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6.1 Introduction

In this chapter, we will explain the vorticity-based methods as a tool for the
numerical simulation of unsteady incompressible viscous flows. We will deal
with various numerical methods based on the vorticity-velocity-pressure for-
mulation for solving the Navier-Stokes equations. Specially, the finite volume
method and the vortex particle method are comparatively used for temporal evo-
lution of a vorticity field. The velocity, vorticity and pressure field is calculated
in the time marching process.

In general, there are three separate types of approach in the solution proce-
dure for the velocity field:

(a) to use the Biot-Savart integral for a presumably given vorticity field,

(b) to solve directly the kinematic relation between the velocity and the vor-
ticity, and

(c) to solve the Poisson equation for the stream function potential.

In this course, the schemes based on the differential approaches (a) and (c) will
be employed. The advantage in employing the integral approach (a) is based
on its stability. Integral operators are bounded and smoothing, so that discrete
approximations would be stable even if the discretized mesh is refined. The
approach (c) corresponds to the VIC (Vortex-In-Cell) method.

The present formulation includes the pressure calculation while most of the
existing vorticity-based methods have not treated the pressure field. The main
feature of the formulation is the use of an integral approach for obtaining the
velocity and pressure fields, in conjunction with a finite volume scheme and the
vortex particle method for solving the vorticity transport equation. The integral
approach may reflect more easily the global coupling among vorticity, veloc-
ity and pressure when imposed the boundary condition for vorticity at a solid
surface.

The numerical schemes for computing the vorticity evolution and the integral
approach for solving the velocity and the pressure are given in Chapter 7 and
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Chapter 8. We will take, as test problems, vorticity dominant flows around a
simple geometry such as a circular cylinder, driven cavity and hydrofoil, in
which certain special features are apparent, notably concerned with the vorticity
distribution on the body surface.

Our numerical schemes could be judged by a comparison with the exist-
ing analytical solution and experimental/numerical results provided by other re-
searchers. The demonstrated results indicate that the present integral approach
can be incorporated into the finite volume scheme and the Lagrangian vortex
method from the viewpoint that the evolution of vorticity in the fluid and on the
boundary is accurately predicted and are found to be in good agreement with
the comparable solutions.

6.1.1 Various vortical flows

Some vortical flows are natural and essential for movement of fluid (Lugt 1983).
The vortical flow behavior at a point in space can be related to a vortex defini-
tion. Vorticity is related to the angular velocity of matter at a point in continuum
space. Such a vortical motion is composed of a basic mode of motion due to
deformation along with rigid motion (Batchelor 1967). Figures 6.1 through 6.3
show typical patterns that may be observed in nature and laboratory.

In some aspects, it is convenient to represent the fluid motion in terms of
vorticity together with velocity and pressure. The advantages of the vorticity in-
terpretation and computation rely on the fundamental difference between fluid
and solid. Shearing process of fluid at solid surface can be precisely represented
by vorticity variable as the skew-symmetric part of the velocity gradient. More-
over, a knowledge of vorticity implies knowing not only the fluid motion at a
single spatial point, but also the relation of that motion with those of neighbour-
ing points. Thus, the vorticity reflects the dynamic mechanism of the shearing
process more directly than velocity variable (Wu & Wu 1993).
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Figure 6.1 Various vortex patterns. Concentric circular vortex and asymmetrical vortex;
Cylindrical vortex (perspective view); Spiral vortex; Disk-like and columnar vortices. From
Lugt (1983).

Figure 6.2 Trailing vortices from a rectangular wing. From Van Dyke (1982).



6.1 Introduction 241

Figure 6.3 Tip vortex cavitation of a marine propeller.

6.1.2 Recent developments

6.1.2.1 CFD modeling

Application of Computational Fluid Dynamics (CFD) might cover the range
from the automation of well-established engineering design methods to the use
of detailed solutions of the Navier-Stokes (referred to as ‘N-S’ below) equa-
tions as substitutes for experimental research into the nature of complex flows
(Ferziger & Perić (1996)). In recent, the advancement in computer hardware
technology has made it possible to perform numerical treatment of complex
flow fields.

