r|3
+ (n× q)× r

|r|3

]
dS +

1

4π

∫
V

ω × r

|r|3
dV, (8.8)

where,r = x − y. The second integral term of Eq. (8.8) corresponds to the
rotational part(uω) of the velocity field induced by the vorticity field.

Vortex particle positions xi(t) are governed by the equation,

dxi
dt

= q(xi, t) (8.9)

Recall that the velocity field is based on the Helmholtz decomposition:

q = U∞ +∇φ+ uω (8.10)

The term ∇φ is equivalent to the surface integral of Eq. (6.40) that is the ir-
rotational part of the velocity field. According to Green’s scalar identity, the
potential φ at arbitrary points on the body surface is written as

1

2
φ(x) =

∮
SB

{
φ(y)

(
n(y) · ∇G

)
+
(
n(y) · ∇φ(y)

)
G
}
dly. (8.11)
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The integral equation of Eq. (8.11) is discretized as

1

2
φi(x) =

M∑
j=1

Aij φj +
M∑
j=1

Bij σj, (8.12)

where

Aij =

∫
Cj

n(y) · ∇Gdly, Bij =

∫
Cj

Gdly, (8.13)

σj ≡ n · ∇φj = n · UB − n · (U∞ + uω) . (8.14)

By solving the linear system of equations with Aij, Bij, we obtain φi at colloca-
tion points on the surface. Then ∇φ on the body surface can be approximated
in the sense of the finite difference of φi. ∇φ at field points can be directly
computed by using Eq. (3.5) for 3-D and Eq. (3.5) for 2-D.

8.2.2.1 Regularized velocity field

Note that one can view the mollified velocity field as the exact velocity associ-
ated with a vorticity ω consisting of vortex particles, in two-dimensions,

uω =

∫
S

K ×

[
N∑
i=1

Γi ζε (|x− xi|)

]
dS

=
N∑
i=1

[∫
Si

K ζε (|x− xi|) dS
]
× Γi

=
N∑
i=1

Kε (|x− xi|)× Γi (8.15)
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Here, with the smooth function ηε, the kernel Kε in (8.15) is expressed as

Kε (r) =

∫
S

K (r) ζε(r) dS

= K(r)

∫ r

0

∫ 2π

0

ζε(r) r dr dθ

= K (r)

[
1− exp

(
− r2

2ε2

)]
(8.16)

where r = |x− y|, K = ∇G = − 1

2π

r

|r|2
.

Kε

(
x− y

)
= − 1

2π

x− y
|x− y| 2

[
1− exp

(
−
|x− y|2

2ε2

)]
(8.17)

The term uω of Eq. (8.10) which is equivalent to the volume integral (Biot-
Savart integral) of Eq. (6.40), may be discretized by Eq. (8.2) for 2-D:

uω(x, t) = − 1

2π

N∑
i=1

Kε × (αi(xi) k), in 2-D (8.18)

where

Kε =
ri
|ri|2

[
1− exp

{
−r2

i/(2ε
2
i )
}]
, with ri = x− xi (8.19)

Similarly, the regularized velocity for 3-D can be expressed as:

uω(x, t) = − 1

4π

N∑
i=1

K(3D)
ε × αi(xi), in 3-D (8.20)

where

K(3D)
ε =

ri
|ri|3

{
erf

(
ρ√
2

)
− ρ

√
2

π
exp

(
−ρ

2

2

)}
, ρ = |ri|/εi (8.21)
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where erf(x) =
2√
π

∫ x

0

exp(−t2) dt.

The efficiency of vortex particle method is conditioned in particular by the
choice of the cutoff function ηε and the location and strength of particles are ini-
tially set. The right hand side of Eq. (8.15) is computed using a fast algorithm,
proposed by Greengard and Rohklin (1987), that has an operation count of
O (N logN) and with active error control based on accurate error bounds. The
numerical time-advancing scheme required for solving the location of particles
is an additional important factor. In practice it is important to use schemes that
are at least second order (Adam-bashforth or Runge-Kutta schemes are com-
monly used).

Note that the term uω has been included when we apply the no-penetration
condition q·n = UB ·n on the body surface. In fact, the no-penetration condition
is numerically imposed by Eq. (8.14).

The vector potential (stream function) corresponding to the 3-D velocity field
would be

ψ(x, t) =
1

4π

N∑
i=1

1

ρ εi
erf

(
ρ√
2

)
αi (8.22)

A simpler algebraic function can be used rather than such a Gaussian function,
especially for the calculation of the stream function at the boundary:

ψ(xB, t) =
1

4π

N∑
i=1

1

εi

1√
|x− xi|2/ε2i + 1

αi

=
1

4π

N∑
i=1

1√
|x− xi|2 + ε2i

αi (8.23)

8.2.3 Field viscous diffusion: PSE scheme

The treatment of the diffusion equation Eq. (8.1) is based on a technique re-
lated to the PSE (Particle Strength Exchange) scheme introduced by Degond &
Mas-Gallic (1989). The Laplacian operator ∇2 is approximated by an integral
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operator, which is discretized over the particles.

ν∇2ω ≈ 2ν

ε2

∫
S

ηε(|x− y|) (ω(y)− ω(x)) dSy. (8.24)

Then, the evolution equation for the particle strength becomes

dαi
dt

=
2ν

ε2

N∑
j=1

(Si αj − Sj αi) ηε(xi − xj), (8.25)

where

ηε(xi − xj) =
1

2π ε2
exp

(
−
|xi − xj|

2

2ε2

)
(8.26)

This function is the same as one given in Eq. (8.4). Herein, ε is taken to be
constant for all particles.

The three-dimensional version would be

dαi
dt

=
2ν

ε2

N∑
j=1

(
Vi αj − Vj αi

)
ηε(xi − xj) (8.27)

8.2.3.1 Image layer method in two-dimensions

If Eq. (8.25) is used for wall-bounded computations, particles close to the wall
are not completely surrounded by other particles. Consequently, a spurious vor-
ticity flux appears at the wall while the total vorticity is conserved (Ploumhans
2000, Cottet 2000).

We use an image particle layer to complete the PSE for particles close to
the wall. Solid walls are approximated as discretized panels. The images are
placed along a layer inside the body close to the panel, as shown in Figure 8.3 .
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Figure 8.2 Comparison of the image vortex layer of the present method with the image vortex
system in Ploumhans & Wickelmans (2000).

Figure 8.3 Example of the image vortex layer around an NACA 0012 hydrofoil.

The extended vorticity of the image layer adds to the vorticity on the body,

ω (x) =
N∑
i=1

αi ζεi (x− xi) +
M∑
m=1

α∗m ζ
∗
εm (x− x∗m) for x ∈ ∂D, (8.28)

where the superscript ‘∗’ refers to quantities of images. Then the vorticity flux
on the body is expressed as

∂ω

∂n
=

N∑
i=1

αi
∂ζεi (x− xi)

∂n
+

M∑
m=1

α∗m
∂ζ∗εm (x− x∗m)

∂n
for x ∈ ∂D, (8.29)

where n is the normal vector of the particle x and the zero vorticity-flux con-
dition means ∂ω/∂n = 0 at the body surface. The normal derivative of the
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smoothing function is found to be

∂ζεi (r)

∂n
= − 1

2π ε4
exp

(
− r2

2ε2

)
(r · n) . (8.30)

Denoting the radius of the image blob by ε∗, Eq. (8.29) is expressed as

∂ω(xp)

∂n
=

1

2πε∗4

M∑
m=1

α∗m exp

(
− r∗2

2ε∗2

)
(r∗ · n)

+
1

2π ε4

N∑
i=1

αi exp

(
− r2

2ε2

)
(r · n) = 0. (8.31)

where r = xp − xi and r∗ = xp − xm. With the image layer, Eq. (8.24) is
replaced by

dαi
dt

1

Si
=

2ν

ε2

N∑
j=1

[
αj
Sj
− αi
Si

]
ζε
(∣∣xi − xj∣∣) Sj

+
2ν

ε2

M∑
m=1

[
α∗m
Sm
− αi
Si

]
ζε (|xi − xm|) Sm, (8.32)

where Sm = ε∗2 for the image. This technique is insensitive to the local shape of
a body. That is, because one image layer in the body is used, it may be suitable
in the case of a thin body, e.g., foils with cusped trailing edges.

8.2.3.2 Image layer method in three-dimensions

For particle i close to the boundary, the computation of the PSE involves two
subsets of particles: Pi(the subset of particles close enough to xi) andP ′i (the set
of images of the particles in Pi). The position of image particle x′i is computed
using symmetry, the plane of symmetry being the plane tangent to body surface
closest to xi. The volume and smoothing parameter of an image particle are
taken equal to those of the original particle. The two components of the strength
(α′i) parallel to the tangential plane are taken equal to those of αi. The normal
component is taken with the opposite sign. If (ξ, η, n) are the local orthogonal
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coordinates,
α′i = (αi · ξ) ξ + (αi · η) η − (αi · n)n (8.33)

Lee (2005) pointed out that the position and strength of an image are not easily
determined for a slender body such as NACA0012 hydrofoil, if the technique
outlined above is used. He suggested a more general treatment for the image,
and applied successfully to the 2-D flow simulation around NACA0012 at ar-
bitrary angles of attack, as well as around a circular cylinder. He positioned
images just below the control points of the discretized body panels (the total
number of image particles becomes the number of panels). The strength of an
image particle can be determined from the zero vorticity flux condition on the
control point of a panel,

∂ω

∂n
=

N∑
i=1

αi
∂ζε(x− xi)

∂n
+

M∑
m=1

α′m
∂ζ ′ε(x− x′m)

∂n
(8.34)

Cottet & Poncet (2003) demonstrated in the immersed boundary VIC
method that such particular diffusion formulas are no longer necessary near
the boundary. He used plain PSE formulas all over the domain, even near the
boundary. The spurious vorticity in the flow, usually introduced with the PSE
ignoring the boundary, was supposed to be corrected from the application of
vorticity flux formulas, because the evaluation of the slip and the enforcement
of the no slip boundary condition are made on the boundary itself. The PSE
in this work pursued Cottet’s demonstration, but as described in the section
8.4.3 for the potential field calculation, normal flow condition is satisfied on the
panel as well as tangential flow. Figure 8.4 compares the differences between
the PSE using images and immersed boundary PSE schematically.
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(a) Remeshing and image in vortex method

(b) Immersed boundary and particles in VIC

Figure 8.4 Comparison of particle locations between the vortex particle method and the
immersed boundary method in VIC.
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8.2.4 No-slip condition: Vorticity flux at wall

The solution of the heat equation may be expressed in integral form as: 1

ω = ν

∫ t

0

∫
∂D
Hε (x, t; ξ , τ)

∂ω
(
ξ, τ
)

∂n
dξ dτ (8.35)

where

Hε =
1

4πν (t− τ)
exp

(
−
|x− ξ|2

4ν (t− τ)

)
Therefore, the Gaussian smoothing meets all these requirements and is a natural
choice since it is the kernel of the heat equation. Its associated ηε is also a
Gaussian and with the proper normalization, it is found that Hε = ηε which be
of some computational benefit (Raviart 1987, Pepin 1990),

Hε

(
|x− y|

)
=

1

2πε2
exp

(
−
|x− y| 2

2ε2

)
(8.36)

where 2 ν dt = ε2.

A vorticity flux (ν
∂ω

∂n
) may be determined on the boundary in such a way

that the no-slip condition is satisfied. Wu et al. (1994) introduced a relation
between a vorticity flux and spurious slip velocity(Vs). If a vorticity flux is
constant over a small interval of time (∆t), the spurious slip velocity(Vs) that
would appear at the end of the time step can be regarded as the coupling term
corresponding to the tangential gradient of the surface pressure in Eq. (6.48).
The newly computed Vs, which can be obtained by the Biot-Savart integral, can
then used to absorb the coupling term and consequently to update a vorticity
flux: (

ν
∂ω

∂n

)(k+1)

=

(
ν
∂ω

∂n

)(k)

+

(
Vs
∆t

)(k)

(8.37)

wher the superscript notation refers to the iterative step.

The iteration continues until the no-slip condition is satisfied, i.e., until Vs
1See Friedman (1964).
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reduces to a value within a preset allowance. Eq. (8.37) indicates the total flux
to be emitted into the flow for the diffusion process during a time ∆t. This
elegant decoupled scheme was introduced by Wu et al. (1994), through which
we can efficiently recover the global coupling between the vorticity and the
pressure boundary condition instead of the implementation of the fully coupled
schemes.

The vorticity flux is distributed to neighboring particles by discretizing the
Green’s integral for the inhomogeneous Neumann problem corresponding to the
diffusion equation. For diffusion within the schemes to work properly, the spa-
tial distribution of the particles must remain as uniform as possible. To re-mesh
the distorted particles, we overlaid a uniform rectangular grid. This is necessary
in order to accurately interpolate the current vorticity field onto the new grid of
initially uniformly spaced particle location that replaces the distorted particle
locations (as suggested by Ploumhans and Winckelmans (2000)).

8.2.4.1 Wall viscous diffusion in two-dimensions

The total flux to be emitted into the flow for the diffusion process must be
emitted during a time ∆t. In effect, the vortex sheet Vs must be distributed
to neighboring particles by discretizing the Green’s integral for the inhomoge-
neous Neumann problem corresponding to the diffusion equation. As shown in
Figure 8.5 , consider a panel of uniform strength Vs located along the x-axis,
and diffusing to the right side. The vortex sheet does not diffuse toward the in-
terior of the body. The amount of circulation, ∆αi, that will be imposed on the
particle located at (xi, yi) (yi > 0 , xi (any sign)), is given by

∆αi =

∫ xi+hi/2

xi−hi/2

∫ yi+hi/2

yi−hi/2
∆ω dx dy (8.38)

where hi2 = Si is the fluid area associated with particle i. The change in vor-
ticity ∆ω is due to the flux from the panel acting over a time ∆t, which reduced
t.

∆ω =

∫ ∆t

0

dω

dt
dt (8.39)



328 VORTEX PARTICLE METHODS

Figure 8.5 Particles with respect to a panel for viscous wall diffusion.

Then,
dαi
dt

=

∫ ∫
dω

dt
dx dy (8.40)

∆αi =

∫ ∆t

0

dαi
dt

dt ≈ dαi
dt

∆t (8.41)

Eq (8.41) is integrated numerically using mid-point rule:

∆αi = hi
2 Vs

(
1− κ

√
πν∆t

)−1 1√
2π ν ∆t

×

× exp

(
− yi

2

2 ν ∆t

)
[erfc(s)]

(xi−hi/2)/
√

2 ν∆t

(xi+hi/2)/
√

2 ν∆t
(8.42)

where erfc(s) =
2√
π

∫ ∞
s

exp(−v2) dv = 1− erf(s). To resolve the non con-

servation problem caused by numerical integration, the integral of Eq. (8.40) is
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performed as follows (Ploumhans & Winckelmans 2000)

dαi
dt

=

∫ ∫
dω

dt
dx dy =

∆γ

∆t

(
[erfc(s)]

(yi−hi,l/2)/
√

4 ν t

(yi+hl/2)/
√

4 ν t

)
×

×
{√

4 ν t
1

2

(
[ierfc(s)]

xi−b/2−hi/2/
√

4 ν t

xi−b/2+hi/2/
√

4 ν t
− [ierfc(s)]

xi+b/2−hi/2/
√

4 ν t

xi+b/2+hi/2/
√

4 ν t

)}
(8.43)

where ierfc(s) =

∫ ∞
s

(u) du =
1√
π

exp(−s2)− s erfc(s), and hi,l/2 = xi if

0 ≤ xi < hi and hi,l/2 = hi/2 otherwise.

If particles are on a regular lattice aligned with the panel, Eq.(8.43) is always
conservative. Thus, it could also be used to perform under resolved computa-
tions, where the value of h2/(4ν∆t) would be very high. The large value of
h2/(4ν∆t) is equivalent to h2/σ2 � 1, which means the violation of the blob
overlap condition(h/σ < 1). In practice, however, the spatial distribution of
the particles is not well aligned with the vortex panel. Therefore, in order to
enforce conservation, the correction is made as follows (Ploumhans & Winck-
elmans 2000):

∆αi,conserv. = ∆αi +
(∆αi)

2∑
j (∆αj)

2

(
b Vs −

∑
j

∆αj

)
, (8.44)

where j runs over all particles concerned by the panel Vs. This scheme mini-
mizes ∑

i

(∆αi −∆αi,conserv.)
2/(∆αi)

2 (8.45)

with the constraint that (b Vs)− (
∑
i

∆αi,conserv.) = 0.

For diffusion with the above schemes to work properly, the spatial distribu-
tion of the particles must remain fairly uniform as long as possible. This is one
reason why particle redistribution procedure must be performed every 5 to 10
time steps.
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8.2.4.2 Wall viscous diffusion in three-dimensions

The process that the vorticity created at the boundary shed on to the particles
has been accounted for by the diffusion, and the solution to the diffusion equa-
tion for the voricity with homogeneous initial condition and the Neumann type
boundary condtion has been implemented in an appropriate discretized form.
The solution may be expressed in integral form using Green’s function for the
diffusion equation.

The 3-D version of the discretization is well explained in Ploumhans (2002).
Consider a retangular panel of uniform strength ∆γ(= n × us) and size b ×
f , located on the XY plane, and diffusing toward the positive Z direction. A
particle located at (xi, yi, zi), (zi > 0), receives, from that panel, an amount of
‘vorticity×volume’ given by

∆αi =

∫ ∆t

0

dαi
dt

dt (8.46)

with
dαi
dt

=

∫ xi+hi/2

xi−hi/2

∫ yi+hi/2

yi−hi/2

∫ zi+hi/2

zi−hi/2

dω

dt
dx dy dz (8.47)

The rate of change of the vorticity owing to the panel is equal to

dω

dt
=

∆γ

∆t

1

2
√
π

1√
4 ν t

exp

(
− z2

4 ν t

)
×

× [erfc(s)]
(x+b/2)/

√
4 ν t

(x−b/2)/
√

4 ν t
× [erfc(s)]

(y+f/2)/
√

4 ν t

(y−f/2)/
√

4 ν t

(8.48)

Equation (8.48) is then integrated exactly, giving

dαi
dt

=
∆γ

∆t

(
[erfc(u)]

(zi−hi,l/2)/
√

4 ν t

(zi+hi/2)/
√

4νt

)
×
{√

ν t
(

[ierfc(u)]
(xi+hi/2−b/2)/

√
4 ν t

(xi−hi/2−b/2)/
√

4 ν t
− [ierfc(u)]

(xi+hi/2+b/2)/
√

4 ν t

(xi−hi/2+b/2)/
√

4 ν t

)}
×
{√

ν t
(

[ierfc(u)]
(yi+hi/2−f/2)/

√
4 ν t

(yi−hi/2−f/2)/
√

4 ν t
− [ierfc(u)]

(yi+hi/2+f/2)/
√

4 ν t

(yi−hi/2+f/2)/
√

4 ν t

)}
(8.49)
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where ierfc(s) =

∫ ∞
s

erfc(x) dx. Notice that hi,l/2 = zi if 0 ≤ zi < hi and

hi,l/2 = hi/2 otherwise. Even though Eq. (8.49) is exact for a rectangular
panel of size b × f , the equation is still applicable to triangular panels, if each
triangular panel is considered as a square centered at the triangle centroid.

In the intial setting of the vortex particles, the vortex particles with zero
strength are first distributed on a regular mesh and several iterations of wall
diffusion and slip velocity calculation are carried out to achieve no slip on the
surface. The procedure is repeated at the end of each time marching step.

Figure 8.6 Diffusion of vorticity from body boundary. Vorticity correction is performed in
the iterative way for satisfying the boundary condition at the surface.

8.2.5 Pressure equation

Once the vorticity and the velocity fields are updated, the integral equation for
the total pressure may be solved. Basically, the process for calculating the pres-
sure in a Lagrangian frame is similar to one in an Eulerian frame. Substituting
Eq. (6.49) for ∂H/∂n into Eq. (6.44) yields the limiting form for H as a field
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point approaches the surface points (xB) of a solid body:

1

2
H +

1

2π

∮
CB

H
∂(ln r)

∂n
dl =

− 1

2π

∮
CB

[
n · ∂u

∂t
− n · (q × ω) + n · (∇× (ν ω))

]
ln r dl

+
1

2π

∫
S

∇ · (q × ω) ln r dS, (8.50)

where the integrals over CB are evaluated on the surface of a body in the
sense of the Cauchy principal value integral. Using the vector operation for
the integrand of the surface integral in Eq. (8.50), namely, ∇ · (q × ω) ln r =

∇ ·
{

(q × ω) ln r
}
− (q × ω) · ∇(ln r) and applying the divergence integral

theorem to the resultant expression, yield a Fredholm integral equation of the
second kind for H:

1

2
H +

1

2π

∮
CB

H
∂(ln r)

∂n
dl = − 1

2π

∮
CB

[
n · ∂u

∂t
+ n · (∇× (ν ω))

]
ln r dl

− 1

2π

∫
S

(q × ω) · ∇(ln r) dS. (8.51)

Furthermore, if we assume that the body will be either fixed, or impulsively
started, as in the test problem, the equation reduces to a simpler form:

1

2
H +

1

2π

∮
CB

H
∂(ln r)

∂n
dl = − 1

2π

∮
CB

ν
∂ωB
∂s

ln r dl

− 1

2π

∫
S

(q × ω) · ∇(ln r) dS. (8.52)

The two integrals over CB in Eq. (8.52) may be replaced by the sum of the
individual integral form for the contribution of each straight-line body panel.
This can then be solved using the panel method in a way similar to that used in
potential flow analysis (as mentioned before).

The surface integral term on the right-hand side of Eq. (8.52) may be solved
with distorted vorticity particles, unlike the well aligned cell elements in an
Eulerian description. The discretization of Eq. (8.52) (except the last surface
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integral term) is expressed as

1

2
Hi +

1

2π

M∑
j=1

Hj

∫
Cj

∇(ln r) dlj = − 1

2π

M∑
j=1

{
n · (∇× (ν ω))j

}∫
Cj

ln r dlj

− 1

2π

∫
S

(q × ω) · ∇(ln r) dS. (8.53)

Body vorticities on the body panels may be calculated from the distribution
function of Eq. (8.2). The second term on the right-hand side of Eq. (8.53),
(source-like strength, n ·∇× (ν ω)) is calculated by numerically differentiating
the body vorticities in the tangential direction of the body surface panel. With
the vorticity field of Eq. (8.2), the last integral term in Eq. (8.53) is discretized
as

1

2π

∫
(q × ω) · ∇(ln r) dS =

1

2π

N∑
k=1

[
q
k
× (αk k) · rk

|rk|
2

∫
Sk

ζεk dS

]

=
1

2π

N∑
k=1

[
(x− xk) qy αk − (y − yk) qx αk

|rk|
2

]
×

×

[
1− exp

(
−|rk|

2

2 ε2

)]
(8.54)

Consequently, the total pressure Hi (i = 1, 2, · · · ,M ) on the body panels is
calculated by using the following equation (see Appendix B):

M∑
j=1

(
1

2
δij + Aij

)
Hi = −

(
M∑
j=1

Cij +
N∑
k=1

Sik

)
(8.55)

where

Aij =

∫
Cj

nj · ∇G
(
|xi − xj|

)
dl

Cij =

∫
Cj

nj ·
(
∇× (ν ωj)

)
G
(
|xi − xj|

)
dl

Sik =
(
q
k
× Γk

)
·Kε (|xi − xk|)
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Then the total pressure at the field is explicitly calculated with the total pressure
on the body surface :

Hi = −
M∑
j=1

AijHj −

(
M∑
j=1

Cij +
N∑
k=1

Sik

)
(8.56)

where i = 1, 2, · · · , N .

