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8.1 Introduction

This chapter describes a vortex particle method for the solution of the incom-
pressible Navier-Stokes equations. In the early stages of development of flows
around a circular cylinder, a hydrofoil section, a sphere and a rectangular wing
undergoing an impulsively started motion, the computational results obtained
by the vortex particle method (including the vortex-in-cell method) are com-
pared with those obtained by the Eulerian finite volume method. The compari-
son is performed separately for the pressure fields as well. The results obtained
by these methods give a better understanding of the vorticity-based methods.

The vortex method is based on the Lagrangian description of the vorticity
field. Its the main idea is one that a vortical flow field is represented by vor-
tex particles. This representation is very attractive for numerical simulations
of viscous flow around a body with complex geometry. It is then possible to
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avoid the nonlinear convection term of the vorticity transport equation, which
involves difficulties associated with numerical diffusion for its discretization in
grid-based methods.

We will focus on the two-dimensional formulation but partly some extension
of the formulation to three-dimensions will be made.

Figure 8.1 Schematic diagram of the vortex particle method in two-dimensions.

8.2 Numerical Implementation

8.2.1 Particle representation of vorticity field

There are several kinds of Lagrangian elements to discretize the vorticity field
in vortex methods, such as particles(blobs), sheets, and filaments. In this work,
a set of N vortex particles is introduced, of strength αi and position xi(t), to
represent the vorticity field
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8.2.1.1 Two-dimensions

In the case of two-dimensional flows, a Lagrangian form of Eq. (6.38) is repre-
sented as

Dω

Dt
= ν∇2ω, (8.1)

where ω is the scalar plane component of the vorticity vector (ω ≡ ω k). The
vorticity field is represented by N scalar-valued particles:

ω(x, t) =
N∑
i=1

ζε(x− xi)αi. (8.2)

Each particle is characterized by its position, xi(t), and its strength, αi(t) =

αi(t)k, i.e., its circulation, αi =
∫
Si
ωdS ≈ ωiSi, with Si the area of fluid

associated with the particle i. The regularized particle representation of the vor-
ticity field has been used by various researchers (Leonard 1980, Winckelmans
1989,1993). The distribution functions ζε associated with each particle are de-
fined by

ζε(r) =
1

εi2
ζ

(
|r|
εi

)
, (8.3)

where εi is the smoothing parameter denoting the blob (particle) size which is
usually taken as the grid size. In the present study, we choose Gaussian smooth-
ing as the distribution function for its physically appealing properties:

ζ(ρ) =
1

2π
exp

(
−ρ

2

2

)
. (8.4)

8.2.1.2 Three-dimensions

In a similar way to two-dimensions, a set of N vortex particles is introduced to
represent the vorticity field:

ω(x, t) =
N∑
i=1

ζε(x− xi)αi, (8.5)
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where the strength αi =
∫
Vi
ω dV = ωiVi and Vi is the volume associated with

the particle i. The regularization function, ζε, associated with each particle is
defined by

ζε(r) =
1

ε3i
ζ

(
|r|
εi

)
(8.6)

where εi is the smoothing parameter. The function ζ is usually taken to be ra-
dially symmetric with normalization to conserve circulation. The Gaussian dis-
tribution can be used, for instance,

ζ(ρ) =
1

(2π)3/2
exp

(
−ρ

2

2

)
(8.7)

8.2.2 Velocity field

In three dimensional flow, Eq. (6.40) is expressed as

q =
1

4π

∮
S

[
(n · q) r

|r|3
+ (n× q)× r

|r|3

]
dS +

1

4π

∫
V

ω × r

|r|3
dV, (8.8)

where,r = x − y. The second integral term of Eq. (8.8) corresponds to the
rotational part(uω) of the velocity field induced by the vorticity field.