There is yet to be found the most appropriate mathematical formulation of
the Navier-Stokes equations to simulate these flows is still open, considering
the fact that the choice is strictly dependent on the problem domain and the
boundary conditions. For suitable dynamical, spatial and steadiness approxi-
mations of Navier-Stokes equations for incompressible viscous flow, there exist
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so many mathematical models or discretization techniques. The computational
procedures are shown in Figure 6.4 .

Figure 6.4 Computational procedure for solving Navier - Stokes equations. From
Hirsch (1988).

As one candidate for solving Navier-Stokes equations , many researchers
have introduced various numerical methods based on the vorticity-velocity for-
mulation. The vorticity-velocity formulation has a few advantages over the
primitive variable formulation. A particular numerical algorithm developed for
the solution of the vorticity transport equation in an inertial reference frame may
be applied to that in a moving frame with correspondingly redefined bound-
ary and initial conditions without any extra consideration of stability problems
caused by the additional source terms (Speziale 1987).

6.1.2.2 Physical interpretation

Since the physical interpretation by Lighthill (1963) and Batchelor (1967)
of the vorticity dynamics, many researchers have introduced various numeri-
cal methods based on the vorticity-velocity formulation for solving the Navier-
Stokes equations as an alternative to the primitive variable formulation.

The vorticity-velocity formulation has a few advantages over the primi-
tive variable formulation. The vorticity-velocity formulation is mathematically
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natural since the inertia force (including the external body force) term in the
Navier-Stokes equations can be expressed as a Helmholtz decomposition form.
Then, the pressure and the vorticity become a pair of potentials of the inertia
force term (Wu & Wu 1993).

In externally attached flow problems where the viscous region occupies only
the boundary layer and wake, a computational region for vorticity evolution can
be confined to this region of the entire flow field (Wu 976).

Furthermore, the use of the vorticity field may be desirable to understand
certain features of established vortical flows. A particular numerical algorithm
developed for the solution of the vorticity transport equation in an inertial refer-
ence frame may be applied to that in a non-inertial frame with correspondingly
redefined boundary and initial conditions without any extra consideration of
stability problems caused by the additional source terms (Speziale 1987).

The fluid around a solid body adheres to the body surface at any instant
in time. This no-slip characteristics for fluid velocity must produce a proper
quantity of vorticity at the surface. This vorticity then enters and is distributed
throughout the fluid by convection and diffusion. The production and redistri-
bution of the vorticity is governed by the vorticity transport equation. One of
the most difficult problems encountered in the vorticity-velocity formulation is
the introduction of the proper value of vorticity or vorticity flux at the solid
surface (Gresho 1991).

Mathematical identity for a vector or scalar field is used to define field values
of a quantity of interest, which involves an integral of singularities distributed
over a surface and over a field. This concept that was well established for the
potential flow analysis have been extensively introduced to solve viscous flow
problems (see Morino (1990) for general description). This approach has been
recognized to accompany a large amount of computational time, not to ensure
a reasonable accuracy in numerical implementation.

Anderson (1989) was the first to present dynamic boundary conditions ap-
propriate for the vorticity formulation of the two-dimensional ‘N-S’ equations.
The boundary conditions do not reveal the inherent vorticity-pressure coupling
due to an additional compatibility condition, implying a special force balance
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on a solid wall through the N-S equations.

The dynamic mechanism of the viscous shearing process at the solid body
surface must be interpreted in terms of the vorticity and the pressure variables
together (Wu & Wu 1993). From a different approach, Wu et al. (1994) pre-
sented a systematic theoretical analysis for these dynamic boundary conditions.
They proposed a fully decoupled scheme based on fractional step methods (in
which the vorticity transport equation is separated into convection and diffusion
equations) applicable for high Reynolds numbers.

6.1.2.3 Vortex particle method

In recent times, great efforts have been made towards solving this problem es-
pecially in two-dimensional flow cases by Koumoutsakos & Leonard (1995).
In their work, a fractional two-step algorithm is employed in a similar way to
the work of Wu et al. (1994).