8.2.6 Computational procedure

As shown in Figure 8.7 , the numerical implementation for two dimensional
Lagrangian formulation can be summarized in the following sub-steps of the
solution of the system of governing equations. The overall procedure is similar

Figure 8.7 Numerical procedure of the vortex particle method.

to those of Koumoutsakos et al. (1994) and Ploumhans et al. (2000). In the
present method, however, the irrotational (potential field) part of the velocity
field is calculated by using the well-established panel method and the iterative
process is used for more physically suitable creation of vorticity flux in order
to ensure the no slip condition, which was taken on the previous vorticity-based
method in the Eulerian description (Suh and Kim 1999). A typical time step,
∆t, of the Lagrangian vortex method is divided into two substeps.
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(1) The local velocity (q = uω +∇φ+U∞) is computed as follows: uω calcu-
lated by the Biot-Savart integral (Eq. (8.18)), ∇φ calculated by the panel
method (Eqs. (8.11)). Then, the velocity is integrated with a second-order
Adam-Bashforth scheme (or a second-order Runge-Kutta method imme-
diately after the redistribution process is applied) to convect the particle.
Their strengths are updated with the PSE scheme (Eq. (8.32)) that is in-
tegrated with an Euler explicit scheme. Algorithmically, this step is ex-
pressed as

xn+1
i = xni + ∆t

(
3

2
q
i
(xn, αn)− 1

2
q
i
(xn−1, αn−1)

)
(8.57)

α∗i = αni + ∆t
dαi
dt

∣∣∣∣
PSE

(xn, αn). (8.58)

(2) The vorticity flux ν
∂ω

∂n
necessary on the body surface to cancel the slip

velocity computed by sub-step (1), is computed (Eq. (8.18)). However,
recalculation of the slip velocity on the body boundary may reveal that
the no slip condition is not satisfied. Vorticity flux due to the remaining
slip velocity is then re-calculated. The iteration continues until the no-slip
condition is satisfied, i.e., until the spurious slip velocity reduces to a value
within a preset allowance. The vorticity strength corresponds to a vorticity
flux that must be emitted during a time ∆t:

αn+1
i = α∗i + ∆t

dαi
dt

∣∣∣∣
wall

(xn+1, α∗). (8.59)

(3) The redistribution scheme is applied every few steps(herein every 5 to 10
time steps) to maintain spatial uniformity of the particle distribution. Once
the vorticity and velocity are updated after two substeps are taken, the
pressure equation (i.e., Eqs.(8.53) through (8.54)), is solved.

8.2.6.1 Redistribution

Vortex methods have been guaranteed on its convergence by the condition that
particle cores overlap at all times. Redistribution is an essential operation to
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maintain a good representation of the vorticity field. The vortex-in-cell method
is characterized by the information exchange between particles and grid, as is
explained in section 8.4.2. As a good quality scheme to bring the particles in-
formation to grid, and the grid information to the particles, the M ′

4 scheme was
introduced. The formula is also used for the redistribution of every few time
steps. The scheme is continuous and so is the first derivative. It is known as
a second order scheme. In summary, the M ′

4 formula is used at three stages
of the method. First, when particle vorticity is interpolated on a regular Carte-
sian grid where velocity are evaluated, second, when the grid values are inter-
polated back to particles, and finally to redistribute the disorted particles onto
uniform rectangular grid. In order to avoid for the number of particles to grow
at a too high rate, a newly generated particle having strength |α| < εα |α| and
Reh = |ω|h2/ν < Reh,trsh is deleted after redistribution. The particluar choice
for the cutoff parameters is different with application.

In order to remesh on the distorted Lagrangian particles, we overlay a uni-
form rectangular grid as shown in Figure 8.8 . It is necessary to accurately
interpolate the current vorticity field onto the new grid initially uniform-spaced
particle location (x̃) that replaces the distorted particle location (x). After redis-
tribution, the uniform grid cell centers become the location of the new particles.

(a) Before redistribution (b) After redistribution

Figure 8.8 Redistribution scheme for a general boundary in two-dimensions.

The new particle strengths are determined using an appropriate interpolation
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kernel Λ so that:

Γ̃i(x̃) ≈
N∑
j=1

Γj(xj) Λp(x̃i − xj) (8.60)

where Γ̃,Γ denote the new and old particle strength respectively, Λp interpola-
tion kernel of p-th order. The process is not of the usual interpolation type as it
is complicated by the fact that the particles are disordered. The basic analysis
of interpolation of this type is given by Schoenberg (1973).

Consider first the normalized 1-D problem with unit spacing, u = (x− x̃) /h.
In the Λ3(u) scheme, an old particle located at −1/2 ≤ u ≤ 1/2 gives

Λ3(u) =


(3− 2u) (4u2 − 1)/48 to the new particle located at −3/2

(1− 2u) (9− 4u2)/16 to the new particle located at −1/2

(1 + 2u) (9− 4u2)/16 to the new particle located at 1/2

(3 + 2u) (4u2 − 1)/48 to the new particle located at 3/2

If a wall is present, the redistribution of particles close to the wall must
be modified so that particles are prevented from penetrating the body. This is
achieved by using Λp

′
schemes. Two such schemes are detailed here, consider-

ing that an old particle is located at −1/2 ≤ u ≤ 1/2 and that the wall is at
u = −1

2 for the Λ2
′
scheme and u = −1 for the Λ3

′
scheme:

Λ2
′
(u) =


(u− 2− 1/2) (u− 1− 1/2)/2 at 1/2

(u− 1/2) (2− u+ 1/2) at 3/2

(u− 1/2) (u− 1− 1/2)/2 at 5/2

Λ3
′
(u) =


(1− 2u) (2u− 5) (2u− 3)/48 at −1/2

(2u− 5) (2u− 3) (1 + 2u)/16 at 1/2

(1− 2u) (2u− 5) (1 + 2u)/16 at 3/2

(1− 2u) (3− 2u) (1 + 2u)/48 at 5/2

In the present approach, a Λ3 scheme is used for particle located more than
3/2 from the wall, a Λ3

′
scheme for particles with distance between 1/2 and

3/2, and a Λ2
′

scheme for particles less than 1/2 from the wall (Λ3, Λ3
′

and
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Λ2
′

schemes is suggested by Ploumhans and Winckelmans (2000) for general
boundary).

The 2-D redistribution formulas are Cartesian products of their 1-D counter-
parts. In this case, the interpolation kernel is defined as

Λ(x, y) = Λ(x) Λ(y)

We use two steps. First, an old particle is redistributed in the x-direction and
temporary particles are created. This redistribution in the x-direction has cre-
ated three or four temporary particles. Each temporary particle is then redis-
tributed in the y-direction. Figure 8.9 gives an example of the redistribution
scheme.

(a) Before redistribution (b) Redistribution in the x-direction

(c) Redistribution in the y-direction (d) After redistribution

Figure 8.9 Two-dimensional redisribution scheme for a particle near a boundary. Λ3 scheme
for point A, and Λ3 Λ3

′
and Λ2

′
schemes for point B are used.
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8.2.6.2 Force calculation

Hydrodynamic forces on the solid bodies can be computed either (1) by inte-
gration of the pressures on the boundaries, or (2) from integral expression of
the system momentum balance. In vortex method, the second approach is very
robust and has an almost zero computational cost. The total force F on a solid
body can be computed from the time change of the linear impulse in the domain,

F = −ρ dI
dt

(8.61)

where ρ is the density and I is the first order moment of vorticity,

I =
1

d− 1

∫
V

x× ω dV (8.62)

with d the dimension of the space (d = 3 in 3-D, d = 2 in 2-D), and V the vol-
ume occupied by the fluid. The discretization of the equation is straight forward
as it needs just summation running over all particles.

Ix =
1

2

∫
V

(y ωz − z ωy) dV ≈
∑
p

(yp αz − zp αy)

Iy =
1

2

∫
V

(z ωx − xωz) dV ≈
∑
p

(zp αx − xp αz) (8.63)

Iz =
1

2

∫
V

(xωy − y ωx) dV ≈
∑
p

(xp αy − yp αx)

The coefficient for the drag and lift, when the flow direction generates drag in
x direction and lift in y respectively, with the surface area A,

CD =
Fx

1

2
ρU2
∞A

= − 2

U 2
∞A

dIx
dt

(8.64)

CL =
Fy

1

2
ρU2
∞A

= − 2

U 2
∞A

dIy
dt

(8.65)
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8.3 Some Comparative Results

8.3.1 Impulsively started cylinder

The time development of an incompressible viscous flow around an impulsively
started circular cylinder is a classical problem in fluid mechanics. Despite the
simplicity of its geometry, the flow structure is complicated and all possible
flow phenomena occur (Ta Phouc Loc and Bouard 1985). In this section, com-
parative studies of this problem are performed with the results of the Eulerian
formulation (Suh and Kim 1999) and other researchers’ work, including theo-
retical (Bar-Lev and Yang 1975), and numerical (Koumoutsakos and Leonard
1995, Ploumhans and Winckelmans 2000) investigations of the validity of the
Lagrangian formulation.

Input parameters for the present comparison are as follows: Re = U∞D/ν

= 550 , T = t U∞/D , ∆t = 0.05, blob size ε = 0.005, surface panel size
d = π/600 ≈ 0.0052. These parameters are chosen to satisfy the stability con-
dition ν ∆t/h2 = O(1) for the diffusion term, and to satisfy the stability con-
ditions of the second-order Adam-Bashforth scheme for the convection term,
and the explicit Euler scheme for time marching. N particles (or blobs) result
in the so-called ‘N-body problem’ in the evaluation of the Biot-Savart integral.
Therefore, the convection and diffusion terms are treated with the fast algo-
rithm (Greengard 1987) to reduce computing time. Computational parameters
used for the present comparison are tabulated in Table 8.1.

Figure 8.10 gives the comparison of vortex sheet strength with the results
by Ploumhans and Winckelmans (2000).
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Table 8.1 Parameters used in the numerical simulation of the flow around an impulsively
started circular cylinder.

Finite Volume Method Vortex Particle Method
Reynolds number 550 550
Time step, ∆t 0.01 0.01
Radius 0.5 0.5
Number of surface panels 600 600
Panel size about 0.005 about 0.005
Grid meshes 600× 40 ·
Particles · 9000 ∼ 70000
Computational domain 2.5 × diameter no limit
Computational time about 6 hours about 8 hours
(pentium IV) (400 time steps) (400 time steps)

Figure 8.10 Comparison of the accumulated spurious slip velocity distribution on the cylin-
der surface. Solid line(−): Lagrangian vortex method (present scheme); dashed line(−−): La-
grangian vortex method (Ploumhans & Winckelmans (2000)).
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The vortex sheet strength(Vs) is equivalent to the accumulation of spurious
slip velocity on the body boundary, which is calculated during the iterative pro-
cess for the no-slip condition. The results of Ploumhans and Winckelmans are
obtained in a manner such that vortex singularities are distributed on the body
surfaces, and the no-slip condition is conferred to the interior boundary sur-
faces, which is equivalent to a no-penetration condition. Figure 8.10 shows
that the distribution of Vs is in good agreement, except for some peak values.
This implies that the iterative process for the body boundary condition imposed
in FVM is also applicable to the vortex particle method.

A comparison is made in Figure 8.11 of Ix as a function of T = t U∞/D for

the x-component of momentum
(
I =

∫
S

x× ω dS
)

, Ix =

∫
S

y ω dS =
∑
p

yp αp,

and Figure 8.11 includes the analytical solution for early developing flows
(T < 0.25).

Figure 8.11 Comparison of Ix for the impulsively started cylinder problem (0 < T < 0.25).
Solid line (−): analytical solution (Bar-Lev & Yang (1975)); N: Lagrangian vortex method
(present scheme); �: Lagrangian vortex method (Ploumhans & Winckelmans (2000)).
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The numerical and analytical results are in good agreement. As shown in
Figure 8.12 , for a longer time interval, the two numerical methods give indis-
tinguishable results.

Figure 8.12 Comparison of Ix for the impulsively started cylinder problem (0 < T < 4).
Solid line (−): Lagrangian vortex method (present scheme); dashed line (−−): Lagrangian
vortex method (Ploumhans & Winckelmans (2000)).

The same comparison for the drag coefficient, CD = Fx/
1

2
ρU2
∞D with

Fx = −ρ dIx/dt, is shown in Figure 8.13 and Figure 8.14 . Here, the result
obtained by FVM is included. Figure 8.13 shows that, of the two methods, the
present Lagrangian scheme produces results somewhat closer to the analytical
results.



344 VORTEX PARTICLE METHODS

Figure 8.13 Comparison of CD for the impulsively started cylinder problem (0 < T < 0.25).
Solid line (−): analytical solution (Bar-Lev & Yang (1975)); N: Lagrangian vortex method
(present scheme); �: Lagrangian vortex method (Ploumhans & Winckelmans (2000)).

Figure 8.14 Comparison of CD for the impulsively started cylinder problem (0 < T < 4). �:
Lagrangian vortex method; 4: Eulerian FVM; dashed line(−−): Lagrangian vortex method
(Ploumhans & Winckelmans (2000)).
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Figure 8.15 represents the comparison of the body vorticity between the
Eulerian FVM and the Lagrangian vortex method.

Figure 8.15 Comparison of the surface vorticity for the impulsively started cylinder problem
for Re = 550 at T = 0.5 and T = 4.0. Solid line(−): Eulerian FVM; ◦: Lagrangian vortex
method.

The front stagnation point of the cylinder corresponds to the angular position
of θ = π measured from the positive x-axis. The body vorticity obtained by the
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Lagrangian vortex method is the ‘filtered’ (smoothed) value. The Lagrangian
scheme has high-frequency noise in the values due to dispersed particles, so the
filtered value is taken by an inverse Fourier transformation of the 16 first modes.
The agreement between the two methods is seen to be quite satisfactory, but
with small differences at local extrema. It is observed that, as time progresses,
the local peaks of body vorticity become large. These local peaks occur at the
instant the vortical wake behind the cylinder develops.

Figure 8.16 shows the streamline patterns. It is found that the wake length
behind the cylinder is half the diameter of the cylinder at T = 2, and almost the
same as the diameter at T = 4. At T = 2, a secondary vortex is generated at
a position of about θ = 60◦. The results obtained from the Lagrangian vortex
method and the Eulerian FVM are found to be almost identical, but the La-
grangian scheme produces short wavelength oscillations at regions where there
are few nearby particles.

Figure 8.17 presents a comparison of iso-contours of vorticity between the
Lagrangian and Eulerian approaches. The agreement between the two is shown
to be very good, except that the minimum and maximum values of ω differ
slightly.

Figure 8.18 shows the pressure contours in the computational domain. The
results from the two methods are almost identical. As time advances, the pres-
sure distributions are rapidly changed near strong vortical flow structures. It is
seen that a low pressure region is formed at the core of the downstream wake.

Figure 8.19 presents a comparison of pressure coefficientsCP

(
≡ p− p∞

ρ q2
∞

)
on the body surface at several instants. It is observed that the agreement be-
tween these results is satisfactory.
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Figure 8.16 Comparison of the streamline patterns for the impulsively started cylinder prob-
lem for Re = 550 at T = 1, T = 2, T = 3 and T = 4. (left) Lagrangian vortex method; (right)
Eulerian FVM.
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Figure 8.17 Comparison of the vorticity contours for the impulsively started cylinder problem
for Re = 550 at T = 1, T = 2, T = 3 and T = 4. (left) Lagrangian vortex method; (right)
Eulerian FVM.
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Figure 8.18 Comparison of the pressure contours for the impulsively started cylinder problem
for Re = 550 at T = 1.0, T = 2.0, T = 3.0 and T = 4.0. (left) Lagrangian vortex method;
(right) Eulerian FVM.
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Figure 8.19 Comparison of Cp for the impulsively started cylinder problem for Re = 550 at
T = 1 and T = 4.0. Solid line(−): Eulerian FVM; Circle(◦): Lagrangian vortex method.

8.3.2 Impulsively started foil with varying angles of attack

We now take the case of the impulsively started NACA0021 with varying angles
of attack. The present image particle layer scheme is suitable for this case. The
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parameters used in the calculation are similar to the case of the impulsively
started cylinder (see Table 8.2).

Table 8.2 Parameters used in the numerical simulation of the flow around an impulsively
started NACA 0021 hydrofoil.

Eulerian FVM Lagrangian vortex method

Reynolds number 550 550

Time step,∆t 0.01 0.01

Thickness ratio 0.21 0.21

Number of surface panels 408 408

Angle of attack 5◦,10◦ 5◦,10◦

Grid meshes 408× 60 ·
Particles · 13000 ∼ 40000

Computational domain 3× chord no limit

Computational time about 31 hours about 50 hours

(pentium IV) (400 time steps) (400 time steps)

A hydrofoil section of NACA0021 is chosen for the computation. It is a
symmetrical hydrofoil whose thickness ratio is 21%. The thickness distribution
for the NACA0021 is given in Abbott and Doenhoff (1958).

The parameters used in the simulation are ∆T = 0.01 and Re = 550. The
Reynolds number is based on the uniform flow velocity and chord length of
the hydrofoil. There are 408 panels at body surface. The radius of all vortex
particles has used with ε = 0.0025. Image particles are located underneath
body panels. Redistribution is done every five time steps. If new particle has
|α| < 0.001 |α|max, it is deleted and the loss of circulation is redistributed
equally among the remaining particles. The integration scheme for convection
is a second order Adam-Bashforth (second order Runge-Kutta for the first step
just after each redistribution). For diffusion, a first order Euler explicit scheme
is used. A fast algorithm proposed by Greengard and Rohklin (1987), is used
for both convection and diffusion substeps. After vorticity and velocity are up-
dated through two fractional steps, the pressure equation is solved when needed.

Some experimental results were provided by Huang et al. (2001). His ex-
periments were conducted in a towing water tank. The particle tracking flow
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visualization (PTFV) and the particle image velocimetry (PIV) were used to
obtain a picture of vortex evolution on the suction surface of an impulsively
started NACA 0012 hydrofoil. Five characteristic vortex evolution regimes are
identified in the parameter domain of angle of attack.

The computing time is longer than in the case of the cylinder. The reason
may be that the number of iterations required for canceling the spurious slip
velocity and generating the vorticity flux on the body boundary is larger than
that in the case of the cylinder problem. As the angle of attack is higher, the
computing time is much longer. We applied the present scheme to the foil with
two angles of attack, 5◦ and 10◦.

Figure 8.20 shows the streamline patterns, the vorticity contours and the
pressure contours at Reynolds number 550 around the foil with angle of at-
tack 5◦. The two results are shown to be in good agreement. In the streamline
patterns, the reverse flows are captured near the trailing edge of the foil. As ob-
served in the results of the Lagrangian vortex method, the fields of velocity and
pressure are confined to the viscous region around the foil, because we consider
only the field where the vorticity evolves and exists.

Figure 8.21 shows the streamline patterns, the vorticity contours and pres-
sure contours at Reynolds number of 550 at T = 4.0 for the angle of attack of
10◦. This shows aspects similar to those of the previous case.

Figure 8.22 and Figure 8.23 show the comparison of the drag coefficients
and the lift coefficients. In the case of angle of attack 5◦, the results of La-
grangian vortex and Eulerian FVM methods are nearly identical.

On the other hand, in the case of angle of attack 10◦, there is a small dif-
ference between the results, especially at about T = 3.0. This may be due to
the strong starting vortex. When the angle of attack of the foil is higher, the
strength of the starting vortex is larger. Each scheme may reflect the evolution
of the vorticity on the body in a different manner. In fact, we only focus on the
unsteady flow simulation at an early stage. We may expect to obtain the same
steady-state characteristics.
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(a) Streamlines

(b) Vorticity

(c) Pressure

Figure 8.20 Streamline patterns, vorticity contours and pressure contours for the impulsively
started NACA0021 at Re = 550, α = 5◦ and T = 4.0. (left) Lagrangian vortex method; (right)
Eulerian FVM.
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(a) Streamlines

(b) Vorticity

(c) Pressure

Figure 8.21 Streamline patterns, vorticity contours and pressure contours for the impulsively
started NACA0021 foil at Re = 550, α = 10◦ and T = 4.0. (left): Lagrangian vortex method;
(right): Eulerian FVM.
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Figure 8.22 Comparison of drag and lift for the impulsively started NACA0021 foil at Re =
550 and α = 5. ◦: CD by Lagrangian vortex method; N: CL by Lagrangian vortex method;
dashed line(−−): CD by Eulerian FVM; solid line(−): CL by Eulerian FVM.

Figure 8.23 Comparison of drag and lift for the impulsively started NACA0021 foil at Re =
550 and α = 10. ◦: CD by Lagrangian vortex method; N: CL by Lagrangian vortex method;
dashed line(−−): CD by Eulerian FVM; solid line(−): CL by Eulerian FVM.



356 VORTEX PARTICLE METHODS

8.3.2.1 Angle of attack : 90 deg.

At very large angles of attack, the bluff body effect becomes dominant. The
starting vortex is generated from both the leading and the trailing edges. The
vortex evolving from the sharp trailing edge appears to be a little larger than one
from the leading edge. The corresponding results are shown in Figures 8.24 ,
8.25 , and 8.26 .

(a) T = 0.250

(b) T = 0.500

(c) T = 0.750

(d) T = 1.000

Figure 8.24 Iso-contours of vorticity around NACA 0012 hydrofoil at α = 90o and Re =
1200.
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(a) T = 0.250

(b) T = 0.500

(c) T = 0.750

(d) T = 1.000

Figure 8.25 Streamlines around NACA 0012 hydrofoil at α = 90o and Re = 1200.
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(a) T = 0.786 (b) T = 0.750

(c) T = 1.048 (d) T = 1.000

Figure 8.26 Comparison of the streamlines around NACA 0012 hydrofoil with the ex-
perimetal result (Huang et al. 2001) at α = 90o and Re = 1200.
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8.4 Vortex-In-Cell Methods

8.4.1 Introduction

The computation of velocity and stretching is realized through the vector po-
tential and vorticity formulation on the immersed Cartesian grid. The present
method is similar to the immersed boundary vortex-in-cell method by Cottet and
Poncet (2003) in terms of the use of unified interpolation formulas. But, the use
of panel method makes it possible to impose both the no through flow condition
and no slip condition on the body surface. The vorticity flux from the panel sat-
isfies the no slip condition and the singularity distribution over the panel does
not make the flow across the body surface. The panel method is set up on the
triangular discretization of the body surface and linear distribution of the singu-
larities on the panel. The implementation has advantages over constant strength
method that eliminates the discontinuities of singularities between panels and
reduces the size of matrix elements as well. In the present method, the panel
method is also utilized for the calculation of pressure field. The inversion result
of the influence coefficient matrix can be adopted without any modification due
to the integral equation formulation for the pressure.

Figure 8.27 Comparison of CPU times for velocity evaluations in 3-D. Krasny tree-code vs.
VIC with Fishpack and 64 points interpolation formulas. VIC1: Cartersian grid with 100 %
particles; VIC2: Polar grid with 65 % particles; VIC3: Polar grid with 25 % particles. From
Cottet (1999).
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8.4.2 Rotational velocity component: FFT scheme based on regular grid

(a) Before particle strength assignment on the grid

(b) After assignment, strengths assigned onto hollow circle inside body are reserved for PSE

Figure 8.28 Regular immersed grids for FFT.

The present work uses FFT based Poisson solver to calculate rotational velocity
field. A regular Cartesian grid is placed so that the grid compactly encloses the
vortex particles including the body. The grid is immersed in the body, and the
vorticity field is extended so that vorticity has zero value on the grid inside the
body. The vorticity of the particles is distributed to the Cartesian grid by the
interpolation formula,

ωg =
1

Vp

N∑
p

αpW

(
xp − xg
h

)
W

(
yp − yg
h

)
W

(
zp − zg
h

)
(8.66)
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where g and p are subscripts for grid and particle quantities, respectively, and
W (x) is the interpolation kernel. In the present work the third order M ′

4 kernel
is chosen. The kernel is defined by

W (x) = M ′
4(x) =


1− 5

2 |x|
2 + 3

2 |x|
3, for |x| ≤ 1

1
2 (2− |x|)2 (1− |x|), for 1 < |x| < 2

0, for |x| ≥ 2

(8.67)

The kernel preserves the first three moments of the distribution, the total, linear
and angular impulse of the fields, twice continuously differentiable and sym-
metric. The VIC method needs regridding of particles on regular locations on
occasion to preserve the accuracy, and the kernel is also used for the regular
distribution of the distorted particles.