Vortex particle positions xi(t) are governed by the equation,

dxi
dt

= q(xi, t) (8.9)

Recall that the velocity field is based on the Helmholtz decomposition:

q = U∞ +∇φ+ uω (8.10)

The term ∇φ is equivalent to the surface integral of Eq. (6.40) that is the ir-
rotational part of the velocity field. According to Green’s scalar identity, the
potential φ at arbitrary points on the body surface is written as

1

2
φ(x) =

∮
SB

{
φ(y)

(
n(y) · ∇G

)
+
(
n(y) · ∇φ(y)

)
G
}
dly. (8.11)
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The integral equation of Eq. (8.11) is discretized as

1

2
φi(x) =

M∑
j=1

Aij φj +
M∑
j=1

Bij σj, (8.12)

where

Aij =

∫
Cj

n(y) · ∇Gdly, Bij =

∫
Cj

Gdly, (8.13)

σj ≡ n · ∇φj = n · UB − n · (U∞ + uω) . (8.14)

By solving the linear system of equations with Aij, Bij, we obtain φi at colloca-
tion points on the surface. Then ∇φ on the body surface can be approximated
in the sense of the finite difference of φi. ∇φ at field points can be directly
computed by using Eq. (3.5) for 3-D and Eq. (3.5) for 2-D.

8.2.2.1 Regularized velocity field

Note that one can view the mollified velocity field as the exact velocity associ-
ated with a vorticity ω consisting of vortex particles, in two-dimensions,

uω =

∫
S

K ×

[
N∑
i=1

Γi ζε (|x− xi|)

]
dS

=
N∑
i=1

[∫
Si

K ζε (|x− xi|) dS
]
× Γi

=
N∑
i=1

Kε (|x− xi|)× Γi (8.15)
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Here, with the smooth function ηε, the kernel Kε in (8.15) is expressed as

Kε (r) =

∫
S

K (r) ζε(r) dS

= K(r)

∫ r

0

∫ 2π

0

ζε(r) r dr dθ

= K (r)

[
1− exp

(
− r2

2ε2

)]
(8.16)

where r = |x− y|, K = ∇G = − 1

2π

r

|r|2
.

Kε

(
x− y

)
= − 1

2π

x− y
|x− y| 2

[
1− exp

(
−
|x− y|2

2ε2

)]
(8.17)

The term uω of Eq. (8.10) which is equivalent to the volume integral (Biot-
Savart integral) of Eq. (6.40), may be discretized by Eq. (8.2) for 2-D:

uω(x, t) = − 1

2π

N∑
i=1

Kε × (αi(xi) k), in 2-D (8.18)

where

Kε =
ri
|ri|2

[
1− exp

{
−r2

i/(2ε
2
i )
}]
, with ri = x− xi (8.19)

Similarly, the regularized velocity for 3-D can be expressed as:

uω(x, t) = − 1

4π

N∑
i=1

K(3D)
ε × αi(xi), in 3-D (8.20)

where

K(3D)
ε =

ri
|ri|3

{
erf

(
ρ√
2

)
− ρ

√
2

π
exp

(
−ρ

2

2

)}
, ρ = |ri|/εi (8.21)
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where erf(x) =
2√
π

∫ x

0

exp(−t2) dt.

The efficiency of vortex particle method is conditioned in particular by the
choice of the cutoff function ηε and the location and strength of particles are ini-
tially set. The right hand side of Eq. (8.15) is computed using a fast algorithm,
proposed by Greengard and Rohklin (1987), that has an operation count of
O (N logN) and with active error control based on accurate error bounds. The
numerical time-advancing scheme required for solving the location of particles
is an additional important factor. In practice it is important to use schemes that
are at least second order (Adam-bashforth or Runge-Kutta schemes are com-
monly used).

Note that the term uω has been included when we apply the no-penetration
condition q·n = UB ·n on the body surface. In fact, the no-penetration condition
is numerically imposed by Eq. (8.14).

The vector potential (stream function) corresponding to the 3-D velocity field
would be

ψ(x, t) =
1

4π

N∑
i=1

1

ρ εi
erf

(
ρ√
2

)
αi (8.22)

A simpler algebraic function can be used rather than such a Gaussian function,
especially for the calculation of the stream function at the boundary:

ψ(xB, t) =
1

4π

N∑
i=1

1

εi

1√
|x− xi|2/ε2i + 1

αi

=
1

4π

N∑
i=1

1√
|x− xi|2 + ε2i

αi (8.23)

8.2.3 Field viscous diffusion: PSE scheme

The treatment of the diffusion equation Eq. (8.1) is based on a technique re-
lated to the PSE (Particle Strength Exchange) scheme introduced by Degond &
Mas-Gallic (1989). The Laplacian operator ∇2 is approximated by an integral
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operator, which is discretized over the particles.