In the first step, discrete point-vortices updated at previous time steps in
the time-marching procedure are convected during a time interval (4t) via
the Biot-Savart integral with smoothed integral kernels (see Figure 6.5 ) and
their strength is modified based on the scheme of the particle strength exchange
scheme. In the second step, a spurious vortex sheet (γ) which is observed on
the surface of a body at the end of the first step is computed and related to a vor-
ticity flux (σ) generating from the solid wall in the fluid: σ = γ/4t. In order to
reveal dynamical interaction between the vorticity and the pressure, a tangential
gradient of the pressure on the right-hand side of this equation should be added.

Essentials of the vortex methods are

(1) one of numerical techniques to solve the N.-S. equations,

(2) suitable simulation for vortical flows,

(3) use of vorticity as a variable,

(4) Lagrangian concept computation,
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Figure 6.5 Smoothed integral kernel function in particle methods.

(5) confined computational region of non-zero vorticity,

(6) gridless or regular grid system in flow field, and

(7) automatically satisfied far-field boundary condition.

6.1.2.4 Vortex-In-Cell method

The major category of vortex method is distinguished by the scheme of calcula-
tion of the velocity field. Generally the vortex method can be divided into grid
free method based on the Biot-Savart law (Ploumhans et al (2002)) and vortex-
in-cell method where a grid is used for the velocity calculation but particles are
used to track the vorticity (Cottet & Poncet (2003)). Vortex-in-cell method has
been considered computationally efficient for the evaluation of velocity.

Table 6.1 reproduces the comparison, introduced in Cottet (1999), of the run
parameters used for a VIC(Vortex-In-Cell) code and a second order compact
finite-difference scheme for 2-D driven cavity flow. The table shows that the
VIC method can have economic cost due to the less restrictive time step.

As extentive work, Cottet & Poncet (2003) designed an immersed boundary
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vortex-in-cell method for the investigation of a cylinder wake. They computed
the velocity and the vorticity strain based on grid Poisson solver.

Table 6.1 Comparison of CPU times between vortex-in-cell method and finite difference
method for 2-D driven cavity flow for various Reynolds numbers.

Reynolds number 100 2000 10000

NFDM 64 128 256

NVIC 64 128 256

∆tFDM 0.01 0.008 0.004

∆tVIC 0.01 0.02 0.04

CPUtimeFDM 3 24 225

CPUtimeVIC 5 16 32

6.2 Vorticity-Velocity-Pressure Formulation

6.2.1 Navier-Stokes equations in Helmholz decomposition

In Chapter 2, we have described the equations of motion, being a relation be-
tween the rate of change of momentum of a material volume of a fluid and all
forces acting on that portion of fluid,

d

dt

∫
V

ρ q dV =

∫
V

ρ f dV +

∮
S

τ dS (6.1)

where f is the external body force per unit mass of fluid and τ is the stress
vector (the surface force per unit area).

For incompressible Newtonian fluid, the stress tensor is related to the pres-
sure and the strain rate linearly.

τij = −p δij + 2µDij (6.2)

where

Dij =
1

2

(
∂qi
∂xj

+
∂qj
∂xi

)
(6.3)
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Then, substitution of Eq. (6.2) in Eq. (6.1) gives

ρ
Dqi
Dt

= ρ fi −
∂p

∂xi
+ µ

∂2qi
∂xj∂xj

(6.4)

Eq. (6.4) becomes, in vector notation,

ρ
Dq

Dt
= ρ f −∇p+ µ∇2q (6.5)

Alternatively, for an incompressible flow, Eq. (6.2) can be reduced to

τij = −p δij + µ

(
∂qi
∂xj
− ∂qj
∂xi

)
+ 2µ

∂qj
∂xi

(6.6)

As represented by the surface integral of Eq. (6.1), the stress vector is derived
as

τ = τij nj =

{
−p δij + µ

(
∂qi
∂xj
− ∂qj
∂xi

)
+ 2µ

∂qj
∂xi

}
nj

= −p n+ µ ω × n+ 2µ (∇q) · n (6.7)

The equation of motion Eq. (6.1) then gives∫
V

ρ
Dq

Dt
dV =

∫
V

ρ f dV +

∮
S

{
−p n+ µ ω × n+ 2µ (∇q) · n

}
dS

=

∫
V

ρ f dV +

∫
V

{−∇p−∇× (µ ω)} dV (6.8)

Here we have ignored the contribution of the surface integral J =
∮
S∇q · n dS

because it becomes zero as outlined below.