After the interpolation step the Poisson equation for vector potential is solved
by following the procedure which is introduced as Fourier transform method
in the book “Numerical Recipes in C”. Here the procedure is briefly recited
for the two dimensional Poisson equation ∇2ψ = −ω with Dirichlet boundary
condition. The finite difference representation of the equation is, approximating
the Laplacian via the second order central difference scheme,

ψi+1,j − 2ψi,j + ψi−1,j

h2
+
ψi,j+1 − 2ψi,j + ψi,j−1

h2
= −ωi,j (8.68)

where ψi,j represents function value at a point (xi, yj) and h is grid spacing. If
we substitute the discrete inverse sine transforms,

ψi,j =
2

IJ

I−1∑
m=1

J−1∑
n=1

ψ̂m,n sin
πim

I
sin

πjn

J
(8.69)

ωi,j =
2

IJ

I−1∑
m=1

J−1∑
n=1

ω̂m,n sin
πim

I
sin

πjn

J
(8.70)

in the finite difference equation (8.68), we can get the relation between Fourier
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coefficients,

ψ̂m,n =
h2 ω̂m,n

2
(

cos
πm

I
+ cos

πn

J
− 2
) (8.71)

We can get ψi,j on the regular grid by the inverse sine transform (8.69).

In 3-D, the inverse sine transform has one more term and the relation between
Fourier coefficients becomes similar form,

ψ̂l,m,n =
h2 ω̂l,m,n

2

(
cos

πl

I
+ cos

πm

J
+ cos

πn

K
− 3

) (8.72)

Above procedure was explained for homogeneous Dirichlet condition at bound-
ary. As the grid is set up so that it tightly includes the particles, the values of
ψ on the sides of the VIC grid become non trivial. When the boundary values
of ψ are known, the procedure can be simply modified by taking them over to
the right-hand side. If we write the solution as ψ = ψ′ + ψB, where ψ′ = 0 on
the boundary, while ψB has nonzero values only on the boundary, which is the
given boundary value, the finite difference equation (8.68) becomes equivalent
to the case of zero boundary condition. The equation for a boundary takes the
form, say for i = I − 1,

ψ′I,j + ψ′I−2,j + ψ′I−1,j+1 + ψ′I−1,j−1 − 4ψ′I−1,j = h2 ωI−1,j − ψBI,j (8.73)

so whenever the boundary value is non-zero, the source term h2 ωI−1,j(be care-
ful that one grid inside from boundary) is replaced by

h2 ωI−1,j − ψBI,j (8.74)

The values on the boundary is evaluated using the expression (8.23) by fast
algorithm developed by Kim (2003). If the boundary is located far from the
particle positions, the homogeneous boundary condition may be used, but this
approach involves too much grid and the advantage of using compact grid can-
not be taken.

The velocity on the grid is computed by fourth order finite difference method
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from the definition uω = ∇× ψ, for example, the component u is

u =
∂ψz
∂y
− ∂ψy

∂z

=
ψzi,j−2,k − 8ψzi,j−1,k + 8ψzi,j+1,k

− ψzi,j+2,k

12h

−
ψyi,j,k−2 − 8ψyi,j,k−1 + 8ψyi,j,k+1

− ψyi,j,k+2

12h

(8.75)

The velocity on the particle position is then interpolated from the velocities
of the grid. The same interpolation formula M ′

4 is used. The velocity on the
grid very close to the body can have singular behavior since sub-grid scale can
have a significant effect when applying finite difference formula. The velocity
at such a point is directly evaluated using the Biot-Savart formula. The points
are found by a criteria that the distance from the body is less than half of the
grid size.

8.4.3 Potential velocity component: Panel method with linearly varying
singularity distribution

For the solution of the Laplace equation ∇2φ = 0, the identity with a distribu-
tion of singularities on the surface is applied to the discretized surface so that
the strengths of them determined by the boundary condition. This technique is
known as the popular ‘panel method’. The no through flow condition is em-
ployed to points on the surface, unlike Cottet & Poncet (2003)’s method. Fig-
ure 8.29 shows the difference between Cottet & Poncet (2003) and the present
work in handling no through flow condition.
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(a) Immersed boundary VIC, Cottet & Poncet (2003)

(b) Present work

Figure 8.29 Two types for enforcement of the no-penetration flow condition in the regular
grid system.

The present method is extended in the context of the VIC of this work to
a linear distribution of singularities on a triangular panel. This choice is more
flexible, since surface of a complex geometry can be more uniformly discretized
with triangular elements. Furthermore, the discontinuity of the singularities,
which is present between panels in constant strength panel method, can be
avoided with the linear variation. And, as the number of panels becomes ap-
proximately twice that of the vertices, it would be a great benefit that the un-
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knowns in the resulting system of linear equations can be notably decreased
with the unknowns defined on the panel vertices.

The Green’s scalar identity expresses the potential φ within the fluid domain
as a sum of each contribution in terms of the surface value of φ and its normal
derivative n · ∇φ on each panel of the discretized boundary surface Si,

φ(x) = − 1

4π

∑
i

∫∫
Si

{
1

r
n · ∇ξφ− φ(ξ)n · ∇ξ

(
1

r

)}
dSξ (8.76)

where φ(ξ) is the surface distribution of doublets, and n · ∇ξ is that of sources.
The strength of source σ corresponds to the no through flow boundary condition,

σ = n · ∇ξφ = −n · (U∞ + uω) (8.77)

If the equation (8.76) is discretely applied for each vertex with the surface inte-
grals evaluated assuming that the source and doublet are linearly distributed on
each panel, we can get the linear system of algebraic equations.

(1 +Dkk)φk −
N−(k)∑
m=1

φmDkm = σk Ekk +

N−(k)∑
m=1

σmEkm (8.78)

Dkm =

Lm∑
n=1

1

4π

∫∫
Sm

n · ∇
(

1

r

)
dSξ

Ekm =

Lm∑
n=1

1

4π

∫∫
Sm

1

r
dSξ

where Lm is the number of panels which have the vertex m in common. Dkk

and Ekk are the special case that the field point coincides with the source point.
Due to the linear distribution of the singularities, it should sum up all the con-
tributions from each panel when the surface integral is calculated. As shown in
Figure 8.30 , when the induced potential is calculated at the point k by the unit
strength on m, all the panels filled with gray should be involved with the other
nodes having value zero.
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Figure 8.30 Schematic arrangement of a field point k due to a singularity distribution element
composed of several triangular panels. There is a linear variation of the singularity density over
each panel with unit strength at a source point m and zero strength on other neighboring points
of the element.

The surface integrations are evaluated using explicit simple analytic expres-
sions for the linear distributions derived by Suh (1992). The expressions are
line integrals along the contour of the panel, which can be easily evaluated with
global coordinates.

The slip velocity induced by the singularity distribution exist on the surface
of the body. This component equivalently becomes the strength of the vortex
sheet, which will be diffused in the field for the satisfaction of the no slip con-
dition.

∆γ = n× q
s

= n× (U∞ + uω +∇φ) (8.79)

The velocity field is finally corrected by superimposing the potential compo-
nent, uφ(x) = ∇φ(x), which can be calculated by the similar integration for-
mula, with the solution of linear system (8.78),

uφ(x) =
1

4π

∑
i

∫∫
Si

{
φ(ξ)

( n
r3
− 3

n · r
r5

r
)

+ (n · ∇ξφ)
r

r3

}
dSξ (8.80)

One advantage can be obtained that the pressure field can be computed with
the similar procedure when the panel method is selected as a method to satisfy
no through flow condtion. As it will be described in the subsequent section, the
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integral equation for pressure Eq. (6.41) is very similar to the scalar identity,
except with the one additional term that involves a volume integral of the cross
product of velocity and vorticity. In system of the resulting linear equations,
the right hand side only would be different, so we can directly use the inversion
result of the same matrix.

8.4.4 Stretching term in 3-D

In a VIC method the grid values of velocities and vorticities can be directly used
for finite differencing in the stretching when they are interpolated onto the grid.
Furthermore, a VIC method can have an advantage of being conservative on the
grid, if the conservative form∇ · (ω u) of the stretching term is implemented.

In order to treat the stretching term, the vorticity and velocity are first multi-
plied on the grid, the divergence is then computed by 4th order finite difference
formula and interpolated on the particle locations along with the velocity.

8.4.5 Stability issue

Although the vortex method demands more loose stability condition than clas-
sical CFL type condition due to the Lagrangina advection of the particle, there
exist stability criteria constrained by the explicit diffusion solver with PSE
(ν δt ≤ C h−2) and by the strain of the flow (∆t ≤ C |∇u|−1). Even though
these conditions are fulfilled, the current study experienced an unstable behavior
of solution, when the method is applied to the simulation of flow past a rectan-
gular wing, if the particle core size(smoothing parameter) or time step does not
meet the condition for the conservation of vortex strength in wall diffusion,

ε <
√

2 ν ∆t =

√
2∆t

Re
, (8.81)

where Re =
UL

ν
(U = L = 1). The particle size should be made small as the

Reynolds number of the flow increases. Figure 8.31 shows the behavior of
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the maximum residual slip when the vortex sheet diffusion to the initial parti-
cle layer is iterated with the change of the particle strength. The vortex sheet
is firstly evaluated from the potential flow of the impulsive start. As shown
in the figure, the residual slip increases with the parameters ε = 0.008633,
∆t = 0.005 when the Reynolds number is Re = 200. This choice of paramters
resulted eventually in unstable solution, as 0.008633 >

√
2× 0.005× 0.005 =

0.007071. The computations of flow past a rectangular wing are performed with
the appropriate selection of the parameters. However, the condition does not
necessarily need to be satisfied for the simulation of flow past a sphere.

Figure 8.31 Behavior of the maximum residual slip velocity during the iteration. Here σ = ε.

8.4.5.1 Stability criterion

To gauge the quality of a numerical simulation, one has to consider the mesh
Reynolds number. In vortex methods, it is natural to use the mesh Reynolds
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number based on vorticity:

Reh =
|ω|h2

ν

A well-resolved simulation is one such that

Reh = O(1). (8.82)

as this ensures that the relevant viscous scales presented in the flow are resolved.
To accurately resolve the diffusion phenomena, it is required to have

ν ∆t

h2
= O(1). (8.83)

Multiplying (8.82) by (8.83), one finds that (Ploumhans & Winckelmans 2000)

|ω| ∆t = O (1)

Also, in the PSE the algorithm is stable under the condition (Cottet &
Koumoutsakos 2000)

ν ∆t

ε2
<

1

λ

It was done by an analysis of the stabiblity of the PSE by Ploumhans and Winck-
elmans (2000). For the Gaussian smoothing function, one finds 1/λ = 0.595

for the Euler explicit scheme.

8.4.6 Outline of the VIC scheme

With each building block of the VIC scheme described in the previous sections,
one time step of the algorithm can be outlined as follows.

1. Create the grid used to solve the Poisson equation. It is chosen so that it
tightly includes the vortex particles, and has regular Cartesian shape im-
mersed in the body. The maximum and minimum particle position are first
located and the VIC grid boundary is set up at several grid size apart from
the extreme particle positions to ensure that the grid is not changed too
often.
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2. Interpolate the strengths of the particles onto the grid, to obtain the vortic-
ity field ω = α/V on the grid. The M ′

4 high order interpolation scheme
was introduced for this purpose. The vorticity field is extended into the
body, inside which the vorticity value is assigned by zero. The vorticity
values replaced by zero are saved at another array for the PSE to be per-
formed with including them.

3. Obtain the Dirichlet boundary condition for ψ on the sides of the VIC grid,
using the fast algorithm by Kim (2003).

4. Solve the Poisson equation∇2ψ = −ω on the VIC grid using an FFT Pois-
son solver. The solver uses the grid with ψ provided on the boundaries and
with ω known inside. From the manipulation of the Fourier coefficients ψ̂
and ω̂, the ψ field on the grid is constructed.

5. Evaluate the rotational velocity field, uω, from ψ, using finite differences
(the fourth order scheme used here). Evaluate the potential field with the
resulting residual normal component of the rotational velocity plus free
stream plugged into the boundary condition for the integral equation(no
through flow condition). Superimpose the potential velocity field on the
rotational field. Finally, the grid values are interpolated on to the particle
locations.

6. Evaluate the stretching term, ∇ · (q ω), using finite differences on the
grid. The conservative form leads to better results than the other form like
(∇q) ·ω. The stretching on the mesh is also sent back to particle positions.

7. Update the vortex strengths due to the stretching and diffusion. The parti-
cle strength exchange for diffusion includes the strengths interpolated into
the grid inside the body.

αn+1
i − αni

∆t
= h3∇ · (ω q) +

dαi
dt

∣∣∣∣
PSE

8. Convect the particle with the interpolated velocity information on it. The
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time integration of the ordinary differential equation

Dxi
Dt

= U∞ +∇× ψ +∇φ

is treated differently according to whether the particles are redistributed
on regular location or not. In the case particle redistribution has been done
prior to the time step, the second order Runge-Kutta scheme is used to
convect particles.

x∗,n+1
i = xni + ∆t q

i
(xn, αn)

xn+1
i = xni +

1

2
∆t
(
q
i
(xn, αn) + q

i
(x∗,n+1, α∗,n+1)

)
After the first explicit Euler step, the velocity field is evaluated once more
with the induced residual slip and wall diffusion due to the location change.
In the case particle redistribution has not been done prior to the time step,
as we have the velocity of a particle from the previous time step, the second
order Adams-Bashforth scheme is used for update of particle positions.

xn+1
i = xni + ∆t

(
3

2
q
i
(xn, αn)− 1

2
q
i
(xn−1, αn−1)

)

9. After the convection substep, a slip velocity comes to be present at the
body boundary. The slip velocity q

s
is translated into vortex sheet by ∆γ =

n × q
s
, and the vortex sheet is diffused by the wall diffusion formula to

cancel the slip velocity. This algorithm is an immersed boundary method.
Its schematic diagram is shown in Figure 8.32 . The normal component of
the residual slip makes up the source strength in the integral equation for
the potential field correction.
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Figure 8.32 Diffusion of vorticity on a regular Cartesian grid in VIC methods. Vorticity
correction is performed in the iterative way for satisfying the boundary condition at the surface.
From Cottet & Poncet (2003).

8.4.7 Pressure calculation by panel method with a linearly varying singu-
larity

The method of solving the pressure equation (6.26) with the boundary con-
dition (6.35), when the integral equation (6.41) is formulated, is very similar
to the procedure of finding potential field for the no through flow correction.
The surface integral term can be discretized in the exactly same manner as the
distribution of the potential on the triangular panel. The volume integral term,
which is similar in form to Biot-Savart integral, must be manipulated with the
Lagrangian particle representations.

∂H

∂n
= − 1

Re
n · (∇× ω) = − 1

Re
(t · ∇ω) = − 1

Re

∂ω

∂t
(8.84)

where t is the unit tangential vector along the axis of symmetry on the body
surface in axisymmetric flow. The source term can be evaluated in a general
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case by using the Stokes’s theorem,∫
S

n · (∇× ω) dS =

∫
C

ω · dl (8.85)

The value of n · (∇× ω) for the node point i, is obtained by the approximation
of the line integral,

n · (∇× ω)i ≈
1

S

∑
j

ωj · dlj (8.86)

where lj is the line connecting the center of the panels, which has node i as one
of their vertices. ωj is the mean value of the vorticities at the ends of a line, and
S is the area of the polygon made up by the lines. Figure 8.33 illustrates the
polygon for the evaluation of the source term. The surface value of the vorticity
is obtained by just switching a surface point into the particle representation of
the vorticity field. The value of vorticity at the center of each panel is computed
from applying the inverse distance weight to the vorticity at the vertices of the
panel.

Figure 8.33 Schematic arrangement for boundary condition of the pressure head H .

By using the vector relation∇· (u×ω) G = ∇· ((u×ω)G)− (u×ω) ·∇G,
the integrand of the volume integral can be modified as∫

V

∇ · (u× ω)GdV =

∮
S

n · (u× ω)GdS −
∫
V

(u× ω) · ∇GdV (8.87)
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The first integral in the right-hand side vanishes because the velocity on the
body boundary is zero and the vorticity becomes zero at far field. Substituting
the particle representation of the vorticity field for ω in the above equation, we
can get the discretized volume integral as follows.∫

V

∇ · (u× ω)GdV = −
∫
V

(u× ω) · ∇GdV

= −
N∑
k=1

uk × αk · ∇G
∫
Vk

ζk dV

= −
N∑
k=1

(uk × αk) ·
x− xk
|x− xk|3

q

(
x− xk
εk

) (8.88)

where

q(ρ) =

{
erf

(
ρ√
2

)
− ρ

√
2

π
exp

(
−ρ

2

2

)}
(8.89)

The use of cutoff function can avoid the singularity in the gradient of the Green
function. The final form of the discretization reduces to the similar one in (8.78)
with the volume integral having on the right hand side.

8.5 Numerical Results by VIC Methods

In this section, the present VIC method is applied to the flow simulation around
several 2-D and 3-D bodies. The flow field around impulsively started two di-
mensional bodies are firstly simulated, for a circular cylinder and a NACA0012
hydrofoil section. For 3-D, the flow around a sphere is simulated as a typical ex-
ample of wake flow behind a bluff body. The VIC algorithm then is also applied
to the rectangular wing of finite span.
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8.5.1 Two dimensional flows

In the case of two dimensional flow the vorticity is a scalar variable and the
governing equation for it does not carry the stretching term,

Dω

Dt
= ν∇2ω (8.90)

The diffusion is the only process to change strengthes of particles. Moreover,
the vector potential becomes scalar field known as stream function. The Poisson
equations for the vector potential and the vorticity reduce to one component,

∇2ψ = −ω (8.91)

The velocity components (u, v) are given by,

u =
∂ψ

∂y
, −v =

∂ψ

∂x
(8.92)

The stream function can be obtained on the boundaries using two dimensional
Green’s function

ψ = − 1

2π

∫
ω ln r dS (8.93)

8.5.1.1 Impulsively started circular cylinder

In this section the result of computation is provided for the flow over a circular
cylinder impulsively set into motion with a constant speed U∞ in the direction
negative x coordinate. For this problem, a large number of experimental and
numerical results has been available in the literature. The Reynolds number is
defined as Re = DU∞/ν, where D is the diameter of the cylinder and ν is
the kinematic viscosity. The computational results are presented for a Reynolds
number 550.

The computational parameters are given in the Table 8.3. The cylinder sur-
face is discretized by 600 line panels with even length. The particle size is bal-
anced with the panel size and, at the same time, is chosen to meet the stability
restriction.
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Table 8.3 Parameters used in the numerical simulation of the flow around an impulsively
started circular cylinder.

Reynolds number 550

Number of panels 600

Blob size, σ 0.00521

Time step, ∆t 0.01

Cutoff parameter, εΓ 0.001

Figure 8.34 shows a comparison between the analytical expression of im-
pulse Ix for short times by Bar-Lev and Yang (1975) and Ix computed by the
present scheme. The comparison includes the result computed by Ploumhans
and Winckelmans (2000). The present scheme gives slightly different values
for the very earlier time (t < 0.10).

The time history of the drag coefficent is compared in Figure 8.35 for short
times and 8.36 for longer times. For the early developed flows, the present
scheme predicts the drag coefficients close to the analytical results. The com-
parison for longer times with Ploumhans and Winckelmans (2000) in Figure
8.36 does not show distinguishable results, while the impulse shows slightly
different longer time behavior as presented in Figure 8.34 . This means that the
absolute values of the impulses are slightly different between the two method,
but the changes of the impulse are revealed to have similar time rates. The dif-
ference seems to be caused by the parameters chosen by each scheme.

The profiles of streamwise centerline velocity in the wake is shown in Fig-
ure 8.37 with the experimental results by Bouard & Coutanceau (1980). Their
results are provided with the time nondimensinalized by the radius of cylinder,
whereas the present scheme uses the diameter as the characteristic length. The
time in the figure represents nondimensional time by the diameter of the cylin-
der. There is good qualitative agreement, but the length of the wake(distance to
the point the velocity profile crosses the x axis) is computed somewhat shorter
than the experiment. Due to the use of compact grid for velocity computation,
the profiles of the present scheme are not presented beyond the extent of the
grid.
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(a) Short time

(b) Long time

Figure 8.34 Comparison of Ix for an impulsively started circular cylinder at Re = 550.
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Figure 8.35 Drag coefficient of an impulsively started circular cylinder at early stage of times
for Re = 550.

Figure 8.36 Drag coefficient of an impulsively started circular cylinder for Re = 550.
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Figure 8.37 Velocity distribution along wake centerline for an impulsively started circular
cylinder for Re = 550.

Computed streamlines are shown in Figure 8.38 . Note that the cylinder
moves to the left. A large recirculating flow region of closed streamlines is
clearly captured behind the cylinder. The streamwise length of this recirculat-
ing region grows in time. The region is also called as the separation bubble.

The streamline at t = 3.0 is compared with the results obtained in the exper-
iment of Bouard and Coutanceau (1980) in Figure 8.39 . The computed stream-
line in the large recirculating flow region are in good visual agreement with
those of the experiment. Along with the large recirculating regions, smaller sec-
ondary recirculation zones between rear half of the cylinder and the separation
bubbles are observed in the computation, as well as in the experiment.
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(a) t = 1.0

(b) t = 2.0

(c) t = 3.0

(d) t = 4.0

Figure 8.38 Instantaneous streamlines around impulsively started circular cylinder at Re =
550.
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(a) Streamlines from experiment, Bouard & Coutanceau

(b) Streamlines from the present method

Figure 8.39 Comparison of streamlines for an impulsively started circular cylinder for Re =
550.
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8.5.1.2 Impulsively started NACA0012 hydrofoil

As a second representative for simulation in two dimension, an impulsively
started NACA0012 section hydrofoil is selected in order to examine suitability
of the method for the analysis of thin streamlined body with sharp edge. The
Reynolds number is 1200, based on the chord length of the section. The pa-
rameters used in the simulation are listed in Table 8.4. The computations are
performed at two angles of attack, α = 0◦ and 30◦.

Table 8.4 Parameters used in the numerical simulation of the flow around an impulsively
started NACA 0012 hydrofoil.

Reynolds number 1200

Number of panels 800

Blob size, σ 0.00249

Time step, ∆t 0.005

Cutoff parameter, εΓ 0.001

Figure 8.40 compares impulse Ix with the result of Lee (2005) for zero
angle of attack. In his vortex method, a fast algrithm is used for the convection
velocity and image particles are located underneath body panels to correct PSE
diffusion. As shown in the figure, the impulses are in good agreement for long
times as well as for short times.