ν∇2ω ≈ 2ν

ε2

∫
S

ηε(|x− y|) (ω(y)− ω(x)) dSy. (8.24)

Then, the evolution equation for the particle strength becomes

dαi
dt

=
2ν

ε2

N∑
j=1

(Si αj − Sj αi) ηε(xi − xj), (8.25)

where

ηε(xi − xj) =
1

2π ε2
exp

(
−
|xi − xj|

2

2ε2

)
(8.26)

This function is the same as one given in Eq. (8.4). Herein, ε is taken to be
constant for all particles.

The three-dimensional version would be

dαi
dt

=
2ν

ε2

N∑
j=1

(
Vi αj − Vj αi

)
ηε(xi − xj) (8.27)

8.2.3.1 Image layer method in two-dimensions

If Eq. (8.25) is used for wall-bounded computations, particles close to the wall
are not completely surrounded by other particles. Consequently, a spurious vor-
ticity flux appears at the wall while the total vorticity is conserved (Ploumhans
2000, Cottet 2000).

We use an image particle layer to complete the PSE for particles close to
the wall. Solid walls are approximated as discretized panels. The images are
placed along a layer inside the body close to the panel, as shown in Figure 8.3 .
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Figure 8.2 Comparison of the image vortex layer of the present method with the image vortex
system in Ploumhans & Wickelmans (2000).

Figure 8.3 Example of the image vortex layer around an NACA 0012 hydrofoil.

The extended vorticity of the image layer adds to the vorticity on the body,

ω (x) =
N∑
i=1

αi ζεi (x− xi) +
M∑
m=1

α∗m ζ
∗
εm (x− x∗m) for x ∈ ∂D, (8.28)

where the superscript ‘∗’ refers to quantities of images. Then the vorticity flux
on the body is expressed as

∂ω

∂n
=

N∑
i=1

αi
∂ζεi (x− xi)

∂n
+

M∑
m=1

α∗m
∂ζ∗εm (x− x∗m)

∂n
for x ∈ ∂D, (8.29)

where n is the normal vector of the particle x and the zero vorticity-flux con-
dition means ∂ω/∂n = 0 at the body surface. The normal derivative of the
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smoothing function is found to be

∂ζεi (r)

∂n
= − 1

2π ε4
exp

(
− r2

2ε2

)
(r · n) . (8.30)

Denoting the radius of the image blob by ε∗, Eq. (8.29) is expressed as

∂ω(xp)

∂n
=

1

2πε∗4

M∑
m=1

α∗m exp

(
− r∗2

2ε∗2

)
(r∗ · n)

+
1

2π ε4

N∑
i=1

αi exp

(
− r2

2ε2

)
(r · n) = 0. (8.31)

where r = xp − xi and r∗ = xp − xm. With the image layer, Eq. (8.24) is
replaced by

dαi
dt

1

Si
=

2ν

ε2

N∑
j=1

[
αj
Sj
− αi
Si

]
ζε
(∣∣xi − xj∣∣) Sj

+
2ν

ε2

M∑
m=1

[
α∗m
Sm
− αi
Si

]
ζε (|xi − xm|) Sm, (8.32)

where Sm = ε∗2 for the image. This technique is insensitive to the local shape of
a body. That is, because one image layer in the body is used, it may be suitable
in the case of a thin body, e.g., foils with cusped trailing edges.

8.2.3.2 Image layer method in three-dimensions

For particle i close to the boundary, the computation of the PSE involves two
subsets of particles: Pi(the subset of particles close enough to xi) andP ′i (the set
of images of the particles in Pi). The position of image particle x′i is computed
using symmetry, the plane of symmetry being the plane tangent to body surface
closest to xi. The volume and smoothing parameter of an image particle are
taken equal to those of the original particle. The two components of the strength
(α′i) parallel to the tangential plane are taken equal to those of αi. The normal
component is taken with the opposite sign. If (ξ, η, n) are the local orthogonal
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coordinates,
α′i = (αi · ξ) ξ + (αi · η) η − (αi · n)n (8.33)