Contribution of J =

∮
S

∇q · n dS in Eq. (6.8)

From the vector expansion,

(n×∇)× q = ∇q · n− (∇ · q) n (6.9)
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J =

∮
S

{
(n×∇)× q + (∇ · q) n

}
dS (6.10)

For incompressible flow, ∇ · q = 0. Then, dividing the surface region S into
two parts Su and Sl by introducing a line C,

J =

∫
Su

(n×∇)× q dS +

∫
Sl

(n×∇)× q dS (6.11)

Use the Stokes theorem for each term,

J =

∮
C

d`× q +

∮
−C

d`× q = 0 (6.12)

Thus the contribution of 2µ∇q · n to the surface force becomes zero. ���

Consequently, we can introduce the reduced stress vector that has the
Helmholtz decomposition form:

τ ∗ = −p n+ µ ω × n (6.13)

Figure 6.6 shows the directions of the stresses related to the surface vorticity.
Viscous stress makes 45o with principal axes of strain rate tensor.

Figure 6.6 Interaction between shearing process and surface vorticity. The principal axes t1
and t3 rotate around ω′ . From Wu et al. (1993).
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Figure 6.7 shows the erection of the hairpin vortex structures in boundary
layers. Vortex stretching (distortion) interacts on vorticity field. Such interac-
tion provides the physiccal background on generation of turbulent flows. Pri-
mary hairpin vortex may induce a pressure gradient near the wall surface by
which strong secondary or tertiary haipin vortex is ejected and then the multiple
breakup of a single turbulent streak occurs.

Figure 6.7 Possible effect on the hairpin vortex structures. Adapted from Taylor &
Smith (1990).

We also have a natural form of Helmholtz decomposition for the Navier-
Stokes equations:

ρ
Dq

Dt
− ρf = −∇p−∇× (µ ω) (6.14)

Moreover, the first term in Eq. (6.14) can be rewritten as, by using vector iden-
tities:

Dq

Dt
=

∂q

∂t
+ q · ∇q

=
∂q

∂t
+∇

(
1

2
q · q

)
− q × ω (6.15)

According to Eqs. (6.14) and (6.15), the Navier-Stokes equations for an incom-
pressible flow of a Newtonian fluid are written as:

∂q

∂t
+ ∇

(
p

ρ
+

1

2
q · q

)
= f + q × ω − ∇× (ν ω) (6.16)
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6.2.2 Vorticity transport equation

The vorticity transport equation is obtained by taking the curl of Eq. (6.16):

∂ω

∂t
= ∇× f +∇×

(
q × ω

)
− ν∇× (∇× ω) (6.17)

Using the vector expansion formulas:

∇×
(
q × ω

)
= ω · ∇q + q (∇ · ω)− ω

(
∇ · q

)
− q · ∇ω (6.18)

∇× (∇× ω) = ∇ (∇ · ω)−∇2ω (6.19)

Since∇·
(
∇× q

)
= ∇·ω = 0, the vorticity transport equation is equaivalently

represented as

∂ω

∂t
+
(
q · ∇

)
ω = (ω · ∇) q + ν∇2ω +∇× f (6.20)

The corresponding vorticity transport equation for a compressible fluid with
variable viscosity and density is, 1

∂ω

∂t
= −

(
q · ∇

)
ω + (ω · ∇) q + ν∇2ω +∇× f − ω

(
∇ · q

)
+

1

ρ2
(∇ρ×∇p) +

µ

ρ
{∇ρ× (∇× ω)} − 4µ

3ρ2

{
∇ρ×∇(∇ · q)