The method is applied next to the flow at angle of attack α = 30◦. After
the impulsive start, the starting vortex is formed from the trailing edge and shed
into the wake as shown in Figure 8.41 . At the same time, the flow is separated
from the leading edge and a vortex is generated. The leading edge vortex rolls
downstream along the suction side and convects slowly near the surface. Two
secondary vortices can be seen to have been formed upstream of the separated
vortex. The computed streamlines are compared with the experimental results
by Huang et al. (2001). Figures 8.42 and 8.43 show the observation results
using the particle tracking flow visualization along with the streamlines from
the present scheme. The large separation vortex from leading edge and the two
secondary vortices are clearly seen in the figures.
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(a) Short time

(b) Long time

Figure 8.40 Comparison of Ix for an impulsively started NACA0012 hydrofoil at zero angle
of attack for Re = 1200.
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Figure 8.41 Vorticity contours for an impulsively started NACA0012 hydrofoil for α = 30◦

and Re = 1200. The time is at T = 0.5, 1.0, 2.0, 3.0 from top.
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(a) Streamlines from experiment, Huang et al (2001), t = 1.043

(b) Streamlines from the present method, t = 1.0

Figure 8.42 Comparison of streamlines at T = 1.0 with the experimental snapshot for an
impulsively started NACA 0012 hydrofoil at α = 30◦ for Re = 1200.
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(a) Streamlines from experiment, Huang et al (2001), t = 2.348

(b) Streamlines from the present method, t = 2.0

Figure 8.43 Comparison of streamlines at T = 2.0 with the experimental snapshot for an
impulsively started NACA 0012 hydrofoil at α = 30◦ for Re = 1200.
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8.5.2 Three dimensional flows

8.5.2.1 Sphere

The flow past a sphere is considered as an example for three dimensional bluff
body flow analysis. It has been investigated numerically and experimentally
at Reynolds number Re = U∞D/ν between about 0.5 and several thousand
by many authors. From the experimental work of Taneda (1956), it is found
that a recirculating zone develops close to the rear stagnation point at about
Re = 30. This recirculating zone or wake expands toward streamwise direction
as well as along the surface of the sphere with further increase in the Reynolds
number. The flow remains steady and axisymmetric up to Re = 210 ∼ 212.
Defining locations on the surface by the angle from the front stagnation point,
the separation point moves forward from about 130◦ at Re = 100 to about 115◦

at Re = 300.

In this work, the flows at Re = 50, 100 are simulated and compared with
the numerical solution of Johnson & Patel (1999). The sphere of radius 0.5 is
discretized into triangular panels, and the number of panels is 10,008. Figure
8.44 shows the discretization of the sphere.

Figure 8.44 Surface panel discretization of a sphere.

The number of vertices is about half of the panels. The grid size h is selected
to be square root of mean area of the panels h =

√
Amean, where Amean =
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∑
Ai/N . The time step for the simulation is ∆t = 0.02, 0.015 for the Reynolds

number of 50, 100, respectively. The value of εα = 10−4 and Reh,trsh = 10−4

are used.

The drag coefficients from the derivative of the linear impulse are plotted
in Figure 8.45 along with the classical curve of Cd = Cd(Re) for the flow
past a sphere. The drag coefficient Cd is calculated at the final stage of the
computation when the change of the linear impulse is thought to come into a
steady phase and shows good agreement with the curve. The drag coefficients
are made further comparison with the computation by Johnson & Patel (1999)
in Figure 8.46 , and also show good agreement with their results.

Figure 8.45 Comparison of drag coefficient of a sphere with experiments.

The streamline patterns, vorticity contours and pressure fields at several early
moments for Re = 100 are provided in Figures 8.47 , 8.48 , and 8.49 , respec-
tively.

The streamlines, vorticity contours and contours of pressure coefficients are
also compared with the numerical results of Johnson & Patel (1999), in Figures
8.50 ∼ 8.53 . The length of the separation bubble in the flow direction(left to
right) seems to be in good agreement.



8.5 Numerical Results by VIC Methods 389

Figure 8.46 Comparison of drag coefficient of a sphere with the numerical one by Johnson
& Patel (1999).

Figure 8.51 compares the length and position of the vortex center, and shows
good agreement with the results of Johnson & Patel. The downstream exten-
sions of vorticity contour of± 0.5 from the present method show slightly shorter
than the results by Johnson & Patel. Figure 8.54 compares the streamline of the
present scheme with the visualization by Taneda (1956). As the Reynolds num-
ber of the expmeriment is 118, which is larger than the present computation, the
recirculating zone expands more downstream. But, the general appearance of
the flow including separation point looks very similar to the computed result.
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Figure 8.47 Streamlines about an impulsively started sphere for Re = 100. The time is at
T = 1.0, 2.0, 3.0 from top.
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Figure 8.48 Vorticity contours for an impulsively started sphere for Re = 100. The time is
at T = 1.0, 2.0, 3.0 from top.
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Figure 8.49 Pressure coefficient contours for an impulsively started sphere for Re = 100.
The time is at T = 1.0, 2.0, 3.0 from top.
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(a) Streamlines from the present method (t = 7.5)

(b) Streamlines computed by Johnson & Patel (1999)

Figure 8.50 Comparison of streamlines about a sphere for Re = 100 with the numerical ones
by Johnson & Patel (1999).
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(a) Separation length, xs

Reynolds Number, Re
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(b) Vortex position, (xc, yc)

Figure 8.51 Comparison of wake pattern for a sphere with the numerical one by Johnson &
Patel (1999). xs denotes the distance from the sphere of the end point of the wake. xc and yc
are the center position of the vortical shedding wake.
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(a) Cp from the present method (t = 7.5)

(b) Cp computed by Johnson & Patel (1999)

Figure 8.52 Comparison of pressure contours for a sphere for Re = 100 with the numerical
one by Johnson & Patel (1999).
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(a) Contours from the present method (t = 7.5)

(b) Contours computed by Johnson & Patel (1999)

Figure 8.53 Comparison of vorticity contours for a sphere for Re = 100 with the numerical
one by Johnson & Patel (1999).
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(a) Streamlines from the present method

(b) Visualization from experiment (Re = 118), Taneda

Figure 8.54 Comparison of streamlines for a sphere for Re = 100 with the experimental
ones by Taneda (1956).

Figures 8.55 ∼ 8.57 show the streamlines, vorticity contours, and con-
tours of the pressure coefficient at Re = 50 and 100. For the two Reynolds
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numbers the general characteristic feature of the flow remains the same with
the changes only in separation location, the center of recirculating flow, and
the length of wake. The separation point moves upstream with the increase of
Reynolds number. At Reynolds number of 100, the opposite sign of vorticity
exists between the surface of the sphere and the separation vortex.

(a) Re = 50

(b) Re = 100

Figure 8.55 Comparison of streamlines between two Reynolds numbers.



8.5 Numerical Results by VIC Methods 399

(a) Re = 50

(b) Re = 100

Figure 8.56 Comparison of pressure coefficient contours between two Reynolds numbers.
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(a) Re = 50

(b) Re = 100

Figure 8.57 Comparison of vorticity contours between two Reynolds numbers.

8.5.2.2 Rectangular wing

The present method is finally demonstrated on the flow past a three dimensional
wing of rectangular planform. The NACA0012 section profile is employed for
the illustration of the method. Figure 8.58 shows discretization of the rectangu-
lar wing. The ratio of span to chord is 1:1 for the figure. The panels on the side
surfaces are constructed in the fully unstructured manner, where as the upper
and lower surfaces of the wing have regular shape of triangles. The surfaces
are firstly discretized into square rectangles, then the respective rectangles are
divided into two triangles.
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The simulation is performed for the rectangular wing with aspect ratio of
2 at angle of attack α = 7◦. The Reynolds number is 100 based on the wing
chord length. The time step for the simulation is ∆t = 0.012. The streamtraces
around the tip and the pressure coefficient in the center plane of the wing are
compared with the FLUENT results in Figure 8.59 . A stream trace starting be-
low of the pressure side turns around the wing side, and forms into swirling flow
downstream of the wing. It is clearly seen that the four stream traces are turn-
ing around each other by the tip vortex formation. It is seen from the pressure
field in the center plane that the stagnation point is constituted near the leading
edge of the wing. The pressure drop on the suction side is also illustrated in the
figure.

Figure 8.60 shows the streamwise component of the vorticity, ωx at several
sreamwise planes, x = 0.67, 0.8, 1.0. The trailng edge is positioned at x = 0.5

when the angle of attack is zero. Figure 8.61 shows the tip vortex core position
at the same streamwise planes plotted in Figure 8.60 . The coordinates of the
core are extracted from the figure in such a manner that ωx has a maximum
value in each plane. The tip vortex core moves downward vertically and inside
horizontally.

8.5.3 Features of vortex-in-cell method

An algorithm of VIC and panel method combination is developed and applied
to the simulation of the viscous flow around impulsively started 2-D and 3-D
objects. The main features of the present method are summarized as follows:

• The convection velocity of the vortex particles is efficiently computed on
a regular Cartesian grid using an FFT based Poisson solver. The boundary
of the grid compactly encloses the particles so as to reduce the domain size
of the computation.

• The boundary conditions are enforced on the surface of the body for the
tangential and normal components of the velocity. The tangential compo-
nent of the slip is cancelled by the diffusion of vortex sheet, and the normal
component is suppressed by the singularity which is linearly distributed
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(a) Wing side discretization

(b) Wing upper and lower surface discretization

Figure 8.58 Surface panel discretization of a rectangular wing. Number of the panels is
11,416.
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(a) Streamtraces and pressure coefficient, the present method

(b) Streamtraces and pressure coefficient, FLUENT

Figure 8.59 Comparison of streamtraces and pressure coefficient for a rectangular wing for
Re = 100 with the results obtained by FLUENT.
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Figure 8.60 Streamwise vorticity contours at downstream locations x = 0.67, 0.8, and 1.0 at
t = 1.92.

over a panel on the body. The use of panel method makes it possible for
the application points of the two components of the boundary conditions
to coincide on the center of the panel.

• The particle strength exchange (PSE) is modified to include the particles
positioned inside of the body in the spirit of the immersed boundary nature
of the method. The spurious slip resulting from the symmetric treatment
near the body is corrected in the wall diffusion step for the no slip condi-
tion.

• The calculation of the pressure field is designed to use the solution method
of integral equation approach, which is the same as the singularity dis-
tribution method for the no through flow condition. The matrix elements
constructed and inverted once in the early stage of the method can be used
throughout the method.

• The applicability of the present scheme is illustrated on the flow past 2-D
and 3-D bodies in impulsive start. The method is in good agreement with
other vortex method computation or the experimental work.
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(a) Spanwise location of the center

(b) Vertical location of the center

Figure 8.61 Location of the tip vortex center along downstream.
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The proposed method is regarded as one possible solution of overcoming
the leakage problem across a body boundary in the Cottet & Poncet (2003)’s
method by the combination of vortex in cell method with a panel method. The
panel method is formulated on the discretized surface panel in orde not to gen-
erate through flow component. This approach has an advantage in the computa-
tion of surface pressure as well as pressure field. The linear system of equations,
constituted in the course of making normal boundary condition to be satisfied,
can be applicable to the pressure calculation with the only change in the right
hand side of the system.

8.6 Concluding Remarks

This course presents a vorticity-based integro-differential formulation for the
numerical solution of unsteady incompressible flows. The integral approach
that is a fundamental part of the present formulation is directly applicable for
solving the integral equation for the pressure field as well. The present scheme
includes a pressure calculation which is a distinctive feature, not previously
treated in most vorticity-based methods. These aspects have been adapted for
the vorticity-velocity-pressure formulation by an Eulerian description.

For the kinematics of flow and the physical interpretation of the velocity field
(q = uw + ∇φ + U∞), a Lagrangian vortex method connected with the panel
method has been presented. An iterative process was used in order to enforce
the no-slip condition through the vorticity flux at the body boundary. For a thin
body, we suggest the use of an image particle layer for the zero-vorticity flux
condition on the solid boundary.

By applying the present scheme for the impulsively-started cylinder and the
impulsively-started NACA0021 foil with angles of attack, we performed com-
parisons with existing results, and with the results of an Eulerian FVM.

Although the present work has mainly focused on comparative studies, future
work would address (i) the treatment of turbulence models, (ii) the extension of
the vortex method to three-dimensional flow problems, and (iii) the develop-
ment of efficient numerical schemes associated with the solution procedure.
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8.6.1 LES in vortex methods

The direct numerical simulation of turbulent flows is possible for low Reynolds
number. Number of elements required for large Reynolds number of practical
application is very large so that the actual simulation is restricted. With the
current computer resource, the large eddy simulation is possible in which we
take modeling for the small-scale (subgrid-scale) turbulence in the viscous wake
and in the boundary layers.

The vortex method has been thought of as a natural approach to the sim-
ulation of turbulent flows. The use of vortex particles that convect with the
flow in a Lagrangian manner has been considered as a way of minimizing nu-
merical diffusion, which is an important matter in turbulent flow solution. The
discretization of the vorticity field using a smoothing function

ω(x, t) =
N∑
i=1

ζε(x− xi)αi (8.94)

can be considered to be some kind of filtering (normally, particle filtering) op-
eration in LES. The filtered voriticity transport equation

Dω

Dt
= ω · ∇u+ ν∇2ω −∇ · T (8.95)

differs from the laminar version in that vorticity stress term ∇ · T is added,
where Tij = (ωi uj − ωi uj) − (ui ωj − ui ωj) is the subfilter scale vorticity
stress.

If we take the vorticity version of the Smagorinsky model for that term,−∇·
T = ∇ · (νt∇ω), the turbulent diffusion can be treated in a similar way to the
particle strength exchange of the laminar diffusion. Cottet (1999) suggested a
simple selective model that the eddy diffusivity νt comes into action in region
of intense vortex activity, where the flow is strongly three dimensional.

νt =

{
C2
s ∆2 |ω|, for β0 < βm < π − β0

0, otherwise
(8.96)
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The region of nonzero eddy diffusivity is where the angle βm between the vor-
ticity at a given grid point and the average neighboring vorticity becomes an-
tialigned. The turbulent diffusion then becomes particle strength exchange with
average eddy diffusivity,

∇ · (νt∇ω) =
1

2 ε2

∑
j

(νti + νtj) (αj − αi) ηε(xi − xj) (8.97)

The extension of the VIC algorithm developed in this work to the turbulent flow
analysis is expected to be realized in future work.

Figure 8.62 Turbulent flow past a cylinder by VIC method. Cylindrical grid: 256×128×128
in a domain 4π × 2π × 2π filled with 25 % particles; CPU time: 8 min/RK4 iteration on alpha
single processor, 3 hours/shedding cycle. From Cottet & Poncet (2003).

8.6.2 Interaction between flow and bubble

The vorticity transport equation for two-dimensional incompressible flow of a
viscous fluid can be rewritten, without ignoring the external force, as

Dω

Dt
= ν∇2ω +∇× f (8.98)

where f is the external force caused by all the bubbles in fluid. The external
force is accounted for here the total force f

B
acting on the bubble; f = −f

B
.
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Equation of motion for a single bubble yields the following trajectory equa-
tion for a bubble of changing volume:

mB
duB
dt

= ρ VB
Du

Dt
− 1

2
ρ VB

(
duB
dt
− Du

Dt

)
+

1

2
ρ (u− uB)

dVB
dt

+
1

2
ρ π R2CD |u− uB| (u− uB) (8.99)

where the forces with the gravitational acceleration are neglected in this study;
the gravity and the buoyant force.

Recall that the force acting on the bubble is

f
B

= FU + FM + F V + FD (8.100)

where

FU = Unsteady force due to the acceleration of the undisturbed flow

FM = Convential added mass force

F V = Additional added mass force due to the volume variation

FD = Drag force

The hydrostatic forces, i.e. the bouyancy and graivity force, are accounted for
without directly producing any disturbace. Because the forces that are included
Du/Dt term are not produced by the bubble motion, they must be negligible.
Hence, Equation (8.99) is rewritten as

ρ VB
duB
dt

= ρ (u− uB)
dVB
dt

+ ρ π R2CD |u− uB| (u− uB) (8.101)

where ρB is neglected due to ρB � ρ. With the drag force FD and the additional
added mass force F V due to volume variation, (8.101) accounted for the force
acting on the fluid element which occupies the same volume and velocity of the
bubble. These external forces can be considered as the disturbance exerted by
the motion of the bubble.

Suppose now that the disturbance is separated into two parts, the disturbance
induced by the translational motion of the bubble and the distubance induced
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Figure 8.63 Schematic diagram of interaction between the motion of a single bubble and the
ambient viscous flow.

by the volumetric motion as shown in Figure 8.63 .

f = F V + FD (8.102)

8.6.2.1 Disturbance by volumetric motion

The disturbance which is induced by the pure volumetric motion of the bubble,
can be considered as mass source/sink in flow according to Eq. (8.101). Ac-
cording to Lagally Theorem, that is, the force on the bubble is proportional to
the source strength and to the magnitude of the velocity (u− uB) induced at
the location of the source by all mechanisms other than the source itself. The
direction of the force coincides with that of the relative velocity vector. Thus,
the force which is the volumetric motion of the bubble is defined as

F V = ρ (u− uB)
dVB
dt

= ρQ (u− uB) (8.103)

The strength of the mass source/sink becomes

Q =
dVB
dt

= 4πR2Ṙ (8.104)

Recall that the velocity potential φ is used to enforce the no-through-flow
boundary condition,

u′ = U∞ + uω + ∇φ (8.105)
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and that the velocity potential for the pure radial motion of the bubble is defined
by

φB = − 1

4 π

Q
r

= − R2Ṙ

r
(8.106)

Hence, with the velocity induced by the radial motion of the bubble, the flow
velocity is rewritten as

u′′ = U∞ + uω + ∇φ + ∇φB (8.107)

where

∇φB =
R2Ṙ

r2
er (8.108)

The symbol er denotes the unit vector in the outward radial direction from the
bubble.

Owing to the no-through-flow boundary condition, the normal component of
the velocity on the body surface becomes zero as

n · u′′ = n · (U∞ + uω + ∇φ + ∇φB) = 0 (8.109)

Then, substituting Eqn. (8.109) into Eqn. (4.2), it is found that

1

2
φ−

∮
C

φ (n · ∇G) d` = −
∮
C

(n · (U∞ + uω +∇φB)) Gd` (8.110)

The velocity potential on the body surface is implicitly computed. The velocity
at the field is adjusted by the velocity potential obatained by the above equation.

8.6.2.2 Disturbance by translational motion

Previous to computing the disturbance induced by the pure translational motion
of the bubble, consider the definition of the hydrodynamic force F with the
hydrodynamic impluse I (Lamb 1932, Saffman 1992); thus,

F = − ρ ∆I

∆t
(8.111)
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In two-dimensional case, the components of the hydrodynamic impluse (Ix, Iy)
are defined as

Ix =
∑

yi Γi , Iy = −
∑

xi Γi (8.112)

and then the components of the force (Fx, Fy) are

Fx = −ρ ∆Ix
∆t

, Fy = −ρ ∆Iy
∆t

(8.113)

Figure 8.64 Local coordinates for the hydrodynamic impulse of the bubble

Also, the drag force FD acting on a sphere in creeping flow at very low
Reynolds numbers is defined as (Batchelor 1973)

FD = − ρ ∆Ix
∆t

= 12πµR (u− uB) (8.114)

or equivalently
∆Ix = − 12πνR (u− uB) ∆t (8.115)

From these definitions, it is considered that the vorticity generated by the
translational motion of the bubble, which is exerted by the only drag force (the
effect exerted by the lift force is neglected in this study). Then, it can be mod-
eled that a symmetrical pair of two-dimensional vorticity of finite size on the
bubble surface is generated monotonically during ∆t.

yup Γup + ydn Γdn = − 12π ν R (u− uB) ∆t (8.116)
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The vorticity strength is obtained as |Γ| = 6πν |u− uB|∆t at |y| = R. The
magnitude of the induced vorticity is rewritten with with non-dimensional value
as

|Γ∗| = 6π

Re
|u∗ − u∗B| ∆t∗ (8.117)

with Reynolds number Re = U∞L/ν for the flow. The vorticity induced by
the bubble (Figure 8.65 ) is computed by differentiating directly over the La-
grangian control points, without requiring the interpolation onto the grid. In

Figure 8.65 Schematic of the vorticity generation

fact, the actual vortices shedding behind a sphere would be of ring type. There-
fore an axisymmetric ring vortex model equivalent to the drag forces is more
realistic than the present model taken herein. Such a three dimensional numeric
modelling is beyond of the present workscope, even through there still exists in-
consistency on the bubble interactions, in the respect of overall two dimensional
analysis.
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(a) Cavitation number Ca = 1.0

(b) Cavitation number Ca = 0.1

Figure 8.66 Bubble behavior for two different cavitation numbers. Initial bubble radius
Ro = 1, 000µm
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A.1 Implementation of Kutta Condition in Two-Dimensions

The physical features behind the Kutta condition, although the interpretation
is not complete, are complex as explained before. The object of the numeri-
cal implementation of the Kutta condition here is to determine the jump in the
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disturbance potential (4φv) at the T. E. for which acceptable results may be
obtained.

Following the feature of the ‘Maskell’ trailing-edge flow for the velocity at
the T. E., we can define the tangential velocities (i.e., shed vorticity) on both the
upper and lower surfaces at the T. E. by imposing a stagnation point at either
the upper or the lower trailing-edge point. Then the difference of the velocity
there is assigned to the shed vorticity.

Accordingly we can evaluate the jump in disturbance potential at the T. E.
(4φv|TE) such that a surface potential distribution near the T. E. satisfies the be-
havior of the tangential velocities corresponding to the local flow characteristics
near the T. E.

In practice, the Kutta condition is implemented first by attaching the wake to
the T. E. (or by specifying a point where the vorticity leaves the body surface)
and evaluating 4φv|TE from the values of the disturbance potential of the panels
(φj).

Let us approximate the disturbance potential distributions (φ) on the upper
and the lower surfaces near the T. E. as a parabolic form of the parameter s:

φu (s) = au s
2 + bu s+ cu , (A.1)

φ` (s) = a` s
2 + b` s+ c` , (A.2)

where the parameter s is arc-length along the body surface contour from the
T. E. with positive taken as counterclockwise (see Figure 4.5 ) and the subscripts
u and ` refer to the upper and the lower surface, respectively. The coefficients
bu, b`, cu and c` are to be determined by imposing the Kutta condition, but
the coefficients au and a` (which have been kept in the following derivation) are
ignored in the final expression (A.10) for 4φv|TE by assuming their contribution
to be higher order.

Similar procedure has been presented by Ingham et al. (1981) 1 for the prob-
lems with two regions of different physical features, in which the two analytical

1Ingham, D. B., Heggs, P. J. and Manzoor, M. (1981), “The Numerical Solution of Plane Potential Problems
by Improved Boundary Integral Equation Methods,” Journal of Computational Physics, vol. 42, pp. 77–98.
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solution forms of the Laplace equation for the two regions in the neighborhood
of the discontinuity are introduced and then the appropriate physical matching
conditions at the common interface are enforced to determine the coefficients
associated with those forms. Another simple application of this procedure has
been introduced by Batchelor (1967) to flow problem near a stagnation point. 2

Then taking the gradient of (A.1) and (A.2) and then including the undis-
turbed velocity q∞(≡ q

o
− q

F
) give the total tangential components (positive

as counterclockwise) on the upper and the lower surface near the T. E. can be
expressed as, respectively,

qtu(s) = (q∞ +∇φu) · tu = q∞ · tu + 2au s+ bu , (A.3)

qt`(s) = (q∞ +∇φ`) · t` = q∞ · t` + 2a` s+ b` . (A.4)

Then the potential jump at the T. E. from (A.1) and (A.2) can be written as

4φv|TE = φu (0)− φ` (0) = cu − c` . (A.5)

This potential jump is expressed in terms of quantities in the panel-method ap-
proximation as:

4φv|TE = cu − c` = (φ1 − au s2
1 − bu s1)− (φN − a` s2

N
− b` sN), (A.6)

where φ1 and φN are the (unknown) disturbance potential, respectively, on the
two adjacent panels to the T. E. (i.e., the 1st panel from the T. E. on the upper
surface and the N -th panel on the lower surface) (see Figure 4.5 ). But we
specify the coefficients au , bu , a` and b` by applying the Kutta condition at the
T. E.