Lee (2005) pointed out that the position and strength of an image are not easily
determined for a slender body such as NACA0012 hydrofoil, if the technique
outlined above is used. He suggested a more general treatment for the image,
and applied successfully to the 2-D flow simulation around NACA0012 at ar-
bitrary angles of attack, as well as around a circular cylinder. He positioned
images just below the control points of the discretized body panels (the total
number of image particles becomes the number of panels). The strength of an
image particle can be determined from the zero vorticity flux condition on the
control point of a panel,

∂ω

∂n
=

N∑
i=1

αi
∂ζε(x− xi)

∂n
+

M∑
m=1

α′m
∂ζ ′ε(x− x′m)

∂n
(8.34)

Cottet & Poncet (2003) demonstrated in the immersed boundary VIC
method that such particular diffusion formulas are no longer necessary near
the boundary. He used plain PSE formulas all over the domain, even near the
boundary. The spurious vorticity in the flow, usually introduced with the PSE
ignoring the boundary, was supposed to be corrected from the application of
vorticity flux formulas, because the evaluation of the slip and the enforcement
of the no slip boundary condition are made on the boundary itself. The PSE
in this work pursued Cottet’s demonstration, but as described in the section
8.4.3 for the potential field calculation, normal flow condition is satisfied on the
panel as well as tangential flow. Figure 8.4 compares the differences between
the PSE using images and immersed boundary PSE schematically.
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(a) Remeshing and image in vortex method

(b) Immersed boundary and particles in VIC

Figure 8.4 Comparison of particle locations between the vortex particle method and the
immersed boundary method in VIC.
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8.2.4 No-slip condition: Vorticity flux at wall

The solution of the heat equation may be expressed in integral form as: 1

ω = ν

∫ t

0

∫
∂D
Hε (x, t; ξ , τ)

∂ω
(
ξ, τ
)

∂n
dξ dτ (8.35)

where

Hε =
1

4πν (t− τ)
exp

(
−
|x− ξ|2

4ν (t− τ)

)
Therefore, the Gaussian smoothing meets all these requirements and is a natural
choice since it is the kernel of the heat equation. Its associated ηε is also a
Gaussian and with the proper normalization, it is found that Hε = ηε which be
of some computational benefit (Raviart 1987, Pepin 1990),

Hε

(
|x− y|

)
=

1

2πε2
exp

(
−
|x− y| 2

2ε2

)
(8.36)

where 2 ν dt = ε2.

A vorticity flux (ν
∂ω

∂n
) may be determined on the boundary in such a way

that the no-slip condition is satisfied. Wu et al. (1994) introduced a relation
between a vorticity flux and spurious slip velocity(Vs). If a vorticity flux is
constant over a small interval of time (∆t), the spurious slip velocity(Vs) that
would appear at the end of the time step can be regarded as the coupling term
corresponding to the tangential gradient of the surface pressure in Eq. (6.48).
The newly computed Vs, which can be obtained by the Biot-Savart integral, can
then used to absorb the coupling term and consequently to update a vorticity
flux: (

ν
∂ω

∂n

)(k+1)

=

(
ν
∂ω

∂n

)(k)

+

(
Vs
∆t

)(k)

(8.37)

wher the superscript notation refers to the iterative step.

The iteration continues until the no-slip condition is satisfied, i.e., until Vs
1See Friedman (1964).
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reduces to a value within a preset allowance. Eq. (8.37) indicates the total flux
to be emitted into the flow for the diffusion process during a time ∆t. This
elegant decoupled scheme was introduced by Wu et al. (1994), through which
we can efficiently recover the global coupling between the vorticity and the
pressure boundary condition instead of the implementation of the fully coupled
schemes.

The vorticity flux is distributed to neighboring particles by discretizing the
Green’s integral for the inhomogeneous Neumann problem corresponding to the
diffusion equation. For diffusion within the schemes to work properly, the spa-
tial distribution of the particles must remain as uniform as possible. To re-mesh
the distorted particles, we overlaid a uniform rectangular grid. This is necessary
in order to accurately interpolate the current vorticity field onto the new grid of
initially uniformly spaced particle location that replaces the distorted particle
locations (as suggested by Ploumhans and Winckelmans (2000)).