}
+

[
∇×

{
1

ρ

(
−2

3
(∇ · q) (∇µ) + 2(∇q) · (∇µ) + (∇µ)× ω

)}]
(6.21)

The vorticity transport equation in Eulerian and Lagrangian description can
be expressed as, respectively, ignoring the body force term,

1For details, see Zabusky, N. J. (1999), “Vortex paradigm for accelerated inhomogeneous flows: Visiomet-
rics for the Rayleigh-Taylor and Richtmyer-Meshkov environments,” Annual Review of Fluid Mechanics, vol. 31,
pp. 495–536.
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(1) Eulerian Description

∂ω

∂t
+ q · ∇ω = ω · ∇q + ν∇2ω + ∇× f

Local time rate of Convective rate Stretching effect Viscous Body force
of vorticity of vorticity of vorticity diffusion effect

(6.22)

(2) Lagrangian Description

Dω

Dt
= ω · ∇q + ν∇2ω + ∇× f

Rate of change Stretching effect Viscous Body force
of vorticity of vorticity diffusion effect

(6.23)

The vorticity transport equation for 2-D incompressible flow of a viscous
fluid, ignoring the external body force, is represented as

∂ω

∂t
+
(
q · ∇

)
ω = ν∇2ω +∇× f (6.24)

6.2.3 Pressure Poisson equation

The Poisson pressure equation, by taking the divergence of Eq. (6.16) is also
derived as

∇2

(
p

ρ
+

1

2
q · q

)
= ∇ ·

(
q × ω

)
+ ∇ · f (6.25)

or equivalently
∇2H = ∇ ·

(
q × ω

)
+ ∇ · f (6.26)

Here, the external force is ignored and the pressure p is related to the total
pressure H (the static and the dynamic pressure) defined by

H =
p− p∞
ρ

+
1

2

(
q2 − q2

∞
)

(6.27)

where the constants p∞ and q∞ are the reference pressure and velocity at in-
finity (or at a reference point), respectively. With this definition, the boundary
condition at infinity for H is expressed by H → 0 as |x| = r →∞. Thus the
contribution due to H at infinity is not considered.
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6.2.4 Kinematic boundary condition

Equations (6.24) and (6.26) should be solved in the fluid domain with the
boundary, being subject to the boundary conditions for velocity, vorticity and
pressure on the surface of a solid body.

At a solid boundary, kinematics dictates that the tangential component of the
flow velocity on the wall must be equal to the tangential velocity of the body.

q(xs, t) · t = UB · t (6.28)

where, if a body translates with a speed U∞ and rotates with angular velocity
Ωb around its center of mass located at xb, UB = U∞ + Ωb × (xs − xb). This
boundary condition results from experimental fact and is valid that the fluid
is, to a good approximation, a continuum. This is usually called the no-slip
boundary condition. Also, the normal component of the velocity of the fluid
and the velocity of the body should be the same:

q(xs, t) · n = UB · n (6.29)

This is usually called the no-through-flow boundary condition. Equations (6.28)
and (6.29) are the constituents of the kinematic boundary condition:

q(xs, t) = UB (6.30)

Fluid element in contact with the wall is subject to the flow velocity and the
motion of the wall. This may result in a net torque onto the fluid element that
may in turn impart a rotational motion to the fluid.

6.2.5 Dynamic boundary condition

The boundary condition for the vorticity at the solid surface can be derived by
taking the cross product of Navier-Stokes equations Eq. (6.16) with a normal
vector n:

n× (ρ a) + n×∇p = − n× (∇× (µ ω)) (6.31)
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where the acceleration is expressed as a = dq/dt and the external body force
f is ignored. This condition corresponds to the force equilibrium in the di-
rectiontangent to the solid surface. The second term on the right-hand side of
Eq. (6.31) also becomes by using vector expansion formulas,

n× (∇× (µ ω)) = ∇ (µω) · n− ∂(µ ω)

∂n
(6.32)

Substitution of this relation in Eq. (6.31) then gives

∂(µ ω)

∂n
= n× (ρ a) + n×∇p+∇ (µ ω) · n (6.33)