A.1.1 Steady flow cases

As a special case, first let us consider steady flow for which a stagnation point
(for non-cusped foils) should be located at the T. E. Then it means qtu(0) = 0

2See Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge,
p. 105.
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and qt`(0) = 0. Applying these constraints to (A.3) and (A.4) gives

bu = −q∞ · tu
∣∣∣
TE

and b` = −q∞ · t`
∣∣∣
TE

. (A.7)

With these coefficients, (A.6) reduces to

4φv|TE = cu − c`
= φ1 − au s2

1 + q∞ · tu
∣∣∣
TE

s1 − φN + a` s
2
N
− q∞ · t`

∣∣∣
TE

sN

= φ1 − φN + a` s
2
N
− au s2

1 − q∞ · (tN sN) + q∞ · (t1 s1)

= φ1 − φN + q∞ · 4r , (A.8)

where the term (a`s2
N
−aus2

1) has been neglected, being of higher order compared
with other terms and 4r(= r1 − rN) represents difference of position vectors
of the control points of the two adjacent panels (Figure 4.5 ).

Equation (A.8) is the same as the Kutta condition for steady two-dimensional
lifting flow suggested first by Lee (1987). 3 He pointed out that the ‘implicit’
Kutta condition imposed just as 4φv|TE = φ1 − φN , 4 may lead to inaccurate
results for extreme cases such as for a circular cylinder at 90o angle of attack (for
which the lift calculated by using this ‘implicit’ Kutta condition is incorrectly
about half of the analytical one).

A.1.2 Unsteady flow cases

Next, we can follow a similar procedure for unsteady flow. First the tangential
speed at the T. E. either on the upper or the lower surface, depending on the sign
of dΓB/dt as mentioned previously, should be specified in order to determine
the unknown coefficients bu and b` in (A.6). According to the behavior of the
‘Maskell’ trailing edge flow, the tangential speeds at the T. E. on both the upper
and the lower surfaces are expressed in terms of a vortex strength at the T. E.

3Lee, J. T. (1987), A Potential Based Panel Method for the Analysis of Marine Propellers in Steady Flow,
Department of Ocean Engineering, MIT, Report no. 87-13.

4For example, see Maskew, B. (1982), “Prediction of Subsonic Aerodynamic Characteristics: a Case for Low-
Order Panel Methods,” Jounal of Aircraft, vol. 19, no. 2, pp. 157–163.
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(γTE) as: 
qt` = γTE , qtu = 0, if dΓB/dt < 0

qt` = 0, qtu = γTE , if dΓB/dt > 0

qt` = 0, qtu = 0, if dΓB/dt = 0

(A.9)

Substituting these relations into (A.3) and (A.4) in order find bu and b`, then
neglecting the term (a` s2

N
− au s2

1) as the steady flow cases and recalling q∞ ≡
q
o
− q

F
, we obtain the following expression for 4φv|TE :

4φv|TE =


φ1 − φN + (q

o
− q

F
)TE · 4r + γTE sN , if dΓB/dt < 0

φ1 − φN + (q
o
− q

F
)TE · 4r − γTE s1, if dΓB/dt > 0

φ1 − φN + (q
o
− q

F
)TE · 4r , if dΓB/dt = 0

(A.10)

In a numerical code, from two circulation values at successive time steps an
approximation for γTE may be used:

γTE =
Γ

(k−1)
B − Γ

(k)
B

4v1
(A.11)

Here4v1 (that is given as an input parameter in a numerical code) is the length
of the straight-line element of the wake sheet leaving the T. E. Consequently an
iteration procedure is required to obtain unknown Γ

(k)
B at the present instant of

time, which is equal to the negative value of 4φv|TE.

A.2 Implementation of Kutta Condition in 3-D Steady Flows

The Kutta condition has been applied originally in the steady two-dimensional
flow case for uniqueness of solution mathematically and for regular flow in the
vicinity of the trailing edge (T. E.) physically. It eventually implies that the rear
stagnation point is at the T. E. for a non-cusped sharp-edged foil in order to sat-
isfy both the pressure-equality condition and the condition of finite velocity at
the T. E.. But if we applied this interpretation in steady three-dimensional flow,
the two conditions of pressure equality and finite velocity can not be satisfied
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exactly at the T. E., since there is inherently a velocity difference across the
sharp T. E.. and (iii) to satisfy the pressure equality condition at the T. E..

Let us approximate the disturbance potential distributions (φ) on the upper
and the lower surfaces near the T. E. as a linear form of the local coordinates
(geometrical parameters) ξ and η: 5

φu(ξu, η) = au ξu + bu η + cu , (A.12)

φ`(ξ`, η) = a` ξ` + b` η + c` , (A.13)

where the parameter η is arclength along the T. E. positive taken as spanwise
direction (see Fig. 2 in reference Mangler & Smoth (1970)) and the parameters
ξu and ξ` are arclength along the upper surface and the lower surface, respec-
tively, measured from the T. E. and normal to the T. E.. Here the subscripts u
and ` refer to the upper and the lower surface, respectively. Then the potential
jump at the T. E. from (A.12) and (3.8) can be written, including its spanwise
variation term,

4φ = φu (0, η)− φ` (0, η) = cu − c` + (bu − b`) η (A.14)

This potential jump is expressed in terms of unknown quantities in the panel-
method approximation as:

4φ = (φ1 − φN)− (auξu1 − a`ξ`N)− (buη1 − b`ηN) + (bu − b`)η (A.15)

where φ1 and φN are the (unknown) disturbance potential, respectively, at
the control points of the two adjacent panels to the T. E. (i.e., the 1st panel
from the T. E. on the upper surface and the N -th panel on the lower surface).
ξu1, ξ`N , η1, ηN are the local coordinates of the control points. Then taking the
gradient of (A.12) and (3.8) and then including the undisturbed velocity q

o
give

5Similar procedure has been presented by Ingham et al. (1981) for the problems with two regions of different
physical features, in which the two analytical solution forms of the Laplace equation for the two regions in the
neighborhood of the discontinuity are introduced and then the appropriate physical matching conditions at the
common interface are enforced to determine the coefficients associated with those forms. Also this procedure has
been applied to irrotational solenoidal flow near a stagnation point (Batchelor (1967)).
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the total tangential speeds on the upper and the lower surface near the T. E.:

q2
u = (q

o
· eξu + au)

2 + (q
o
· eη + bu)

2 (A.16)

q2
` = (q

o
· eξ` + a`)

2 + (q
o
· eη + b`)

2 (A.17)

where eξu, eξ` and eη are the unit vectors of the local coordinate system at the
trailing edge point.

According to the Mangler and Smith’s analysis, vanishing the tangential
speed at the T. E. either on the upper or the lower surface allows us to deter-
mine the unknown coefficients au and a` in (A.15):

au = −q
o
· eξu +

√
−D , a` = −q

o
· eξ`, if D < 0

au = −q
o
· eξu , a` = −q

o
· eξ` +

√
D, if D > 0

au = −q
o
· eξu , a` = −q

o
· eξ`, if D = 0

(A.18)

whereD = 2(q
o
·eη)(bu−b`)+(b2

u−b2
`). Here bu and b` are still unknown repre-

senting variation of the perturbation potential in η-direction on the upper surface
and the lower surface at the T. E. panels. Consequently this model requires an
iteration procedure to determine these coefficients by fitting the potential values
at the T. E. panels in that direction.

As a special case of two-dimensional steady flow, (for which a stagnation
point should be located at the T. E.) it holds qu = 0 and q` = 0. Applying these
constraints to (A.16) and (A.17) gives

au = −q
o
· eξu and a` = −q

o
· eξ` (A.19)

With these coefficients, (A.15) reduces to

4φ = φ1 − φN + q
o
· 4r (A.20)

where4r(= r1−rN) denotes difference of position vectors of the control points
of the two adjacent panels. Lee, J. T. (1987) suggested this equation as the Kutta
condition for steady two-dimensional lifting flows, by which he has shown sig-
nificant improvement on accuracy of numerical solutions compared to those
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obtained by the so-called Morino’s Kutta condition. Accordingly Eq. (A.15)
contains the Kutta condition Eq. (A.8) for two-dimensional flows.
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Using Stokes’ formulas, Cantaloube & Rehbach (1986) show that the surface
integrals of the singularity method can be transformed into contour integrals for
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planar facets. The numerical integration is then very precise at less calculation
cost.

This Appendix is especially prepared to show all the mathematical deriva-
tions and proofs of the equations in the original paper by Cantaloube & Re-
hbach. A subroutine program based on the analysis is also provided in the Ap-
pendix C for computations of the influence coefficients in applications of the
panel method.

B.1 Introduction

The fundamental problem of fluid mechanics for inviscid incompressible flow
is to determine velocity potential φ, whose governing equation becomes the
Laplace equation,

∇2φ = 0, (B.1)

satisfying certain proper conditions on the boundary S.

The singularity method is applied for solution of this problem. This basic
idea of the singularity method has been introduced by Hess & Smith (1966),
using the surface distribution of sources. With the Green’s scalar identity, the
potential φ within the domain V is expressed in terms of the proper value of φ
and its normal derivative n · ∇φ on the boundary S;

φ = − 1

4π

(∫
S

1

r
(n · ∇φ) dSξ −

∫
S

φn · ∇
(

1

r

)
dSξ

)
. (B.2)

Here r is a distance between an integration point ξ on S and a field point p
located in V . The first surface integral is interpreted as the potential by surface
distribution of source-type singularities with density σ ≡ n · ∇φ, the second
surface integral as the potential by surface distribution of doublet-type singular-
ities, µ ≡ −φ. 1

For a planar polygon element with the uniform or linear density distributions
of singularities, the closed-forms for obtaining the influence coefficients in the

1We follow herein the definition given in the original paper: µ ≡ −φ.
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panel method are derived.

The analytic evaluations of the associated integrals may improve a solution
accuracy in the panel method with much reduced computing time. A few of
test calculations show the superiority of these analytic evaluations to numerical
integrations.

B.1.1 Related work for closed-form expressions

The closed-form expressions of the surface integrals for constant source dis-
tributions over flat quadrilateral panels have been introduced by Hess &
Smith (1966). 2 They expressed the surface integrals as a superposition of
line integrals for each side of the panels, with independent treatment of the
contribution from the side.

Webster (1975) 3 has extended the Hess and Smith analysis to a triangu-
lar panel in order to eliminate the discontinuity problem for a flat quadrilateral
source panel by allowing a linear variation of the source strength across the
triangular panel. These two approaches are concerned with only the source dis-
tributions and the resultant expressions are considerably complicated to employ
a computer code.

A simpler and more unified derivation has been provided by Newman (1986)
4 for computing the potential due to a constant doublet or source distribution.
His analysis is based on the elementary plane geometry related to the solid angle
of a panel. He defined four infinite sectors (for a quadrilateral panel), bounded
by semi-infinite extensions of the two adjacent sides of the panel with respect
to the corresponding vertices, such that the difference between the domains of
the four sectors is the domain of the panel. Then the surface integral over each
infinite sector is evaluated in terms of the included angle of the corresponding
vertex projected onto the unit sphere with center at the field point. He has also

2Hess, J. L. and Smith A. M. O. (1966), “Calculation of Potential Flow about Arbitrary Bodies,” Progress in
Aeronautical Science Series, vol. 8, Pergamon Press, pp. 1–138.

3Webster, W. C. (1975), “The flow about arbitrary, three-dimensional smooth bodies,” J. Ship Res., vol 19,
no. 4, pp. 206–218.

4Newman, J. N. (1986), “Distributions of sources and normal dipoles over a quadrilateral panel,” J. Eng. Math.,
vol. 20, pp. 113–126.
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described the more general recursive scheme for computing the potential due to
a source or doublet distribution of linear, bilinear or higher order form, using
the base results for the case of the constant distribution.

Another elegant approach based on mathematical formulations has been pre-
sented by Cantaloube & Rehbach (1986), 5 by which they introduced more ex-
plicit expressions of the surface integrals for the source or doublet distribution.
With vector operations of the integrands for using Stokes’ formulas, they show
that the surface integrals for the constant or linear distributions of sources and
doublets over a planar facet can be transformed into line integrals along the
contour of the panel. The major advantages of their study are that the formu-
lations are valid for a planar curve-sided panel and that the resultant equations
are expressed in a global coordinate system while the aforementioned analysis
requires the transformation of the local coordinate system. Thus the expres-
sions derived by Cantaloube & Rehbach may be regarded as a more computer-
oriented form.

They have proposed the use of direct numerical integrations of the line inte-
grals by an integration quadrature (e.g. Simpson rule or Gaussian quadrature),
illustrating the numerical consistency and accuracy for a linear doublet distri-
bution on a quadrilateral panel. However when a field point is very close to the
sides or vertices of a panel, a large number of the quadrature base points and
considerable effort to choose these points suitably would be needed in order
to achieve good comparisons with the known values. Such numerical imple-
mentation in a computer code may lead to a large amount of extra-computer
time. Any attempt for finding closed form expressions of the line integrals for
a polygon panel does not appear in their study.

Suh (1992a) 6 obtained, as an extension of Cantaloube & Rehbach’s work
(with some corrections in sign), the closed-forms for computing the induced
potentials and velocities due to constant and/or linear distributions of the sin-
gularities. He expressed them as a sum of contribution from each side of the

5Cantaloube, B. and Rehbach, C. (1986), “Calcul des Integrales de la Methode des Singularites,” Recherche
Aerospatiale, no 1, pp. 15–22, English Title: “Calculation of the Integrals of the Singularity Method,” Aerospace
Research, no. 1, pp. 15–22.

6Suh, J. C. (1992a), “Analytical evaluation of the surface integral in the singularity methods,” Trans. Soc.
Naval Arch. Korea, vol. 29, no. 1, pp. 1–17.
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panel, in terms of appropriate basic integrals.

As an another extension but by a different approach the present section deals
with a bilinear distribution over a planar polygonal panel. In numerical im-
plementation of the potential-based panel method for solving the potential flow
around a lifting body, the trailing wake sheet is represented approximately as
the doublet distribution of potential jump. One possible way to include the ef-
fect of the local variation of these doublet strengths is with the use of a bilinear
distribution over each wake panel (which is uniquely determined from imposed
potential jump values at its four vertices). The use of the bilinear distribution
over quadrilateral panels (or the linear distribution over triangular panels) elim-
inates the discontinuity problem for the piecewise constant distribution. Then
the singularity strength will be chosen to vary bilinearly (or linearly) across the
panel. The main scope of this section is therefore to derive explicit and elegant
closed-forms of the induced potential and velocity due to a bilinear distribu-
tion. The bilinear distribution case includes, of course, both the constant and
the linear distribution cases.

In order to transform the associated surface integrals into line integrals along
contour of the panel by using Stokes’ formulas, alternative forms of the asso-
ciated integrands for the bilinear distribution of sources and doublets over a
planar panel are presented. For a planar polygon panel, the derived line inte-
grals can be reduced to closed-form expressions for the potential and velocity.
The closed-form expressions of the line integrals for the induced potential and
velocity are presented. They are expressed compactly as a sum of contribution
from each side of the panel, in terms of appropriate basic integrals. It will be
shown that each contribution depends on the relative position of a field point
from the side.

B.1.2 Stokes’ theorem

The general form of Stokes’ formulae is∫
S

(dS ×∇)X =

∫
C

dl X (B.3)
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where S is the surface enclosed by a curve C, dS ≡ n dS is the oriented surface
element and dl ≡ t dl is the integration element along the curve C. X is a scalar
or vector function of space coordinates.

If we choose X as scalar f , then it becomes∫
S

n×∇f dS =

∮
C

f dl. (B.4)

Identifying X as vector f reduces it to∫
S

(dS ×∇) · f =

∮
C

f · dl, (B.5)

or vector transformation of the first part gives∫
S

(∇× f) · dS =

∮
C

f · dl. (B.6)

B.1.3 Basic vector operations

For the purpose of derivations of some relations, often-used vector expansion
formulas are presented as follows.

a · (b× c) = b · (c× a) = c · (a× b) (B.7)

a× (b× c) = b (a · c)− c (a · b) (B.8)

∇× (a× b) = a (∇ · b) + (b · ∇) a− b (∇ · a) (a · ∇) b (B.9)

∇(a · b) = (a · ∇) b+ (b · ∇) a+ a× (∇× b) + b× (∇× a)(B.10)

∇ · (φ a) = a · ∇φ+ φ∇ · a (B.11)

∇× (φ a) = (∇φ)× a+ φ∇× a (B.12)

∇r =
r

r
(B.13)

∇
(

1

r

)
=
−r
r3

(B.14)

∇ · r = 3 (B.15)

∇× r = 0 (B.16)
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B.2 Induced Potential Due to Source Distribution

The potential and velocity induced by surface distribution of source density σ
over the surface S are

φ = − 1

4π

∫
S

σ

r
dSξ (B.17)

with r = xξ − xp , r ≡ |r|.

For the indices of variables of differentiation and integration, the reciprocal
relation holds: ∇p(

1
r) = −∇(1

r). For the integration variable xξ, the distribution
surface S is represented hypothetically as collection of planar surfaces. Then n
is independent of xξ. Equation (B.17) for the potential is reduced to,

φ = − 1

4π

[∫
S

n ·
{
∇×

(
σ n× r

r

)}
dS +

∫
S

(n · r)
{

(σ n) · ∇
(

1

r

)}
dS

−
∫
S

n ·
{
∇σ ×

(
n× r

r

)}
dS

]
(B.18)

Proof of Eq. (B.18)

The detailed derivation is performed reversely from Eq. (B.18) into Eq. (B.17)
as follows:

(1) The integrand of the first surface integral becomes

I1 = n · ∇ ×
(
σ n× r

r

)
: using Eq. (B.9)

= n ·
[
σ n
{
∇ ·
(r
r

)}
+
(r
r
· ∇
)

(σ n)− r

r
{∇ · (σ n)} − (σ n · ∇)

r

r

]
= n ·

[
σ n

{
r · ∇

(
1

r

)
+

1

r
∇ · r

}
: using Eq. (B.9)

+n
(r
r
· ∇σ

)
− r

r
(n · ∇σ)− (σ n · ∇)

r

r

]
: since n is constant

(B.19)
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Here the last term is rearranged by tensor operation,

n · (σ n · ∇)
r

r
= ni

{
σ nj

∂

∂ξj

(
ξi − xi
r

)}
= ni

1

r
σ nj

∂

∂ξj
(ξi − xi) + ni (ξi − xi)σ nj

∂

∂ξj

(
1

r

)
= ni

1

r
σ nj δij + ni (ξi − xi)σ nj

−(ξj − xj)
r3

=
σ

r
− σ (n · r)2

r3
(B.20)

Then,

I1 =
2

r
σ +

r

r
· ∇σ − (n · r)

r
(n · ∇σ)− σ

r
+
σ(n · r)2

r3
(B.21)

(2) The integrand of the second surface integral in Eq. (B.18) becomes:

I2 = (n · r)
{
σ n · ∇

(
1

r

)}
= (n · r)

{
σ n ·

(
−r
r3

)}
: using Eq. (B.14)

= −σ (n · r)2

r3
(B.22)

(3) The use of Eq. (B.8) reduces the integrand of the third surface integral to

I3 = n ·
{
∇σ ×

(
n× r

r

)}
= n ·

{
n
(
∇ · r

r

)
− r

r
(∇σ · n)

}
= ∇σ · r

r
− n · r

r
(∇σ · n) (B.23)
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Therefore by combining the three items above, Eq. (B.18) can be reduced to
Eq. (B.17):

φ = − 1

4π

∫
S

(I1 + I2 − I3) dS

= − 1

4π

∫
S

{
σ

r
+
r

r
· ∇σ − (n · r)

r
(n · ∇σ) +

σ(n · r)2

r3

−σ(n · r)2

r3
−∇σ · r

r
+

(n · r)
r

(∇σ · n)

}
dS

= − 1

4π

∫
S

σ

r
dS (B.24)

���

B.2.1 Transformation of Eq. (B.18) into line integrals

Now the surface integrals of Eq. (B.18) can be transformed as follows:

(1) The first one becomes, using Eq. (B.5)∫
S

n ·
{
∇×

(
σ n× r

r

)}
dS =

∮
C

σ

(
n× r
r

)
· dl

= n ·
∮
C

σ
r × dl
r

(B.25)

(2) For the second one, let us introduce the relation 7

∇
(

1

r

)
= −∇× A (B.26)

with
A =

e× r
r (r + e · r)

(B.27)

where e is a unit vector, being a function of xp, chosen such that the de-

7Proof is given below and see also Guiraud, J. P. (1978), “Potential of velocities generated by a localized vortex
distribution,” Aerospace Research, English Translation-ESA-TT-560, pp. 105–107.
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nominator is not zero, and use the vector operation

σ∇
(

1

r

)
= −σ∇× A = −∇× (σ A)− A×∇σ. (B.28)

Then, by Eq. (B.5)∫
S

(n · r)
{

(σ n) · ∇
(

1

r

)}
dS

=

∫
S

(n · r)n · {−∇× (σ A)− A×∇σ} dS

= −(n · r)
∮
C

σ A · dl + (n · r)n ·
∫
S

∇σ × AdS (B.29)

(3) The third integral becomes

−
∫
S

n·
{
∇σ ×

(
n× r

r

)}
dS = −

∫
S

n·{∇σ × (n×∇r)} dS. (B.30)

Consequently, the expression (B.18) is replaced by

φ = − n

4π
·
{∮

C

σ
r

r
× dl − r

∮
C

σ A · dl + (n · r)
∫
S

∇σ × AdS

−
∫
S

∇σ × (n×∇r) dS
}

(B.31)

Now the double integral in Eq. (B.31) can be transformed into contour integral
if we suppose∇σ to be constant over S and if we choose e = ±n:

φ = − 1

4π

[
n ·
∮
C

σ
r

r
× dl − (n · r)

∮
C

σ A · dl

+ (n · r) (n · e)n ·
{
∇σ ×

∮
C

ln(r + e · r)dl
}

−n ·
(
∇σ ×

∮
C

r dl

)]
(B.32)

For this transformation taking account of Eq. (B.4), another form for the vector
function A, has been used A = e × ∇R with R = ln(r + e · r). Namely the
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second integral in Eq. (B.31) can be written as, with∇σ = const. and e = ±n,

(n · r)
∫
S

∇σ × AdS = (n · r)∇σ ×
∫
S

(n · e) (n×∇R) dS

= (n · r) (n · e)∇σ ×
∮
C

ln(r + e · r) dl (B.33)

Accordingly, the following relation holds for e = ±n,∫
S

AdS = (n · e)
∮
C

ln(r + e · r) dl. (B.34)

Proof of Eq (B.26)

Now let’s prove Eq. (B.26) by showing that the right-hand side reduces to the
left hand side. For simplicity, dropping out the subscript ξ of the operator∇,

∇× A = ∇×
{

1

r(r + e · r)
(e× r)

}
= ∇

{
1

r(r + e · r)

}
× (e× r) +

1

r(r + e · r)
∇× (e× r) : using (B.12)

=
−∇{r(r + e · r)}
r2(r + e · r)2

× (e× r) +
1

r(r + e · r)
∇× (e× r) (B.35)

Knowing that e is chosen as a function of xp, independent of xξ and using
(B.10), (B.13) and (B.16),

∇{r(r + e · r)} = (r + e · r)∇r + r∇(r + e · r)
= (r + e · r)r

r
+ r

{r
r

+ (e · ∇)r + (r · ∇)e+ e× (∇× r) + r × (∇× e)
}

=
(

2 +
e · r
r

)
r + re (B.36)

Recall that the following relation is used while deriving the above expression:

(e · ∇) r = ei
∂xj
∂xi

= ei δij = ej = e. (B.37)
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Then use Eq. (B.8) for the triple vector product

∇{r(r + e · r)} × (e× r)
=
(

2 +
e · r
r

){
r2e− r(e · r)

}
+ r {(e · r)e− r}

=
{

2r2 + 2r(e · r)
}
e−

{(
2 +

e · r
r

)
(e · r) + r

}
r

= 2r {r + (e · r)} e− {r + (e · r)}2 r

r
(B.38)

Therefore, one can derive Eq. (B.26):

∇× A = − 2e

r(r + e · r)
+
r

r3

+
1

r(r + e · r)
{e (∇ · r) + (r · ∇)e− r(∇ · e)− (e · ∇)r}

= − 2e

r(r + e · r)
+
r

r3
+

1

r(r + e · r)
(3e− e)

=
r

r3
= −∇

(
1

r

)
(B.39)

Remark: The vector A is evidently related to an explicit expression for the
velocity potential for the volumetric distribution of vorticity. We define the solid
angle ψp subtended at a point xp by the surface S (is not necessarily a plane)
(Milne-Thomson (1968)):

ψp =

∫
S

n · ∇
(

1

r

)
dS

= −
∮
C

e× r
r(r + e · r)

· dl (B.40)

���
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B.3 Induced Velocity Due to Source Distribution

Expression for the velocity induced by the sources distribution is given by

q = ∇pφ =
1

4π

∫
S

σ∇
(

1

r

)
dSξ (B.41)

Equation (B.41)) is transformed into, applying the triple vector product (Eq. (B.9))

to n×
{
n×∇

(
1

r

)}
,

V p =
1

4π

[∫
S

σ

{
n · ∇

(
1

r

)}
n dS −

∫
S

σ n×
{
n×∇

(
1

r

)}
dS

]
.