8.2.4.1 Wall viscous diffusion in two-dimensions

The total flux to be emitted into the flow for the diffusion process must be
emitted during a time ∆t. In effect, the vortex sheet Vs must be distributed
to neighboring particles by discretizing the Green’s integral for the inhomoge-
neous Neumann problem corresponding to the diffusion equation. As shown in
Figure 8.5 , consider a panel of uniform strength Vs located along the x-axis,
and diffusing to the right side. The vortex sheet does not diffuse toward the in-
terior of the body. The amount of circulation, ∆αi, that will be imposed on the
particle located at (xi, yi) (yi > 0 , xi (any sign)), is given by

∆αi =

∫ xi+hi/2

xi−hi/2

∫ yi+hi/2

yi−hi/2
∆ω dx dy (8.38)

where hi2 = Si is the fluid area associated with particle i. The change in vor-
ticity ∆ω is due to the flux from the panel acting over a time ∆t, which reduced
t.

∆ω =

∫ ∆t

0

dω

dt
dt (8.39)
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Figure 8.5 Particles with respect to a panel for viscous wall diffusion.

Then,
dαi
dt

=

∫ ∫
dω

dt
dx dy (8.40)

∆αi =

∫ ∆t

0

dαi
dt

dt ≈ dαi
dt

∆t (8.41)

Eq (8.41) is integrated numerically using mid-point rule:

∆αi = hi
2 Vs

(
1− κ

√
πν∆t

)−1 1√
2π ν ∆t

×

× exp

(
− yi

2

2 ν ∆t

)
[erfc(s)]

(xi−hi/2)/
√

2 ν∆t

(xi+hi/2)/
√

2 ν∆t
(8.42)

where erfc(s) =
2√
π

∫ ∞
s

exp(−v2) dv = 1− erf(s). To resolve the non con-

servation problem caused by numerical integration, the integral of Eq. (8.40) is
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performed as follows (Ploumhans & Winckelmans 2000)

dαi
dt

=

∫ ∫
dω

dt
dx dy =

∆γ

∆t

(
[erfc(s)]

(yi−hi,l/2)/
√

4 ν t

(yi+hl/2)/
√

4 ν t

)
×

×
{√

4 ν t
1

2

(
[ierfc(s)]

xi−b/2−hi/2/
√

4 ν t

xi−b/2+hi/2/
√

4 ν t
− [ierfc(s)]

xi+b/2−hi/2/
√

4 ν t

xi+b/2+hi/2/
√

4 ν t

)}
(8.43)

where ierfc(s) =

∫ ∞
s

(u) du =
1√
π

exp(−s2)− s erfc(s), and hi,l/2 = xi if

0 ≤ xi < hi and hi,l/2 = hi/2 otherwise.

If particles are on a regular lattice aligned with the panel, Eq.(8.43) is always
conservative. Thus, it could also be used to perform under resolved computa-
tions, where the value of h2/(4ν∆t) would be very high. The large value of
h2/(4ν∆t) is equivalent to h2/σ2 � 1, which means the violation of the blob
overlap condition(h/σ < 1). In practice, however, the spatial distribution of
the particles is not well aligned with the vortex panel. Therefore, in order to
enforce conservation, the correction is made as follows (Ploumhans & Winck-
elmans 2000):

∆αi,conserv. = ∆αi +
(∆αi)

2∑
j (∆αj)

2

(
b Vs −

∑
j

∆αj

)
, (8.44)

where j runs over all particles concerned by the panel Vs. This scheme mini-
mizes ∑

i

(∆αi −∆αi,conserv.)
2/(∆αi)

2 (8.45)

with the constraint that (b Vs)− (
∑
i

∆αi,conserv.) = 0.

For diffusion with the above schemes to work properly, the spatial distribu-
tion of the particles must remain fairly uniform as long as possible. This is one
reason why particle redistribution procedure must be performed every 5 to 10
time steps.
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8.2.4.2 Wall viscous diffusion in three-dimensions

The process that the vorticity created at the boundary shed on to the particles
has been accounted for by the diffusion, and the solution to the diffusion equa-
tion for the voricity with homogeneous initial condition and the Neumann type
boundary condtion has been implemented in an appropriate discretized form.
The solution may be expressed in integral form using Green’s function for the
diffusion equation.