The boundary condition for the pressure at the solid surface can be derived by
taking the scalar product of N.-S. equations (6.16) with a normal vector n:

n ·
∂q

∂t
+

∂

∂n

(
p

ρ
+

1

2
q · q

)
= n ·

(
q × ω

)
− n · (∇× (ν ω)) (6.34)

This condition corresponds to the force equilibrium in the direction normal to
the solid surface. Equation (6.34) is also expressed by using the total pressure
in Eq. (6.27) and ignoring the external force as

∂H

∂n
= − n ·

∂q

∂t
+ n ·

(
q × ω

)
− n · (∇× (ν ω)) (6.35)

6.2.6 Integral approach of formulation

The governing equations for the unsteady flow of a Newtonian incompressible
fluid can be written as,

∇ · q = 0, (6.36)

ω = ∇× q, (6.37)
∂ω

∂t
+ q · ∇ω = ω · ∇q + ν∇2ω +∇× f, (6.38)

∇2

(
p

ρ
+

1

2
q2

)
= ∇ ·

(
q × ω

)
+∇ · f, (6.39)
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where q, ω and p are the velocity, the vorticity and the pressure, respectively, ν
is the kinematic viscosity, and ρ is the density of the fluid. The set of Eqs. (6.37),
(6.38) and (6.39) is one of the basic differential vorticity-velocity-pressure for-
mulations. In VIC (Vortex-In-Cell) method, a Poisson equation for the stream
function ∇2ψ = −ω, is used instead Eq. (6.37). In the next section, we will
describe in detail about the VIC method to be employed.

According to the mathematical vector identity, an equivalent integral formu-
lation of Eq. (6.37) is written as, with use of Eq. (6.36),

q =

∮
S

[
(n · q)∇G+ (n× q)×∇G

]
dS +

∫
V

ω ×∇GdV, (6.40)

where n is the unit normal pointing into the fluid at the boundary S (C in 2-
dimensions) of a fluid domain V (S in 2-dimensions) and ∇ denotes the dif-
ferential operator with respect to the variable of integration ξ. Here, G is the
fundamental solution of the Laplace equation for an unbounded fluid domain,

defined by G = − 1

4πr
in 3-dimensions and G = +

1

2π
ln r in 2-dimensions,

where r is the distance between a field point x and an integration point ξ.

The velocity field q is considered as the sum of two components: the veloc-
ity of undisturbed onset flows and the disturbance velocity due to the existence
of a solid body. The first integral of Eq. (6.40) represents the contribution from
the irrational component of the flows (i.e., q

o
+∇φ plus the motion of a mov-

ing reference frame if introduced). The second one known as the Biot-Savart
law represents the disturbance velocity field (uω) induced by a vorticity field.
The use of the Biot-Savart law in computing the velocity field guarantees the
enforcement of the boundary condition for the velocity at infinity.

Correspondingly, an integral formulation of Eq. (6.39) can be written as:

H =

∮
S

[
H
∂G

∂n
− ∂H

∂n
G

]
dS +

∫
V

{
∇ · (q × ω) + ∇ · f

}
GdV. (6.41)
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6.2.6.1 Two-dimensional formulation

Ignoring the external body force f , the two-dimensional version of the system
of Eqs. (6.38), (6.40) and (6.41) can be written as, in non-dimensional form,

∂ω

∂t
+∇ · (q ω) =

1

Re
∇2ω, (6.42)

q = q∞ +∇φ− 1

2π

∫
S

ω ×∇(ln r) dS, (6.43)

H = − 1

2π

∮
C

[
H
∂(ln r)

∂n
− ∂H

∂n
(ln r)

]
dl

+
1

2π

∫
S

∇ · (q × ω) (ln r) dS, (6.44)

where Re is the Reynolds number and ω is the scalar plane component of the
vorticity vector (ω ≡ ω k). All non-dimensional quantities are defined based on
the characteristic length of a body (e.g., the diameter of a circular cylinder (D)
for our test problems) and the velocity of oncoming inflows (q∞).