(B.42)
For the first surface integral, use Eq. (B.28)∫
S

σ

{
n · ∇

(
1

r

)}
n dS = −

∫
S

[n · {∇ × (σ A)}n+ {n · (A×∇σ)}n] dS

(B.43)
and then apply Eq. (B.6) for a plane surface S

− n
∮
C

σ A · dl − n
∫
S

{n · (A×∇σ)} dS. (B.44)

The second surface integral of Eq. (B.42) is decomposed into two parts:

−
∫
S

σ n×
{
n×∇

(
1

r

)}
dS = −

∫
S

n×
{
n×∇

(σ
r

)}
dS

+

∫
S

n

r
× (n×∇σ) dS. (B.45)

For the plane S, apply Eq. (B.6) for the first part to yield:

− n×
∮
C

σ

r
dl +

∫
S

n

r
× (n×∇) dS (B.46)
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Either Eq. (B.41) or Eq. (B.42) is replaced by

q =
1

4π

{
−n
∮
C

σ A · dl − n×
∮
C

σ

r
dl

−n
∫
S

n · (A×∇σ) dS +

∫
S

n

r
× (n×∇σ) dS

}
(B.47)

The two surface integrals can be simplified if we suppose ∇σ constant over S
and if we pretend e = ±n. The first one becomes, by Eq. (B.34):

− n
∫
S

n · (A×∇σ) dS = −n (∇σ × n) ·
∫
S

AdS : using (B.7)

= −n (n · e) (∇σ × n) ·
∮
C

ln(r + e · r) dl

(B.48)

and the second one becomes, using Eq. (B.8) and the fact that n · ∇σ = 0 over
S, ∫

S

n

r
× (n×∇σ) dS = {n (n · ∇σ)−∇σ (n · n)}

∫
S

1

r
dS

= −∇σ
∫
S

1

r
dS (B.49)

Now applying Eqs. (B.17) and (B.31) for the case of σ = const., it becomes

−∇σ
{
n ·
∮
C

r × dl
r
− (n · r)

∮
C

A · dl
}

(B.50)

Therefore, the final result is

q = − 1

4π

[
n

∮
C

σ A · dl + n×
∮
C

σ

r
dl

−n(n · e) (n×∇σ) ·
∮
C

ln(r + e · r) dl

+∇σ
{
n ·
∮
C

r × dl
r
− (n · r)

∮
C

A · dl
}]

(B.51)
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B.4 Induced Potential Due to Doublet Distribution

The potential induced by a surface distribution of doublets with density µ(≡
−φ) is written as

φ = − 1

4π

∫
S

µn · ∇
(

1

r

)
dS (B.52)

A variation for expression of doublet-potential (B.52), using Eq. (B.26) and
the relation∇× (µA) = µ∇×A−A×∇µ by Eq. (B.12), can be performed:

µn · ∇
(

1

r

)
= µn · (−∇× A)

= −n · µ∇× A = −n · ∇ × (µA)− n · (A×∇µ)

= −n · ∇ × (µA) + (n×∇µ) · A (B.53)

Consequently,

φ = − 1

4π

[
−
∫
S

n · {∇ × (µA)} dS +

∫
S

(n×∇µ) · AdS
]

(B.54)

becomes, with transformation of the first surface integral by Eq. (B.6),

φ = − 1

4π

{
−
∮
C

µA · dl +

∫
S

(n×∇µ) · AdS
}
. (B.55)

For constant ∇µ over a plane surface S and e = ±n, the surface integral is
transformed into the contour integral (by Eq. (B.34)).

φ = − 1

4π

{
−
∮
C

µA · dl + (n · e) (n×∇µ) ·
∮
C

ln(r + e · r) dl
}
. (B.56)

B.5 Induced Velocity Due to Doublet Distribution

Differentiation of Eq. (B.52) with respect to xp yields

q = − 1

4π

∫
S

µ∇p

{
n · ∇

(
1

r

)}
dS (B.57)
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or, alternatively by using a lengthy transformation (see Lee, J. T. (1987) and
Brockett (1988))

q = − 1

4π

{∮
C

µ∇
(

1

r

)
× dl +

∫
S

(n×∇µ)×∇
(

1

r

)
dS

}
(B.58)

In this form showing the correspondence presented by Hess (1969) for the first
part, the velocity can be considered as one induced by two distributions of vor-
ticity:

(1) a first due to a concentrated vorticity µ dl over the contour C of the surface
cap S, and

(2) a second due to a surface distribution of vorticity density, γ ≡ n × ∇µ
over S.

Surface integral, one component of expression (Eq. (B.58)) for the velocity
induced by the doublet distribution is transformed to, with the identity (B.8)

applied on scalar
1

r
:

∫
S

γ ×∇
(

1

r

)
dS =

∫
S

γ ×
[
n

{
n · ∇

(
1

r

)}]
dS

−
∫
S

γ ×
[
n×

{
n×∇

(
1

r

)}]
dS. (B.59)

For constant γ for a plane surface S, the first integral is reduced to, by Eqs. (B.6)
and (B.26)∫

S

γ ×
[
n

{
n · ∇

(
1

r

)}]
dS =

∫
S

γ × [n {n · (−∇× A)}] dS

= −γ × n
∮
C

A · dl = −(n×∇µ)× n
∮
C

A · dl

= {n (n · ∇µ)−∇µ}
∮
C

A · dl = −∇µ
∮
C

A · dl, (B.60)
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and the second one becomes, by Eq. (B.5)

−
∫
S

γ ×
[
n×

{
n×∇

(
1

r

)}]
dS = −γ ×

(
n×

∮
C

dl

r

)
. (B.61)

The first expression represents a velocity component tangent to S and the sec-
ond one a velocity component normal to S.

The velocity induced by a doublet distribution characterized by constant∇µ
over a plane surface S is written as

q = − 1

4π

{∮
C

µ∇
(

1

r

)
× dl −∇µ

∮
C

A · dl

− (n×∇µ)×
(
n×

∮
C

dl

r

)}
. (B.62)
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C.1 Introduction

PRpan code provides the calculation of potential and velocity induced by source
and doublet distribution on a planar polygon element with linearly varying den-
sity.

As input arguments, the number of sides and vertex positions for specify-
ing the element geometry are needed. The source and doublet strengths should
be entered. Note that the doublet strength is defined as the negative value of
potential: µ = −φ.
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The number of sides is at least 3 and the vertex positions are specified as
a pair of x, y, z coordinates. Multiple field points can be entered in a form of
(xp, yp, zp) to avoid duplicate calculations for each side of the element when
calculating the influence coefficients in the panel method. By assuming that any
combination of 3 points among the vertices form a unique planar element, the
vector outward normal to the element surface is calculated by cross-product of
two vectors connected between the first, the second and the third vertex points.

C.2 Program Lists of Subroutine PRpan

C--------------------- Subroutine PRpan.ftn -----------------------------

C |

C PRpan code provides the calculation of potenial and velocity |

C induced by source and doublet distributions with constant plus |

C linear variation on a planar polygon element, by following the |

C formulation of Cantaloube and Rehbach ˜(1986) and performing the |

C analytic evaluations of the associated line integrals |

C (Suh ˜(1990)). |

C Before this subroutine is called, the subroutine PRgeom should |

C be called to generate the geometric parameters of the element |

C associated with the analytic evaluations of the line integrals. |

C |

C REFERENCES: |

C [1] Cantaloube, B. and Rehbach, C. ˜(1986) |

C " Calcul des Integrales de la Methode des Singularites" |

C Recherche Aerospatiale, no. 1, pp. 15-22, |

C (English Title: " Calculation of the Integrals of the |

C Singularity Method" Aerospace Research, No. 1, pp. 15-22) |

C [2] Suh, J. C. ˜(1990) |

C " Review of the Paper; Calculation of the Integrals of the |

C Singularity Method by Cantaloube and Rehbach" |

C KRISO Propulsor Technology Laboratory Report, 22-90 |

C [3] Suh, J. C. ˜(1990) |

C " Analytic Evaluations of the Induction-Integrals for |

C Distributions of Sources and Doublets over a Planar |

C Polygon Element" |

C KRISO Propulsor Technology Laboratory Report, 23-90 |

C [4] Lee, C.-S. ˜(1990) |

C " Treatment of non-planar panel" |
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C Technical Notes (unpublished), 11/29/90 |

C |

C Note: The doublet strength is defined as a negative value of |

C potential here. |

C |

C Programmer: Suh, Jung-Chun |

C Dept. Naval Architecture and Ocean Engineering, |

C Seoul National University |

C (Copyright:Korea Research Institute of Ships & Ocean Engineering) |

C |

C Version 1.0, December 15, 1990 |

C Version 1.1, December 27, 1990 |

C Version 1.2, January 3, 1991 |

C |

C Input argument descriptions: |

C NSIDE = number of sides of a planar element |

C (at least 3) |

C XV(i,N) = x-, y- and z-coordinates of the |

C NSIDE vertices of the element |

C (two-dimensional arrayed values in a |

C counterclockwise order). |

C NFP = number of field points at which the induced |

C potentials and velocities are calculated. |

C XFP(i,n) = x-, y- and z-coordinates of the NFP field |

C points (two-dimensional arrayed values). |

C ISELF(n) = choice of location of each field point to |

C specify a self-induction case |

C (NFP arrayed values). |

C (If it is just on surface, ISELF(n)=+1 |

C If it is exactly at surface, ISELF(n)= 0 |

C If it is just below surface, ISELF(n)=-1 |

C If it is away from surface, ISELF(n)=others)|

C SEGL(N) = lengths of the NSIDE respective sides, |

C computed by the subroutine PRGEOM |

C (NSIDE arrayed values). |

C AN(i) = x-, y- and z-components of the unit outward |

C normal vector of the planar element, |

C computed by the subroutine PRGEOM |

C (3 arrayed values). |

C EL(i,N) = x-, y- and z-components of the unit |

C orientation vector of the NSIDE respective |

C sides, computed by the subroutine PRGEOM |

C (two-dimensional arrayed values). |
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C EM(i,N) = x-, y- and z-components of the unit |

C vector lying on the plane and normal to the |

C NSIDE respective sides,computed by the |

C subroutine PRGEOM |

C (two-dimensional arrayed values). |

C CG(i) = x-, y- and z- coordinates of the centroid |

C of the element, computed by the subroutine |

C PRGEOM (3 arrayed values). |

C AREA = surface area of the element, computed by the |

C subroutine PRGEOM. |

C DIAGNL = longest diagonal of the element, computed by |

C the subroutine PRGEOM. |

C RFAR = reference ratio of field-point distance to |

C longest diagonal to apply far-field |

C approximation. |

C ICOMP = choices of selected calculations |

C (ICOMP=1: only potential calculations; |

C ICOMP=2: only velocity calculations; |

C ICOMP=3: both potential and velocity calc.) |

C SIGMAX,SIGMAY, = coefficients to specify the linear variation |

C SIGMAZ,SIGMA0 of source distribution as |

C sigma=SIGMAX*x+SIGMAY*y+SIGMAZ*z+SIGMA0. |

C AMUX,AMUY, = coefficients to specify the linear variation |

C AMUZ,AMU0 of doublet distribution as |

C mu=AMUX*x+AMUY*y+AMUZ*z+AMU0. |

C |

C Output argument descriptions: |

C SPOT(N) = induced potentials at NFP field points |

C due to the linear-source distribution |

C (NFP arrayed values). |

C SVX(N), SVY(N), SVZ(N) = induced velocity componets at field |

C points due to the linear-source |

C distribution (NFP arrayed values). |

C DPOT(N) = induced potentials at field points due |

C to the linear-doublet distribution |

C (NFP arrayed values). |

C DVX(N), DVY(N), DVZ(N) = induced velocity componets at field |

C points due to the linear-doublet |

C distribution (NFP arrayed values). |

C Recommendations: |

C When one applies this subroutine to the panel method, it may be |

C efficient in computing time to separate the subroutine into |

C parts for constant and linear distribution cases, and |
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C furthermore into potential and velocity calculation parts. |

C |

C------------------------------------------------------------------------

C

SUBROUTINE PRPAN

& (NSIDE,XV,NFP,XFP,ISELF,SEGL,AN,EL,EM,CG,AREA,DIAGNL,RFAR,{input}

& ICOMP,SIGMAX,SIGMAY,SIGMAZ,SIGMA0,AMUX,AMUY,AMUZ,AMU0, {input}

& SPOT,SVX,SVY,SVZ,DPOT,DVX,DVY,DVZ) {output}

IMPLICIT REAL*8 (A-H,O-Z) {high precision is recommended}

C single precision is used only for calling arguments.

REAL*4 XV,XFP,SEGL,AN,EL,EM,RINTM,CG,AREA,DIAGNL,RFAR,

& SIGMAX,SIGMAY,SIGMAZ,SIGMA0,AMUX,AMUY,AMUZ,AMU0,

& SPOT,SVX,SVY,SVZ,DPOT,DVX,DVY,DVZ

PARAMETER (NSDMAX=4)

{up to a quadrilateral panel; change 4 to N for an N-side polygon}

DIMENSION AN(3),R(3,NSDMAX),D(3),CG(3),SEGL(NSDMAX),PQ(NSDMAX),

& EL(3,NSDMAX),EM(3,NSDMAX),XV(3,NSDMAX),XFP(3,1),

& ISELF(1),GSEM(NSDMAX),GDEM(NSDMAX),SIGMA(NSDMAX),

& AMU(NSDMAX),ALPHA(NSDMAX),BETA(NSDMAX),

& SPOT(1),SVX(1),SVY(1),SVZ(1),

& DPOT(1),DVX(1),DVY(1),DVZ(1)

C CHECK NUMBER OF SIDES OF A POLYGON

IF (NSIDE.LT.3 .OR. NSIDE.GT.NSDMAX) THEN

WRITE(*,*) ’ERROR: NUMBER OF SIDE SHOULD BE AT LEAST 3 ’,

& ’AND AT MOST ’,NSDMAX,’.’

STOP {terminate process in the case of out of range for NSIDE}

END IF

C DEFINE OFTEN-USED CONSTANTS

PI=3.141592653589793

R4PI=0.25D0/PI {1/(4*pi)}

EPS=1.0D-07 {tolerance for checking that field point is on plane}

C LINEAR VARIATION OF SIGMA & DOUBLET

A1=SIGMAX

A2=SIGMAY

A3=SIGMAZ

A4=SIGMA0

B1=AMUX

B2=AMUY

B3=AMUZ

B4=AMU0

DO 3 J=1,NSIDE

SIGMA(J)=A1*XV(1,J)+A2*XV(2,J)+A3*XV(3,J)+A4



446 CODE PRpan FOR PANEL METHOS

C {source density at vertex}

AMU(J) =B1*XV(1,J)+B2*XV(2,J)+B3*XV(3,J)+B4

C {doublet density at vertex}

ALPHA(J)=A1*EL(1,J)+A2*EL(2,J)+A3*EL(3,J)

C {linear variation along side}

BETA(J) =B1*EL(1,J)+B2*EL(2,J)+B3*EL(3,J)

C DOT PRODUCT BETWEEN GRADIENT OF SIGMA (OR DOUBLET) & VECTOR em

GSEM(J)=A1*EM(1,J)+A2*EM(2,J)+A3*EM(3,J)

3 GDEM(J)=B1*EM(1,J)+B2*EM(2,J)+B3*EM(3,J)

C

C CALCULATIONS FOR MULTIPLE FIELD POINTS

C

DO 100 K=1,NFP {loop for field points}

C

DO 5 I=1,3

5 D(I)=CG(I)-XFP(I,K)

ANR= AN(1)*D(1)+AN(2)*D(2)+AN(3)*D(3) {define constant a}

C FAR-FIELD APPROXIMATIONS

RR=D(1)**2+D(2)**2+D(3)**2

IF(RR/DIAGNL**2 .GT.RFAR**2) THEN {far-field approx.}

APPR=DSQRT(RR) {representative distance}

AA=R4PI*AREA/(RR*APPR)

SIGMAR=A1*CG(1)+A2*CG(2)+A3*CG(3)+A4

C {representative source density}

AMUR =B1*CG(1)+B2*CG(2)+B3*CG(3)+B4

C {representative doublet density}

IF(ICOMP.EQ.1 .OR. ICOMP.EQ.3) THEN

SPOT(K)=-R4PI*AREA/APPR*SIGMAR {source-potential}

DPOT(K)=+AA*ANR*AMUR {doublet-potential}

END IF

IF(ICOMP.EQ.2 .OR. ICOMP.EQ.3) THEN

SVX(K) =-AA*D(1)*SIGMAR

SVY(K) =-AA*D(2)*SIGMAR {source-velocity}

SVZ(K) =-AA*D(3)*SIGMAR

DVX(K) =+AA*(3*ANR*D(1)/RR-AN(1))*AMUR

DVY(K) =+AA*(3*ANR*D(2)/RR-AN(2))*AMUR {doublet-velocity}

DVZ(K) =+AA*(3*ANR*D(3)/RR-AN(3))*AMUR

END IF

C

ELSE {if not far-field}

C

C DEFINE VECTOR r FOR EACH SIDE AND DISTANCE

DO 20 J=1,NSIDE
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DO 10 I=1,3

10 R(I,J)=XV(I,J)-XFP(I,K) {vector r between vertex and field point}

PQ(J)=DSQRT(R(1,J)**2+R(2,J)**2+R(3,J)**2) {its distance}

20 CONTINUE

C SIGN OF n.e

IF(ISELF(K).EQ.+1.OR.ISELF(K).EQ.0.OR.ISELF(K).EQ.-1) THEN

ENR=0.D0

ISIGN=-ISELF(K)

ELSE

ENR=DABS(ANR) {a=e.r}

IF(ANR.GT.0.0D0) THEN

ISIGN=+1

ELSE {sign of n.e}

ISIGN=-1

END IF

END IF

C CHECK THAT FIELD POINT IS ON EXTENSION PLANE OF PANEL (IANULL=1).

IANULL=0

IF(ENR.LT.EPS) IANULL=1

C INITIAL SET FOR SUMMING UP CONTRIBUTION OF RESPECTIVE SIDE

SPT=0.0D0

DPT=0.0D0

IF(ICOMP.EQ.2 .OR. ICOMP.EQ.3) THEN {selection of calculations}

SVEL1 =0.0D0

SVEL2X=0.0D0

SVEL2Y=0.0D0

SVEL2Z=0.0D0

SVEL3 =0.0D0

DVEL1X=0.0D0

DVEL1Y=0.0D0

DVEL1Z=0.0D0

DVEL2 =0.0D0

DVEL3 =0.0D0

C

END IF

C FOR CONTRIBUTION OF EACH SIDE BY ANALYTIC EVALUATIONS

DO 30 J=1,NSIDE {loop for sides of element}

C

J1=J+1

IF(J.EQ.NSIDE) J1=1 {cyclic convention}

AL=SEGL(J) {length of side}

IF(AL. LT. EPS) GO TO 30 {skip contribution of side of small length}

B=-(R(1,J)*EM(1,J)+R(2,J)*EM(2,J)+R(3,J)*EM(3,J)) {constant bi}
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C CALL CROSS(R(1,J),EL(1,J),D)

D(1)=R(2,J)*EL(3,J)-R(3,J)*EL(2,J)

D(2)=R(3,J)*EL(1,J)-R(1,J)*EL(3,J) {vector d=r x el}

D(3)=R(1,J)*EL(2,J)-R(2,J)*EL(1,J)

C CALCULATIONS OF LOCAL PLANE COORDINATES (x’,z’)

X=-(EL(1,J)*R(1,J)+EL(2,J)*R(2,J)+EL(3,J)*R(3,J))

Z2=D(1)**2+D(2)**2+D(3)**2

Z=DSQRT(Z2)

C CHECK THAT FIELD POINT IS ON EXTENSION LINE OF SIDE (IZNULL=1).

IZNULL=0

IF(Z.LT.EPS) IZNULL=1 {if z’ approx. 0}

C SUPPRESS CALCULATIONS WHEN FIELD POINT IS JUST ON SIDE LINE.

IF(IZNULL.EQ.1 .AND. (X.GE.0 .AND. X.LE.AL)) THEN

WRITE(*,2) XFP(1,K),XFP(2,K),XFP(3,K),

& XV(1,J),XV(2,J),XV(3,J),XV(1,J1),XV(2,J1),XV(3,J1)

2 FORMAT(’WARNING: NUMERICAL SINGULARITY OCCURS AT FIELD POINT’,

& ’ ( ’,3E13.4,’ )’, /6X,’FOR THE SEGMENT WITH END POINTS’,

& ’ ( ’,3E13.4,’ ), (’, 3E13.4, ’ )’)

STOP {terminate the process for a singular point}

END IF

C

C INTEGRALS WITH INTEGRAND 1/r,1/(r+a),1/r(r+a) AND 1/r**3.