The 3-D version of the discretization is well explained in Ploumhans (2002).
Consider a retangular panel of uniform strength ∆γ(= n × us) and size b ×
f , located on the XY plane, and diffusing toward the positive Z direction. A
particle located at (xi, yi, zi), (zi > 0), receives, from that panel, an amount of
‘vorticity×volume’ given by

∆αi =

∫ ∆t

0

dαi
dt

dt (8.46)

with
dαi
dt

=

∫ xi+hi/2

xi−hi/2

∫ yi+hi/2

yi−hi/2

∫ zi+hi/2

zi−hi/2

dω

dt
dx dy dz (8.47)

The rate of change of the vorticity owing to the panel is equal to

dω

dt
=

∆γ

∆t

1

2
√
π

1√
4 ν t

exp

(
− z2

4 ν t

)
×

× [erfc(s)]
(x+b/2)/

√
4 ν t

(x−b/2)/
√

4 ν t
× [erfc(s)]

(y+f/2)/
√

4 ν t

(y−f/2)/
√

4 ν t

(8.48)

Equation (8.48) is then integrated exactly, giving

dαi
dt

=
∆γ

∆t

(
[erfc(u)]

(zi−hi,l/2)/
√

4 ν t

(zi+hi/2)/
√

4νt

)
×
{√

ν t
(

[ierfc(u)]
(xi+hi/2−b/2)/

√
4 ν t

(xi−hi/2−b/2)/
√

4 ν t
− [ierfc(u)]

(xi+hi/2+b/2)/
√

4 ν t

(xi−hi/2+b/2)/
√

4 ν t

)}
×
{√

ν t
(

[ierfc(u)]
(yi+hi/2−f/2)/

√
4 ν t

(yi−hi/2−f/2)/
√

4 ν t
− [ierfc(u)]

(yi+hi/2+f/2)/
√

4 ν t

(yi−hi/2+f/2)/
√

4 ν t

)}
(8.49)
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where ierfc(s) =

∫ ∞
s

erfc(x) dx. Notice that hi,l/2 = zi if 0 ≤ zi < hi and

hi,l/2 = hi/2 otherwise. Even though Eq. (8.49) is exact for a rectangular
panel of size b × f , the equation is still applicable to triangular panels, if each
triangular panel is considered as a square centered at the triangle centroid.

In the intial setting of the vortex particles, the vortex particles with zero
strength are first distributed on a regular mesh and several iterations of wall
diffusion and slip velocity calculation are carried out to achieve no slip on the
surface. The procedure is repeated at the end of each time marching step.

Figure 8.6 Diffusion of vorticity from body boundary. Vorticity correction is performed in
the iterative way for satisfying the boundary condition at the surface.

8.2.5 Pressure equation

Once the vorticity and the velocity fields are updated, the integral equation for
the total pressure may be solved. Basically, the process for calculating the pres-
sure in a Lagrangian frame is similar to one in an Eulerian frame. Substituting
Eq. (6.49) for ∂H/∂n into Eq. (6.44) yields the limiting form for H as a field
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point approaches the surface points (xB) of a solid body:

1

2
H +

1

2π

∮
CB

H
∂(ln r)

∂n
dl =

− 1

2π

∮
CB

[
n · ∂u

∂t
− n · (q × ω) + n · (∇× (ν ω))

]
ln r dl

+
1

2π

∫
S

∇ · (q × ω) ln r dS, (8.50)

where the integrals over CB are evaluated on the surface of a body in the
sense of the Cauchy principal value integral. Using the vector operation for
the integrand of the surface integral in Eq. (8.50), namely, ∇ · (q × ω) ln r =

∇ ·
{

(q × ω) ln r
}
− (q × ω) · ∇(ln r) and applying the divergence integral

theorem to the resultant expression, yield a Fredholm integral equation of the
second kind for H:

1

2
H +

1

2π

∮
CB

H
∂(ln r)

∂n
dl = − 1

2π

∮
CB

[
n · ∂u

∂t
+ n · (∇× (ν ω))

]
ln r dl

− 1

2π

∫
S

(q × ω) · ∇(ln r) dS. (8.51)