The system of Eqs. (6.42), (6.43) and (6.44) must be solved in the fluid do-
main with a boundary, being subject to the boundary conditions for the velocity,
the vorticity and the pressure on the surface (CB) of a solid body. The no-slip
velocity condition states that the velocity of the fluid (q) is equal to the velocity
of the body (UB) at the surface points (xB) of the body:

q(xB, t) = UB on CB. (6.45)

The two-dimensional version of Eq. (6.33) is represented by

∂(µ ω)

∂n
= n× (ρ a) + n×∇p (6.46)

or equivalently

ν
∂ω

∂n
= s ·

∂q

∂t
+

1

ρ

∂p

∂s
(6.47)

where s is a tangential vector and ν is the kinematic viscosity. This represents an
explicit expression of the process of vorticity production described only verbally
by Lighthill (1963). This quantity of the vorticity flux diffuses into the fluid
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from the body surface.

The boundary vorticity flux (σ) at the solid body for two-dimensional incom-
pressible flow is

σ ≡ − 1

Re

∂ω

∂n
= −k ·

{
n× dUB

dt
+ n×∇

(
p

ρ

)}
on CB. (6.48)

This essential boundary condition for the vorticity at the solid surface can
be derived by taking the cross product of the N-S equations with n, with use
of the velocity adherence condition. It represents an explicit expression of the
process of vorticity production described only verbally by Lighthill (1963).
This quantity of the vorticity flux diffuses into the fluid from the body surface.
The above expression applies for t = 0+ as well, and is therefore applicable
immediately after a solid body is accelerated impulsively. Similarly, the scalar
product of the N-S equations with n gives an expression for ∂H/∂n as:

∂H

∂n
= −n ·

∂q

∂t
+ n · (q × ω)− 1

Re
n · (∇× ω) on CB. (6.49)

It is seen from Eqs. (6.48) and (6.49) that the boundary conditions for the vor-
ticity and the pressure are coupled. A more rigorous and extensive analysis on
these pressure and vorticity conditions for two- or three-dimensional incom-
pressible or compressible flows was given by Wu & Wu (1993).

6.2.7 Stream function approach: VIC method

The velocity field can be decomposed into

q = U∞ + uω + uφ (6.50)

where U∞ is incoming velocity, uω represents rotational field, and vφ represents
solenoidal field. The velocity vector can also be expressed according to the
Helmholtz decomposition due to the incompressibility,

q = U∞ +∇× ψ +∇φ. (6.51)
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The vector potential ψ and the scalar potential φ should vanish in the far field
so that the velocity field recover the free stream velocity.

q → U∞ as |x| → ∞ (6.52)

where x is the spatial coordinate. The vector potential is related to a stream
function in two dimension. If we take the curl of the equation (6.51),

ω = ∇× (∇× ψ) = −∇2ψ +∇(∇ · ψ) (6.53)

If we enforce∇ · ψ = 0, the equation results in Poisson equation,

∇2ψ = −ω (6.54)

and its solution is
ψ =

1

4π

∫
V

ω

r
dV (6.55)

Fially the rotational velocity field is uω = ∇× ψ,

uω = − 1

4π

∫
V

ω ×∇
(

1

r

)
dV, (6.56)

where r is the distance from the volume element dV to the field point. This
equation commonly referred to the Biot-Savart formula.

The rotational velocity field can be evaluated using the Biot-Savart law
(6.56). But, the direct calculation involves O(N 2) cost for N elements. This
is computationally intensive so that fast evaluation method such as multipole
expansion has been developed in order to cut down the cost. The VIC method
reduces the computational cost to O(N logN) by employing grid based fast
Poisson solvers. The VIC method is composed of three basic steps. First, the
vorticity field is projected to the grid using the interpolation kernel. The Pois-
son equation for vector potential (6.54) is solved on the grid with the boundary
value of ψ. The velocity on the grid is computed from the definition uω = ∇×ψ
with the finite difference formula, and then the velocity is interpolated back to
the particles.
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6.2.8 Particle method in solving the vorticity transport equation

Let us start with a simplified conservative form of the vorticity transport equa-
tion, Lω = f with a suitable differential operator L:

Lω =
∂ω

∂t
+∇ · (q ω) + c0 ω = f (6.57)

For a material volume V (t), the integral form would be

d

dt

∫
V (t)

ω dV +

∫
V (t)

c0 ω dV =

∫
V (t)

f dV (6.58)

where we have used the Reynolds transport theorem. Here we introduce the
idea of particle methods in which mass on points is concentrated:

ω(x, t) = α(t) δ(x− xp(t)) (6.59)

With such particle representation, the above integral becomes discrete values,
and then the vorticity transport equation reduces to a set of ordinary differential
equations. As example, for the homogeneous equation Lω = 0, we have the
general solution form:

dα

dt
+ c0(xp(t), t)α = 0, with

dxp
dt

= q(xp, t) (6.60)

Now, the extension of this concept to the vorticity transport equation in 3-D
gives us following govering equations in the vortex particle methods:

ω =
∑
p

αp δ(x− xp(t)) (6.61)

dxp
dt

= q(xp, t) (6.62)

dαp
dt

= ∇q(xp, t) αp + diffusion term (6.63)

The effects of the diffusion term can be employed by the PSE(Particle Strength
Exchange) scheme and the integral formula for the wall no-slip condition. The
overall insights on the PSE scheme and the wall viscous diffusion will be ex-
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plined in Chapter 8.

6.2.9 Hydrodynamic Forces

The force exerted by the fluid on the body can be separated into the hydrostatic
force and the hydrodynamic force. The hydrodynamic force F on the body due
to the motion is defined as

F

ρ
= −dI

dt
(6.64)

The quantity I is called the hydrodynamic impulse that needs to be applied to
the body to set it in motion against the inertia of the fluid (Lamb 1932). Thus,

I =
1

d− 1

∫
V

x× ω dV (6.65)

with d the dimension of the space (d = 3 in 3-D, d = 2 in 2-D). 2 In two-
dimensional case, the position (x̃, ỹ) of vorticity are related to the components
(Ix, Iy) of hydrodynamics impulse

Ix =

∫
y ω dS ≈

∑
i

yi Γi

Iy = −
∫
xω dS ≈ −

∑
i

xi Γi

(6.67)

and then the components of the force (Fx, Fy) is

Fx = −ρ dIx
dt

, Fy = −ρ dIy
dt

(6.68)

where
dI

dt
=
I (t+4t)− I (t−4t)

24t
. The x-component of the hydrodynamic

force is called the drag and the y-component is the lift.
2In Eq. (1.113), we set f = q to find

I ≡
∫
V

q dV =
1

d− 1

∫
V

x× (∇× q) dV − 1

d− 1

∮
S

x× (n× q) dS (6.66)

and then the second integral term would vanish from the no-slip boundary condition (q = UB) for a stationary
body (also for steadily moving bodies) and the far-field boundary condition(q = U∞). Accordingly, the second
term on the right-hand side of Eq. (6.66) does not contribute the hydrodynamic forces.
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Extensively, if we take q = ∇p in Eq. (6.66) and the divergence theorem for
the first volume integral, then the pressure forces can be written as, since the
second volume integral term must vanish (i.e., identically∇×∇p = 0),

F p ≡ −
∮
SB

p n dS =
1

d− 1

∮
SB

x× (n×∇p) dS (6.69)

Using Eq. (6.46), the 2-D version of the pressure forces is represented by, in
terms of the vorticity flux on body surface and the body acceleration,

F (2D)
p ≡ −

∮
SB

p n dS =

∮
SB

x×
{
∂(µ ω)

∂n
− n× (ρUB)

}
dS (6.70)

For the 2-D case of an impulsively started body, the result reduces to, in terms
of vorticity flux distribution on the body surface,

F (2D)
p = −

∮
SB

p n dS =

∮
SB

x× ∂(µ ω)

∂n
dS (6.71)

In derived Eq. (1.113), we have noted that the left-hand side of Eq. (1.112)
and Eq. (1.113) is independent of the choice of the origin of x, so must be
the right-hand side. Namely, if we remove x from the right-hand side of these
equations, the remaining integrals must vanish.
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