C

C--- EXACT EVALUATIONS ---

C

ALMX=AL-X {because of often-used one}

PQ1=PQ(J) {distances between field point and end points}

PQ2=PQ(J1)

IF(IZNULL.EQ.1) THEN

C {if field pt is on extension line of side, z’=a=0}

AI1=DLOG(-ALMX/X)

AI4=0.5D0*(AL*(ALMX-X)/(X*ALMX)**2)

IF(X.GT.AL) THEN

AI1=-AI1

AI4=-AI4

END IF

AI3=-AL/(ALMX*X) {1/r(r+a) becomes 1/r**2}

AI2=AI1 {1/(r+a) becomes 1/r}

ELSE {if IZNULL.NE.1}

IF( X.LT. 0.D0-EPS) THEN

AI1=DLOG((PQ2+ALMX)/(PQ1-X)) {integral of 1/r}

ELSE IF( X .GT. AL+EPS) THEN

AI1=DLOG((PQ1+X)/(PQ2-ALMX))
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ELSE IF((PQ1-X).GT.EPS .AND. (PQ2-ALMX).GT.EPS) THEN

AI1=0.5D0*DLOG((PQ2+ALMX)*(PQ1+X)/((PQ1-X)*(PQ2-ALMX)))

C {mean}

ELSE IF((PQ1-X).LE.EPS) THEN

AI1=DLOG((PQ2+ALMX)*2.D0*X/Z2)

ELSE IF((PQ2-ALMX).LE.EPS) THEN

AI1=DLOG((PQ1+X)*2.D0*ALMX/Z2)

ELSE

WRITE(*,2) XFP(1,K),XFP(2,K),XFP(3,K),

& XV(1,J),XV(2,J),XV(3,J),XV(1,J1),XV(2,J1),XV(3,J1)

STOP

END IF

C

IF(X.GT.0.D0 .AND. X.LT.AL) THEN

AI4=(AL*PQ1 + X*(PQ2-PQ1))/(Z2*PQ1*PQ2) {integral of 1/r**3}

ELSE

AI4=AL*(ALMX-X)/(PQ1*PQ2*(ALMX*PQ1-X*PQ2))

END IF

IF(IANULL.EQ.1) THEN {1/r(r+a) becomes 1/r**2}

AI2=AI1 {1/(r+a) becomes 1/r}

IF(DABS(Z2-X*ALMX).LT.EPS) THEN

ARG=DATAN(ALMX/Z)+DATAN(X/Z)

ELSE

ARG=DATAN(AL*Z/(Z2-X*ALMX)) {combine two inverse functions}

IF(Z2.LT.X*ALMX .AND. X.LT.AL) ARG=PI+ARG

END IF

AI3=ARG/Z

ELSE

IF((Z-ENR).LT.EPS) THEN {if z’.EQ.a}

AI3=(AL*(PQ1+ENR)+X*(PQ2-PQ1))/((PQ2+ENR)*(PQ1+ENR)*ENR)

ELSE {if z’.NE.a}

AA=(-Z2-ENR*PQ1)/(Z*(PQ1+ENR))

BB=(-Z2-ENR*PQ2)/(Z*(PQ2+ENR))

EE=DSQRT(Z2-ENR**2)

IF(X.GT.0.D0 .AND. X.LT.AL) THEN

CC= EE*(Z2*AL+ENR*(ALMX*PQ1+X*PQ2))

& /(Z2*(PQ1+ENR)*(PQ2+ENR))

ELSE

CC= EE*AL*(1+ENR*(ALMX-X)/(ALMX*PQ1-X*PQ2))

& /((PQ1+ENR)*(PQ2+ENR))

END IF

IF(DABS(CC).LT.1.0D0) ASINCC=DASIN(CC)

IF(CC.GE.1.0D0) ASINCC=0.5D0*PI
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IF(CC.LE.-1.0D0) ASINCC=-0.5D0*PI

IF(X.LE.0. .OR. X.GE.AL .OR. (AA**2+BB**2).GE.1.) THEN

AI3=ASINCC/EE

ELSE

AI3=(PI-ASINCC)/EE

END IF

C

END IF {for special case of z’=a}

AI2=AI1-ENR*AI3 {by partial fraction, a/r(r+a)=1/r - 1/(r+a)}

END IF {for extension of plane}

END IF {for extension of each side}

C BASIC INTEGRALS FOR LINEAR VARIATION

AJ1=PQ2-PQ1+X*AI1

AJ4=(PQ2-PQ1)/(PQ1*PQ2)+X*AI4

AJ5=0.5D0*(AL*PQ2+X*(PQ1-PQ2))+0.5D0*Z2*AI1

ALOG1=DLOG(PQ1)

ALOG2=DLOG(PQ2)

AJ6=AL*ALOG2+X*(ALOG1-ALOG2)-AL

IF(IZNULL.NE.1) THEN

IF(IANULL.NE.1) THEN

IF(DABS(Z2-X*ALMX).LT.EPS) THEN

ARG=DATAN(ALMX/Z)+DATAN(X/Z)

ELSE

ARG=DATAN(AL*Z/(Z2-X*ALMX)) {combine two inverse functions}

IF(Z2.LT.X*ALMX .AND. X.LT.AL) ARG=PI+ARG

END IF

END IF

AJ6=AJ6+Z*ARG

END IF

IF(IANULL.EQ.1) THEN

AJ2=AJ1

AJ7=AJ6

ELSE

ALOG1=DLOG(PQ1+ENR)

ALOG2=DLOG(PQ2+ENR)

AJ2=PQ2-PQ1-ENR*(ALOG2-ALOG1)+X*AI2

AJ7=AL*ALOG2+X*(ALOG1-ALOG2)-AL+ENR*AI1

IF((Z-ENR).GE.EPS) THEN {if z’.NE.a}

IF(X.LE.0. .OR. X.GE.AL .OR. (AA**2+BB**2).GE.1.) THEN

AJ7=AJ7+EE*ASINCC

ELSE

AJ7=AJ7+EE*(PI-ASINCC)

END IF
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END IF

END IF

C

AJ3=ALOG2-ALOG1+X*AI3

C MULTIPLY FACTORS AND SUM UP CONTRIBUTION OF EACH SIDE

IF(ICOMP.EQ.1 .OR. ICOMP.EQ.3) THEN

IF(IANULL.EQ.1) THEN

SPT=SPT+B*(SIGMA(J)*AI2+ALPHA(J)*AJ2)

& +GSEM(J)*AJ5

ELSE

SPT=SPT+B*(SIGMA(J)*AI2+ALPHA(J)*AJ2)

& +GSEM(J)*(AJ5-ENR*AJ7)

END IF

DPT=DPT+B*(AMU(J)*AI3 +BETA(J)*AJ3)

& +GDEM(J)*AJ7

END IF

IF(ICOMP.EQ.2 .OR. ICOMP.EQ.3) THEN {selection of calculations}

SVEL1=SVEL1+B*(SIGMA(J)*AI3+ALPHA(J)*AJ3)+GSEM(J)*AJ7

SVEL2X=SVEL2X+EM(1,J)*(SIGMA(J)*AI1+ALPHA(J)*AJ1)

SVEL2Y=SVEL2Y+EM(2,J)*(SIGMA(J)*AI1+ALPHA(J)*AJ1)

SVEL2Z=SVEL2Z+EM(3,J)*(SIGMA(J)*AI1+ALPHA(J)*AJ1)

SVEL3=SVEL3+B*AI2

DVEL1X=DVEL1X+D(1)*(AMU(J)*AI4+BETA(J)*AJ4)

DVEL1Y=DVEL1Y+D(2)*(AMU(J)*AI4+BETA(J)*AJ4)

DVEL1Z=DVEL1Z+D(3)*(AMU(J)*AI4+BETA(J)*AJ4)

DVEL2=DVEL2+B*AI3

DVEL3=DVEL3+GDEM(J)*AI1

END IF

C

30 CONTINUE {end of side-loop}

C

DPT=ISIGN*DPT

IF(ICOMP.EQ.1 .OR. ICOMP.EQ.3) THEN

SPOT(K)=-R4PI*SPT {source-potential}

DPOT(K)=+R4PI*DPT {doublet-potential}

END IF

IF(ICOMP.EQ.2 .OR. ICOMP.EQ.3) THEN

SVX(K) =-R4PI*(ISIGN*AN(1)*SVEL1+SVEL2X+A1*SVEL3)

SVY(K) =-R4PI*(ISIGN*AN(2)*SVEL1+SVEL2Y+A2*SVEL3)

SVZ(K) =-R4PI*(ISIGN*AN(3)*SVEL1+SVEL2Z+A3*SVEL3)

DVX(K) =+R4PI*(DVEL1X+ISIGN*B1*DVEL2-AN(1)*DVEL3)

DVY(K) =+R4PI*(DVEL1Y+ISIGN*B2*DVEL2-AN(2)*DVEL3)

DVZ(K) =+R4PI*(DVEL1Z+ISIGN*B3*DVEL2-AN(3)*DVEL3)
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END IF

C

END IF {end of control of far-field approx.}

100 CONTINUE {end of field-point loop}

RETURN

END

C

C--------------------- Subroutine PRgeom.ftn ----------------------------

C |

C PRgeom code provides the geometric parameters of a planar or |

C non-planar element for the calculation of potential and velocity |

C induced by constant plus linear source/doublet distributions on a |

C planar polygon element, by adapting the formulation of Lee ˜(1990) |

C to follow the formulation of Cantaloube and Rehbach ˜(1986) and to |

C perform the analytic evaluations of the associated line integrals |

C (Suh ˜(1990)). |

C This subroutine may be called before the subroutine PRpan for |

C computing the induced potentials and velocities is called, but |

C only once for each element. |

C |

C REFERENCES: |

C [1] Cantaloube, B. and Rehbach, C. ˜(1986) |

C " Calcul des Integrales de la Methode des Singularites" |

C Recherche Aerospatiale, no. 1, pp. 15-22, |

C (English Title: " Calculation of the Integrals of the |

C Singularity Method" Aerospace Research, No. 1, pp. 15-22) |

C [2] Suh, J. C. ˜(1990) |

C " Review of the Paper; Calculation of the Integrals of the |

C Singularity Method by Cantaloube and Rehbach" |

C KRISO Propulsor Technology Laboratory Report, 22-90 |

C [3] Suh, J. C. ˜(1990) |

C " Analytic Evaluations of the Induction-Integrals for |

C Distributions of Sources and Doublets over a Planar |

C Polygon Element" |

C KRISO Propulsor Technology Laboratory Report, 23-90 |

C [4] Lee, C.-S. ˜(1990) |

C " Treatment of non-planar panel" |

C Technical Notes (unpublished), 11/29/90 |

C |

*------------------------------------------------------------------------|

* |

* Version 1.2, November 16, 1990 by Y.-G. Kim |
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* Version 2.2, November 28, 1990 by C.-S. Lee |

C (add a control for planar-element case on 1/4/91 by J.-C. Suh) |

C |

*------------------------------------------------------------------------|

* |

* INPUT : Vertex Points: xv(i,j), where i=1,3 for x,y,z-coords |

* j=1,...,Nside for sides. |

* |

* OUTPUT: Panel geometrical data, including |

* cg, el, em, an, segl,area,diagnl |

* |

* ...Panel Geometry.....................................................|

* 1) Counter-clockwise when 4 *-----* 3 |

* viewed from fluid | | |

* 2) Dipole axis pointing | | |

* into the fluid J = 1 *-----* 2 |

* ......................................................................|

* |

C Input argument descriptions: |

C NSIDE = number of sides of a planar element |

C (at least 3). |

C XV(i,N) = x-, y- and z-coordinates of the |

C NSIDE vertices of the element |

C (two-dimensional arrayed values in a |

C counterclockwise order). |

C IPLANE = control index for planar or non-planar |

C element (if planar element, IPLANE=1) |

C |

C Output argument descriptions: |

C SEGL(N) = lengths of the NSIDE respective sides |

C (NSIDE arrayed values). |

C AN(i) = x-, y- and z-components of the unit outward |

C normal vector of the planar element |

C (3 arrayed values). |

C EL(i,N) = x-, y- and z-components of the unit |

C orientation vector of the NSIDE respective |

C sides (two-dimensional arrayed values). |

C EM(i,N) = x-, y- and z-components of the unit |

C vector lying on the plane and normal to the |

C NSIDE respective sides |

C (two-dimensional arrayed values). |

C CG(i) = x-, y- and z- coordinates of the centroid |

C of the element (3 arrayed values). |
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C AREA = surface area of the element. |

C DIAGNL = longest diagonal of the element. |

C |

C Notice: Please contact C.-S. Lee at CNU by a letter or by |

C a phone call at (042) 821-6623 if there are any problems |

C for usage of this subroutine, so that he can give notice |

C of them to other users. |

C |

C------------------------------------------------------------------------

C

SUBROUTINE PRGEOM (NSIDE,XV,IPLANE,SEGL,AN,EL,EM,CG,AREA,DIAGNL)

{input arguments}{output to be used in other subroutines}

PARAMETER (NSDMAX=4) {up to a quadrilateral panel}

DIMENSION AN(3),CG(3),SEGL(NSDMAX),EL(3,NSDMAX),EM(3,NSDMAX),

& XV(3,NSDMAX),Xip(3,4),Xgl(3),UL(3),VL(3)

DATA QUART / 0.25D+00 /, HALF/ .5D+00/

DATA ZERO/0.D+00/,ONE/1.D+00/,THREE/3.D+00/,FOUR/4.D+00/

C CHECK NUMBER OF SIDES OF A POLYGON

IF (NSIDE.LT.3 .OR. NSIDE.GT.NSDMAX) THEN

WRITE(*,*) ’ERROR: NUMBER OF SIDE SHOELD BE AT LEAST 3 ’,

& ’AND AT MOST ’,NSDMAX,’.’

STOP {terminate process in the case of out of range for NSIDE}

END IF

C

TOL=1.0D-07

C {tolerance for checking that neighboring vertices are near}

C

IF(NSIDE.EQ.3 .OR. IPLANE.EQ.1) THEN

C ----------- FOR A PLANAR ELEMENT ---------

C UNIT OUTWARD VECTOR NORMAL TO THE ELEMENT

DO 10 I=1,3

UL(I)=(XV(I,2)-XV(I,1))

10 VL(I)=(XV(I,3)-XV(I,1)) {with only 3 vertices of polygon}

CALL CROSS(UL,VL,AN) {cross product}

ANS=SQRT(PRDOT(AN,AN)) {dot product}

IF(ANS.LT.TOL) THEN {check small magnitude}

IER=0

RETURN

END IF

DO 20 I=1,3

20 AN(I)=AN(I)/ANS {unit normal vector}

C DEFINE ASSOCIATED UNIT VECTORS
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DO 50 J=1,NSIDE {loop for sides of element}

J1=J+1

IF(J.EQ.NSIDE) J1=1

DO 30 I=1,3

30 UL(I)=XV(I,J1)-XV(I,J)

SEGL(J)=SQRT(PRDOT(UL,UL))

IF(SEGL(J) .GT. TOL) THEN {check tiny length of side}

DO 40 I=1,3

40 EL(I,J)=UL(I)/SEGL(J) {el: unit directional vectors along sides}

CALL CROSS(AN,EL(1,J),EM(1,J)) {unit vector em = n x el}

ELSE

IER=1

END IF

50 CONTINUE

C CHARACTERISTIC LENGTH, AREA, CENTROID

IF(NSIDE.EQ.3) THEN {triangular element}

S=0.5D0*(SEGL(1)+SEGL(2)+SEGL(3))

AREA=SQRT(S*(S-SEGL(1))*(S-SEGL(2))*(S-SEGL(3))) {Helon’s formula}

DO 60 I=1,3

60 CG(I)=(XV(I,1)+XV(I,2)+XV(I,3))/3.D0

DIAGNL=AMAX1(SEGL(1),SEGL(2))

DIAGNL=AMAX1(SEGL(3),DIAGNL)

ELSE {quadrilateral element}

DIAG1=(XV(1,3)-XV(1,1))**2+(XV(2,3)-XV(2,1))**2

& +(XV(3,3)-XV(3,1))**2

DIAG2=(XV(1,4)-XV(1,2))**2+(XV(2,4)-XV(2,2))**2

& +(XV(3,4)-XV(3,2))**2

DIAGNL=SQRT(DIAG1) {separate it into two triangles}

S=0.5D0*(DIAGNL+SEGL(1)+SEGL(2)) {first triangle}

AREA=SQRT(S*(S-DIAGNL)*(S-SEGL(1))*(S-SEGL(2)))

DO 70 I=1,3

70 VL(I)= AREA*(XV(I,1)+XV(I,2)+XV(I,3))/3.D0 {1st moment}

S=0.5D0*(DIAGNL+SEGL(3)+SEGL(4)) {second triangle}

S=SQRT(S*(S-DIAGNL)*(S-SEGL(3))*(S-SEGL(4)))

DO 80 I=1,3

80 VL(I)=VL(I)+S*(XV(I,3)+XV(I,4)+XV(I,1))/3.D0

AREA=AREA+S

DO 90 I=1,3

90 CG(I)=VL(I)/AREA

IF(DIAG2.GT.DIAG1) DIAGNL=SQRT(DIAG2)

END IF

C

ELSE {for non-planar element}



456 CODE PRpan FOR PANEL METHOS

C

C ----------- FOR A NON-PLANAR ELEMENT ---------

C (method: projection of non-planar surface

C onto a mean planar surface)

*-----------------------------------------------------------------------

* EVALUATION OF REFERENCE COORDINATES OF THE ORIGIN OF THE LOCAL

* COORDINATE SYSTEM.

* ORIGIN AT AVERAGE POINT; FIRST APPROXIMATION.

*-----------------------------------------------------------------------

*

do 100 i = 1,3

V12=xv(i,1)+xv(i,2)

V23=xv(i,2)+xv(i,3)

V34=xv(i,3)+xv(i,4)

V41=xv(i,4)+xv(i,1)

CG(I)=(V12+V34)*QUART

UL(I)=(V23-V41)*HALF

VL(I)=(V34-V12)*HALF

100 continue

ULS=SQRT(PRdot(UL,UL))

VLS=SQRT(PRdot(VL,VL))

IF(ULS.LT.TOL.OR.VLS.LT.TOL) THEN

IER=0

RETURN

END IF

do 110 i = 1,3

UL(I)=UL(I)/ULS

VL(I)=VL(I)/VLS

110 continue

*-----------------------------------------------------------------------

* EVALUATION OF THE UNIT VECTORS(ul,vl,wl) OF LOCAL FRAME

*-----------------------------------------------------------------------

CALL CROSS(UL,VL,AN)

ANS = SQRT( PRdot(AN,AN) )

IF(ANS.LT.TOL) THEN

IER=0

RETURN

END IF

do 120 i = 1,3

120 AN(I)=AN(I)/ANS

CALL CROSS(AN,UL,VL)

*-----------------------------------------------------------------------

* LOCAL COORDINATES OF VERTICES WITH CG AS THE TEMPORARY ORIGIN.
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* Project onto u-v plane(local planar plane) by dropping Xip(3,j).

*-----------------------------------------------------------------------

do 140 j = 1,Nside

do 130 i = 1,3

130 SEGL(I)=xv(i,j)-CG(I)

Xip(1,J)=PRdot( SEGL,UL)

Xip(2,J)=PRdot( SEGL,VL)

140 continue

*-----------------------------------------------------------------------

* LOCAL COORDINATES RELATIVE TO CENTROID;

*-----------------------------------------------------------------------

A1=(Xip(1,2)+Xip(1,3))*HALF

A2=(Xip(1,3)+Xip(1,4))*HALF

A3=(Xip(1,3)+Xip(1,1))*HALF

B1=(Xip(2,2)+Xip(2,3))*HALF

B2=(Xip(2,3)+Xip(2,4))*HALF

B3=(Xip(2,3)+Xip(2,1))*HALF

D0=A1*B2-A2*B1

area = four * D0

D1=A1*B3-A3*B1

D2=A3*B2-A2*B3

D0I=ONE/(THREE*D0)

*.....Centroid in Temporary Coordinate System.

Xgl(1)=(D1*A1+D2*A2)*D0I

Xgl(2)=(D1*B1+D2*B2)*D0I

*.....Xip is now relative to the centroid.

do 160 j = 1,Nside

do 150 i = 1,2

150 Xip(I,J)=Xip(I,J) - Xgl(I)

160 CONTINUE

*-----------------------------------------------------------------------

* RE-EVALUATION OF NEW COORDINATES OF CENTROID and VERTICES

* IN GLOBAL COORDINATE SYSTEM.

*-----------------------------------------------------------------------

DO 165 I=1,3

165 cg(I)= CG(I) + UL(I)*Xgl(1) + VL(I)*Xgl(2)

do 180 j = 1,Nside

do 170 i = 1,3

170 xv(i,j) = cg(i) + UL(i)*Xip(1,j)+VL(i)*Xip(2,j)

180 continue

C DEFINE ASSOCIATED UNIT VECTORS

DO 210 J=1,NSIDE {loop for sides of element}

J1=J+1
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IF(J.EQ.NSIDE) J1=1

DO 190 I=1,3

190 EL(I,J)=XV(I,J1)-XV(I,J)

SEGL(J)=SQRT(PRDOT(EL(1,J),EL(1,J)))

IF(SEGL(J) .GT. TOL) THEN

DO 200 I=1,3

200 EL(I,J)=EL(I,J)/SEGL(J) {el: unit directional vectors along sides}

CALL CROSS(AN,EL(1,J),EM(1,J)) {unit vector em = n x el}

ELSE

IER=1

END IF

210 CONTINUE

DIAG1=(XV(1,3)-XV(1,1))**2+(XV(2,3)-XV(2,1))**2

& +(XV(3,3)-XV(3,1))**2

DIAG2=(XV(1,4)-XV(1,2))**2+(XV(2,4)-XV(2,2))**2

& +(XV(3,4)-XV(3,2))**2

DIAGNL=AMAX1(DIAG1,DIAG2)

DIAGNL=SQRT(DIAGNL) {longest diagonal as characteristic length}

*........................

END IF

C

RETURN

END

C

C CALCULATE VECTOR CROSS PRODUCT

SUBROUTINE CROSS(A,B,C)

DIMENSION A(1),B(1),C(1)

C(1)=A(2)*B(3)-A(3)*B(2)

C(2)=A(3)*B(1)-A(1)*B(3)

C(3)=A(1)*B(2)-A(2)*B(1)

RETURN

END

C

C Calculates vector dot product

FUNCTION PRdot(A,B)

DIMENSION A(1),B(1)

PRdot=A(1)*B(1)+A(2)*B(2)+A(3)*B(3)

RETURN

END

C--------------------------------------------------------{end of file}
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D.1 Introduction

In this appendix, a computational method is described for evaluating the Biot-
Savart integral. The approach emphasizes the transformation of the involved in-
tegrand into suitable forms, from which integral theorems can be used to reduce
the volume integral into line integrals. This method is applied to the case where
the density of vorticity distributed over a volumetric element bounded by planar
surfaces (straight lines in 2-D) is constant and/or linear. The resulting expres-
sions for the volume integral involve closed-form expressions for line integrals
along the edges of the element. The evaluation of the line integrals is treated
independently for each of the edges as opposed to direct numerical integration.
The closed-form formulas are expressed in terms of geometric parameters of
the element edges. Vector mathematical identities involving an integral of sin-
gularities distributed over a surface and a field can be employed to define field
values of a vector variable of interest at a point within a field. For example, the
field values of an irrotational and solenoidal vector can be obtained from the in-
tegrals over the sole surfaces bounding the field. In boundary-integral methods
which were inspired by the work of Hess and Smith (1964, 1966, 1969) for po-
tential flow problems of an incompressible fluid, the surface integrals involved
may be evaluated on the boundary by assuming that the bounding surfaces are
composed of a set of discrete panels and assuming a certain variation in the
boundary values of the dependent variable in space (over the panels) and time.

For other problems related to rotational and solenoidal vector fields, a vol-
ume integral exists, the so-called Biot-Savart integral. It is well known that the
Biot-Savart integral represents a formula in electromagnetic field theory that re-
lates a field distribution of electric current to the induced magnetic field (see
e.g., Bodner (1992)). In a manner analogous with the magnetic field induced
by the given distribution of current, this induction law has been also applied
to hydro- and aerodynamics by many workers: a distribution of vorticity in a
field induces the velocity field whose curl becomes the given value of vorticity
everywhere (Batchelor 1967, Saffman 1992).
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In vortex methods for viscous flow analyses— especially in the vorticity-
velocity integro-differential formulations (see e.g., Gresho (1991)), the Biot-
Savart integral must be evaluated at appropriate field points within the dis-
cretized fluid domain. With N elements used in discretizing the fluid domain
over which vorticity is distributed, O(N 2) evaluations of the Biot-Savart inte-
gral may be required in order to calculate the velocity field. The evaluation of
the Biot-Savart integral is, therefore, an important task in the numerical imple-
mentations associated with computational electromagnetics and fluid mechan-
ics.

D.1.1 Integral representation

For a distributed vorticity field, ω, in a fluid region V , the general form of the
Biot-Savart law is

q =

∫
V

ω ×∇GdV, (D.1)

where q is the induced velocity (magnetic) field andG the fundamental function,
defined by

G =


1

4πr
in 3-dimensions,

− 1

2π
ln r in 2-dimensions.

(D.2)

Hereafter, ∇ denotes the gradient, divergence, and curl differential operator
with respect to integration variables ξ, and r the distance between a field point
x and an integration point ξ.

In this appendix, efficient numerical analysis schemes for a linear distribu-
tion of vorticity over a surface in two-dimensions or over a volume in three-
dimensions are presented on the basis of transformations of the integrals. It
will be shown that the induced velocity field due to a vorticity distribution with
linear strength can be derived from a sum of line integrals along the edges of a
subdivided element. The derivation used here employs Stokes’s and/or Gauss’s
theorem, by which the velocity field can be expressed in terms which are de-
pendent only on the properties of each edge: namely, the terms of the position
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of a field point relative to each edge. In this manner, an analysis associated with
direct calculation of the triple (double in 2-d) integral over the element can be
avoided. An additional feature of the present derivation is that it is valid for an
arbitrary element bounded by planar surfaces (straight lines in 2-D).

D.2 Biot-Savart Integral in 2-D

D.2.1 Transformation of integral

A quadrilateral element is, without loss of generality, taken for the present anal-
ysis. The complete induced field is constructed by superposing the field contri-
butions due to the individual elements. For any polygon, we can easily deduce
the corresponding results from the expression, Eq. (D.6) below, by taking into
account the number of sides of the polygon in the summation of the contribu-
tions for each side. The vertices with coordinates (ξi, ηi) are denoted by ξ

i
, as

shown in Figure D.1, where each vertex is indicated by the index i. The in-
duced velocity (q) at an arbitrary field point P (x) with coordinates (x, y) due to
a distribution of vorticity over the domain of the element S is

q = − k

2π
×
∫
S

ω∇(ln r) dS, (D.3)

where r = |r| = |ξ − x| and ω is the scalar plane component of the vorticity
vector, ω (≡ ω k).

The integrand can be transformed into, through simple vector operations,

ω∇(ln r) = ∇(ω ln r)− 1

2
{∇ · (r ln r)− 1}∇ω. (D.4)

For a vorticity distribution of linear-variation density, we can convert the surface
integral in Eq. (D.3) into line integral terms, by applying the Gauss theorem with
the transformed integrand given in Eq. (D.4):∫

S

ω∇(ln r) dS =
1

2

∮
C

n ω (ln r2 + 1) dl − 1

2
∇ω

∮
C

(n · r) ln r dl. (D.5)
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Here the contour integrals are performed along the perimeter (C) of the element
in a counter-clockwise direction, and n is the unit normal vector on the boundary
of the element in the sense of a right-handed rule, i.e., n = s× k where s is the
unit directional vector of the contour integral path. Then k, n and s constitute a
right-handed triple of orthogonal unit vectors.
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Figure D.1 Definition of a quadrilateral element.

D.2.2 Analytic form of integrals

The resulting expressions for the velocity field include the line integrals only
along the boundary contour of the element. Let the value of the line integral
along each straight edge of the element be I i. It then follows that

q = − k

2π
×

(
4∑
i=1

I i

)
, (D.6)

where, with the side of length `i,

I i =
1

2
ni

∫ `i

0

ω (ln r2 + 1) dl − 1

4
∇ω (ni · r)

∫ `i

0

ln r2 dl. (D.7)

It is seen that the line integral for each side can be treated independently. It
is sufficient, therefore, to consider only one side of the polygon for the purpose
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of integration. The essential task is to evaluate the line integrals along a straight
segment from ξi to ξi+1 with linear variation of ω over it.

For the evaluation of the associated integrals, we take a local coordinate sys-
tem (x′, y′) in the plane through the field point x and the side concerned, such
that the side lies on the x′-axis and one end point of the side is at the origin of
the coordinates (see Figure D.2). The integration is performed along the pos-
itive x′-axis. The reason for choosing the local coordinate system as such is
because the integration is more compact and systematic than that for the case
of the global coordinate system, even though both procedures, in fact, produce
identical results. Of course the coordinates of the field point in the global co-
ordinate system must be transformed into the local coordinate systems of the
respective sides, and the computed field components must then be defined in
the global coordinate system to superpose the contributions due to the respec-
tive sides.
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Figure D.2 Definition sketch of the local coordinate system (x′, y′).

The local coordinates are related to the vectors defined in the global coor-
dinate system as: x′ = −ri · si and y′ = (ri × si) · k. This transformation
implies the projections of distance vectors between the field point P and the
end points of the segment on the x′- and y′-axis. Let us denote the distances
between the two end points of the side and the field point by ri =

√
x′2 + y′2
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and ri+1 =
√

(`i − x′)2 + y′2, respectively. After a substantial amount of alge-
braic manipulations (see Gradshteyn and Rhyzik 1980, pp. 81-84) for integral
formulae), the following result for I i can be obtained:

I i =
1

2
ni

{
ωi

(
`i + I(1)

)
+ (∇ω · si)

(
1

2
`2
i + I(2)

)}
−1

4
∇ω(ni·r)I(1), (D.8)

where ωi denotes the vorticity value at the i-th vertex,

I(1) = (`i − x′) ln r2
i+1 + x′ ln r2

i − 2 `i + 2 |y′| θi, (D.9)

I(2) =
1

2

(
r2
i+1 ln r2

i+1 − r2
i ln r2

i

)
− `2

i

2
+ `i x

′ + x′ I(1), (D.10)

and

θi = tan−1 |y′| `i
r2
i − `i x′

. (D.11)

Here the pair of arctangents appearing in this evaluation have been combined
by using the trigonometric formulae. Eventually it is seen that θi denotes the
included angle between distance vectors of the segment end points as viewed
from the field point P (see Figure D.2). Thus, the included angle is uniquely
measured as a value between 0 and π without considering the separate argu-
ments of the arctangent function, since the numerator of the argument of the
arctangent is non-negative. Note that the terms I(1) and I(2) given by Eqs. (D.9)
and (D.10) are determinate when the field point is on the extensions of the side.
For example, if the field point approaches one of the end points of the side,
we have finite values according to L’Hospital’s rule (for the indeterminate form
0 · ∞).

D.3 Biot-Savart Integral in 3-D

D.3.1 Transformation of integral

The induced velocity due to a vorticity distribution over an element whose
boundary is composed of planar panels, can be expressed in a volume form
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analogous to Eq. (D.3):

q =
1

4π

∫
V

ω ×∇
(

1

r

)
dV

=
1

4π

∫
V

{
1

r
(∇× ω)−∇×

(
1

r
ω

)}
dV. (D.12)

The vorticity distribution is assumed to be linear so that (∇ × ω) is constant.
By using the divergence (Gauss) theorem, Eq. (D.12) can be reduced to

4π q = (∇× ω)

∫
V

1

r
dV −

∮
S

n×
(

1

r
ω

)
dS, (D.13)

where S is the surfaces bounding the volume V and n is the outward normal
unit vector on the bounding surfaces.

In order to evaluate the volume integral term in Eq. (D.13), we use here
Green’s second identity for a scalar function φ such that∇2φ = 1;∫

V

1

r
dV = −αφ(x)−

∮
S

{
φn · ∇

(
1

r

)
− n · ∇φ

r

}
dS, (D.14)

where α is constant. When x is inside the volumetric region V , α is 4π. If x
is on the boundary of V , it is 2π. For x outside the volume, this value is zero.
Equation (D.13) can then be expressed as a sum of integrals over the bounding
planar surfaces as:

4πq = −(∇× ω)

[
α φ(x) +

∮
S

{
φ n · ∇

(
1

r

)
− n · ∇φ

r

}
dS

]
−
∮
S

n×
(

1

r
ω

)
dS,

= −(∇× ω) α φ(x)−
6∑
j=1

{
(∇× ω)Kj + Lj

}
. (D.15)

Here the upper limit 6 in the summation denotes the number of faces of the
volumetric cell element taken. Let us consider the surface integral term over
one planar panel since the corresponding integral terms for other panels can be
evaluated in the same manner. We drop the subscript j in Kj and Lj for sim-
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plicity of notation. The integral K represents induced potentials due to dipole
distributions of the second order in density and source distributions with linearly
varying density over the bounding surfaces. The integral has been evaluated in
various manners by numerous researchers. Bai and Yeung (1974) have set up
the basic framework for treating the potential and the normal potential induced
by a source density distribution which varies linearly over a triangular patch
element (see also (Webster 1975, Newman 1986). Herein on the basis of Bai
& Yeung’s procedure, we take the approach described in literature Suh et al.
(1992) for consistency with the present work. The analysis schemes are based
on transformation of the associated integrals.

Let us take, for example, φ = 0.5x2 as a simple choice of φ in Eq. (D.14).
In order to specify the second order variation of dipole density µ and the linear
variation of source density σ over the respective planar panels of the bounding
surfaces, we take a local coordinate system (ξ, η, ζ) such that the integration
surface is in the plane ζ = 0 and the direction of the ζ-axis is the same as
that of the normal vector n. The other two axes are on the surface and their
directional unit vectors (eξ, eη) with the normal vector (n) form a right-handed
triple of orthogonal unit vectors. We can specify the dipole distribution as µ =

0.5{x0 + ξ(eξ · i)}2 and the source distribution as σ = {x0 + ξ(eξ · i)}(n · i),
where x0 is the x-coordinate of the origin of the local coordinate system and
eξ = n × (i × n)/|i × n|. The integrands involved in Eq. (D.14) can now be
transformed into either the curl form of a vector or the cross product of a vector
with the normal n, as follows (Guiraud 1978, Suh 1992):

n · ∇
(

1

r

)
= −n · (∇× A), (D.16)

(ξ − xr) n · ∇
(

1

r

)
= −zr

{
eη · n×∇

(
1

r

)}
, (D.17)

(ξ − xr)2 n · ∇
(

1

r

)
= zr

{
1

r
− eξ · ∇

(
ξ − xr
r

)}
, (D.18)

1

r
= en · (∇×B), (D.19)

ξ − xr
r

= eη · (n×∇r), (D.20)
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with
A =

en × r
r(r + en · r)

, B =
en × r

(r + en · r)
, (D.21)

where the coordinates (xr, yr, zr) of the field point are measured with respect
to the origin of this local coordinate system, and en is a constant unit vector,
which is independent of the integration variables of the surface integral. Note
that Eqs. (D.17), (D.18) and (D.20) have been derived under the hypothesis of
planarity of the surfaces. While Eq. (D.19) holds for any en independent of the
integration variables, the unit vector en is conveniently taken as ±n in order to
use Stokes’s theorem for Eqs. (D.16) and (D.33) where the sign is chosen such
that the term en · r in the numerator of A and B is non-negative.

D.3.2 Specific line integrals

The integral K can then be written as, with the constants a0 = x0 + xr(eξ · i)
and a1 = eξ · i for shortness of expressions,

K = (n · i)(a0 φ
(0)
σ + a1 φ

(1)
σ ) + 0.5 a2

0 φ
(0)
µ + a0 a1 φ

(1)
µ + 0.5 a2

1 φ
(2)
µ , (D.22)

where

φ(0)
σ = −

4∑
i=1

biK
(1), φ(1)

σ = −
4∑
i=1

siηK
(2),

φ(0)
µ = −

4∑
i=1

bi (n · en)
E −K(1)

e
, φ(1)

µ = −zr
4∑
i=1

siη E,

φ(2)
µ = −zr

[
φ(0)
σ +

4∑
i=1

{
eξ · (si × n)K(3)

}]
, (D.23)

and the upper limit 4 in the summation denotes the number of sides of the panel.
Similar to the 2-D cases, the associated line integrals for the sides of the quadri-
lateral planar surface can be treated independently by using the geometric pa-
rameters of each side. Taking the local coordinate system (x′, y′), as shown in
Figure D.2 for the evaluation of the line integrals, the following closed-form
expressions of the associated integrals can be obtained by using the integral
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formulae (Grashteyn and Rhyzik 1980, pp. 81-84):

K(1) =

∫ `i

0

1√
(x′ − ξ)2 + y′2 + e

dξ = E − e√
y′2 − e2

β, (D.24)

K(2) =

∫ `i

0

√
(x′ − ξ)2 + y′2 dξ =

1

2

{
(`i − x′) ri+1 + x′ ri + y′2E

}
,

(D.25)

K(3) = (ξi − xr)E + siξ (ri+1 − ri + x′E), (D.26)

E = ln
ri+1 + `i − x′

ri − x′
, (D.27)

β =

{
sin−1H if F > 0,

π − sin−1H if F ≤ 0,
(D.28)

H =

√
y′2 − e2

{
y′2 `i + e (`i − x′) ri + e x′ ri+1

}
y′2(ri + e)(ri+1 + e)

, (D.29)

F =

(
y′2 + e ri
ri + e

)2

+

(
y′2 + e ri+1

ri+1 + e

)2

− y′2, (D.30)

bi = (n× r) · si, siξ = si · eξ, siη = si · eη, e = en · r. (D.31)

Recall that si denotes the unit directional vector along the path of integration.
In certain cases, some evaluations require special treatment. While the term
K(2) is bounded, the term K(1) might be indeterminate if the field point lies on
the same plane as the panel or on one of the lines defining the panel edge. In
this respect, let us investigate the behavior of the term biK

(1) in the vicinity of

the panel sides. If |y′| is equal to e, we have K(1) = E − x′

ri + e
− `i − x′

ri+1 + e
but

the factor bi vanishes and, hence, the term biK
(1) also vanishes. Furthermore,

when y′ is very small (accordingly the factor e approaches zero), bi and biK(1)

vanish in the same limit. When the field point approaches one of the vertices
(i.e., as x′ → 0 and y′ → 0) K(1) is logarithmically infinite, but biK(1) vanishes.
Thus the integralK has a finite value even, if the field point is on the same plane
as the panel.
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Next we will evaluate the second integral term L in Eq. (D.15):

L = −
∫
S

n×
(

1

r
ω

)
dS =

∫
S

γ t

r
dS, (D.32)

where γ t = −n× ω.

Similar to the integral K, Eq. (D.32) has the same form as the expression for
the induced potential due to a source distribution over a surface. For the cases
of distributions of vorticity with linearly varying densities within an element
domain, γ has a linear variation over the surface being an integration region.
With a specified linear distribution γ t = c0 t0 + c1 (ξ− xr) t1 + c2 (η− yr) t2,
we have

L = c0 t0

∫
S

1

r
dS + c1 t1

∫
S

ξ − xr
r

dS + c2 t2

∫
S

η − yr
r

dS. (D.33)

Herein the vectors t0, t1 and t2 are brought outside the integral, because they are
the constant vectors which are uniquely determined from the linearly varying
distribution of vorticity density over the panel. The integrands in Eq. (D.33)
can now be transformed, as given in Eqs. (D.19) and (D.20), and

η − yr
r

= −eξ · (n×∇r). (D.34)

Consequently Eq. (D.33) can be written as

L =
4∑
i=1

{
c0 t0 bi K

(1) + (c1 t1 siη − c2 t2 siξ) K
(2)
}
. (D.35)

For constant distributions of vorticity, we need only the term −
6∑
i=1

Lj without

the first and the second term in Eq (D.15).
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[93] Kármán, von Th. and Sears, W. R. (1938), “Airfoil theory for non-uniform
motion,” Journal of the Aeronautical Sciences, vol. 5, no. 10, pp. 379–390.

[94] Kerwin, J. E. and Lee, C.-S. (1978), “Prediction of steady and un-
steady marine propeller performance by numerical lifting-surface theory,”
SNAME Trans., vol. 86, pp. 218–253.

[95] Kim, K.-S and Suh, J.-C. (1998), “The vorticity based analysis of the vis-
cous flow around an impulsively started cylinder,” (in Korean), J. Soc.
Naval Archi. Korea, vol. 35, no. 4.

[96] Kim, K.-S., Lee, S.-J. and Suh, J.-C. (2003), “Numerical simulation of the
vortical flow around an oscillating circular cylinder,” (in Korean), J. Soc.
Naval Archi. Korea, vol. 40, no. 2, pp. 21–27.



482 General References

[97] Kim, K.-S. (2003), A Vorticity-Velocity-Pressure Formulation for Numeri-
cal Solutions of the Incompressible Navier-Stokes Equations, PhD. Thesis,
Seoul National University.

[98] Kim K.-S., Lee S.-J. and Suh J.-C. (2005), “Numerical simulation of the
vortical flow around an oscillating circular cylinder,” Proc. 15th ISOPE
2005, Seoul, June 19–24, 2005.

[99] Kim, M. J., and Mook, D. T. (1986), “Application of continuous vorticity
panels to general unsteady incompressible two-dimensional lifting flows,”
Journal of Aircraft, vol. 23, no. 6, pp. 464–471.

[100] Kinney, R. B. and Cielak, Z. M. (1977), “Analysis of unsteady viscous
flow past an airfoil: Part I-theoretical development,” AIAA J., vol. 15,
no. 12, pp. 1712–1717.

[101] Kirshner, I. N. (1989), The Bilinear Triangular Vorticity Patch (unpub-
lished), University of Michigan.

[102] Kochin, N. E., Kibel, I. A. and Roze, N. V. (1964), Theoretical Hydrody-
namics, (Translation of fifth Russian edition, Moscow, Fizmatgiz, 1963),
Interscience Publications Inc.

[103] Koumoutsakos, P. D. (1993), Direct Numerical Simulations of Unsteady
Separated Flows Using Vortex Methods, PhD. Thesis, California Institute
of Technology.

[104] Koumoutsakos, P. D., Leonard, A. and Pépin, F. M. (1994) “Vis-
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bewegten Tragfläche unter Berücksichtigung von Partialbewegungen der
Flüssigkeit,” Luftfahrtforschung, vol. 17, pp. 355–361.

[110] Küssner, H. G. (1960), “Non-statinary theory of airfoils of finite thick-
ness in incompressible flow,” AGARD Manual on Aeroelasticity, vol. 2,
Chapter 8.

[111] Lamb, H. (1932), Hydrodynamics, Sixth Ed., Dover.

[112] Lee, J. T. (1987), A Potential Based Panel Method for the Analysis of
Marine Propellers in Steady Flow, PhD. thesis, Department of Ocean En-
gineering, MIT, Report no. 87-13.

[113] Lee, Seung-Jae (2005), Lagrangian보오텍스방법을이용한단일기포
거동의수치모사 (Numerical simulation of single-bubble dynamics with
two-way coupling using the Lagrangian vortex method), 서울대박사학
위논문, 2005. 2.

[114] Lee, S.-J., Kim, K.-S. and Suh, J.-C. (2005), “A vorticity-velocity formu-
lation for numerical simulations of viscous flows around impulsive started
bodies,” Proc. Osaka Colloquium, March 14-15, 2005.

[115] Leonard, A. (1980) “Vortex methods for flow simulation,” Journal of
Computational Physics, vol. 37, pp. 289–335.

[116] Leonard, A. , Shiels, D., Salmon, J. K., Winckelmans, G. S. and
Ploumhans, P. (1997), “Recent advances in high resolution vortex methods
for incompressible flows,” AIAA, 97-2108, pp. 1–17.

[117] Lewis, R. I. and Ryan, P. G. (1972), “Surface vorticity theory for ax-
isymmetric annular aerofoils and bodies of revolution with application to



484 General References

duct cowls,” Journal of Mechanical Engineering Science, vol. 14, no. 4,
pp. 280–291.

[118] Lighthill, M. J. (1963), “Introduction, boundary layer theory,” Laminar
Boundary Layers, edited by J. Rosenhead, Oxford University Press, New
York, pp. 54–61.

[119] Lindsay, K. (1997), A Three-dimensional Cartesian Tree-code and Ap-
plications to Vortex Sheet Roll-up, PhD. Thesis, University of Michigan.

[120] Lindsay, K. and Krasny, R. (2001), “A particle method and adaptive
treecode for vortex sheet motion in three-dimensional flow,” J. Comput.
Phys., vol. 172, pp. 879–907.

[121] Lingjia, Z. and Hiroshi, T. (2007), “Hybrid vortex method for high
Reynolds number flows around three-dimensional complex boundary,”
Computers & fluids, vol. 36, pp. 1213–1223.

[122] Liu, C. H. (2001), “A three-dimensional vortex particle-in-cell method
for vortex motions in the vicinity of a wall,” Int. J. Numer. Meth. Fluids,
vol. 37, pp. 501–523.

[123] Lugt H. J. (1983), Vortex Flow in Nature and Technology, John Wiley &
Sons, New York.

[124] Lurie, E. A. (1996), Investigation of High Reduced Frequency, Separated
Trailing Edge Flows, Doctoral thesis, Dept. of Ocean Engineering, MIT.

[125] Mangler, K. W. (1952), “Improper integrals in theoretical aerodynamics,”
Aeronautical Research Council, Current Papers 94.

[126] Mangler, K. W. and Smith, J. H. B. (1970), “Behaviour of the vortex
sheet at the trailing edge of a lifting wing,” The Aeronautical Journal of
the Royal Aeronautical Society, vol. 74, pp. 906–908.

[127] Mansfield, J. R., Knio, O. M. and Meneveau, C. (1996), “Towards
Lagrangian large vortex simulation,” Proc. International Workshop on
Vortex Flows and Related Numerical Methods. ESAIM, available at
http://www.emath.fr/Maths/Proc/Vol.1/.



General References 485

[128] Mansfield, J. R., Knio, O. M. and Meneveau, C. (1998), “A dynamic
LES scheme for the vorticity transport equation: Formulation and a priori
Tests,” J. Comput. Phys., vol. 145, pp. 693–730.

[129] Mansfield, J. R., Knio, O. M. and Meneveau, C. (1999), “Dynamic LES
of colliding vortex rings Using a 3-D vortex method,” J. Comput. Phys.,
vol. 152, pp. 305–345.

[130] Marcos, C. F. , Barge, P. and Marcos, R. F. (2002), “Dust dynamics in
protoplanetary disks: Parallel computing with PVM,” J. Comput. Phys.,
vol. 176, pp. 276–294.

[131] Maskew, B. (1982), “Prediction of subsonic aerodynamic characteristics:
A case for low-order panel methods,” Jounal of Aircraft, vol. 19, no. 2,
pp. 157–163.

[132] McCartin, B. J. (1983), “Applications of exponential splines in computa-
tional fluid dynamics,” AIAA Journal, vol. 21, no. 8, pp. 1059-1065.

[133] Milne-Thomson, L. M. (1968), Theoretical Hydrodynamics, fifth edition,
Macmillan, London.

[134] Morgenthal, G. (2002), Aerodynamic Analysis of Structures Using High-
resolution Vortex Particle Methods, PhD. Thesis, University of Cambridge.

[135] Moran, J. (1984), An Introduction to Theoretical and Computational
Aerodynamics, Wiley.

[136] Morino, L., Kaprielian, Z. and Sipcic, S. R. (1985), “Free wake analysis
of helicopter rotors,” Vertica, vol. 9, no. 2, pp. 127–140.

[137] Morino, L. (1990), “Helmholtz and Poincare potential-vorticity decom-
positions for the analysis of unsteady compressible viscous flows,” Bound-
ary Element Methods in Nonlinear Fluid Dynamics, edited by Banerjee,
P. K. and Morino, L., Elsevier Applied Science, London and New York,
pp. 1–54.

[138] Moriya, T. (1941), “On the aerodynamic theory of an arbitrary wing
section,” Journal of the Society of Aeronautical Sciences, vol. 8, no. 78,



486 General References

pp. 1054–1060 English version in Selected Scientic and Technical Papers,
University of Tokyo, 1959, pp.48–59.

[139] Morsh, P. M. and Feshbach (1953), Methods of Theoretical Physics, 2
Vols., McGraw-Hill.

[140] Newman, J. N. (1977), Marine Hydrodynamics, MIT Press, Revised
(1997).

[141] Newman, J. N. (1986), “Distributions of sources and normal dipoles over
a quadrilateral panel,” J. Eng. Math., vol. 20, pp. 113–126.

[142] Obasaju, E. D., Bearman, P. W. and Graham, J. M. R. (1988), “A study
of forces, circulation and vortex patterns around a circular cylinder in os-
cillating flow,” J. Fluid Mech., vol. 196, pp. 467–494.

[143] O’Neill, B. (1966), Elementary Differential Geometry, Academic Press.

[144] Panton, R. L. (1996), Incompressible Flow, John Wiley & Sons, New
York.

[145] Parsons, M. G. (1984), NA 420 Ship Resistance and Propulsion II, (infor-
mal notes), University of Michigan.
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