Furthermore, if we assume that the body will be either fixed, or impulsively
started, as in the test problem, the equation reduces to a simpler form:

1

2
H +

1

2π

∮
CB

H
∂(ln r)

∂n
dl = − 1

2π

∮
CB

ν
∂ωB
∂s

ln r dl

− 1

2π

∫
S

(q × ω) · ∇(ln r) dS. (8.52)

The two integrals over CB in Eq. (8.52) may be replaced by the sum of the
individual integral form for the contribution of each straight-line body panel.
This can then be solved using the panel method in a way similar to that used in
potential flow analysis (as mentioned before).

The surface integral term on the right-hand side of Eq. (8.52) may be solved
with distorted vorticity particles, unlike the well aligned cell elements in an
Eulerian description. The discretization of Eq. (8.52) (except the last surface
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integral term) is expressed as

1

2
Hi +

1

2π

M∑
j=1

Hj

∫
Cj

∇(ln r) dlj = − 1

2π

M∑
j=1

{
n · (∇× (ν ω))j

}∫
Cj

ln r dlj

− 1

2π

∫
S

(q × ω) · ∇(ln r) dS. (8.53)

Body vorticities on the body panels may be calculated from the distribution
function of Eq. (8.2). The second term on the right-hand side of Eq. (8.53),
(source-like strength, n ·∇× (ν ω)) is calculated by numerically differentiating
the body vorticities in the tangential direction of the body surface panel. With
the vorticity field of Eq. (8.2), the last integral term in Eq. (8.53) is discretized
as

1

2π

∫
(q × ω) · ∇(ln r) dS =

1

2π

N∑
k=1

[
q
k
× (αk k) · rk

|rk|
2

∫
Sk

ζεk dS

]

=
1

2π

N∑
k=1

[
(x− xk) qy αk − (y − yk) qx αk

|rk|
2

]
×

×

[
1− exp

(
−|rk|

2

2 ε2

)]
(8.54)

Consequently, the total pressure Hi (i = 1, 2, · · · ,M ) on the body panels is
calculated by using the following equation (see Appendix B):

M∑
j=1

(
1

2
δij + Aij

)
Hi = −

(
M∑
j=1

Cij +
N∑
k=1

Sik

)
(8.55)

where

Aij =

∫
Cj

nj · ∇G
(
|xi − xj|

)
dl

Cij =

∫
Cj

nj ·
(
∇× (ν ωj)

)
G
(
|xi − xj|

)
dl

Sik =
(
q
k
× Γk

)
·Kε (|xi − xk|)
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Then the total pressure at the field is explicitly calculated with the total pressure
on the body surface :

Hi = −
M∑
j=1

AijHj −

(
M∑
j=1

Cij +
N∑
k=1

Sik

)
(8.56)

where i = 1, 2, · · · , N .

8.2.6 Computational procedure

As shown in Figure 8.7 , the numerical implementation for two dimensional
Lagrangian formulation can be summarized in the following sub-steps of the
solution of the system of governing equations. The overall procedure is similar

Figure 8.7 Numerical procedure of the vortex particle method.

to those of Koumoutsakos et al. (1994) and Ploumhans et al. (2000). In the
present method, however, the irrotational (potential field) part of the velocity
field is calculated by using the well-established panel method and the iterative
process is used for more physically suitable creation of vorticity flux in order
to ensure the no slip condition, which was taken on the previous vorticity-based
method in the Eulerian description (Suh and Kim 1999). A typical time step,
∆t, of the Lagrangian vortex method is divided into two substeps.
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(1) The local velocity (q = uω +∇φ+U∞) is computed as follows: uω calcu-
lated by the Biot-Savart integral (Eq. (8.18)), ∇φ calculated by the panel
method (Eqs. (8.11)). Then, the velocity is integrated with a second-order
Adam-Bashforth scheme (or a second-order Runge-Kutta method imme-
diately after the redistribution process is applied) to convect the particle.
Their strengths are updated with the PSE scheme (Eq. (8.32)) that is in-
tegrated with an Euler explicit scheme. Algorithmically, this step is ex-
pressed as

xn+1
i = xni + ∆t

(
3

2
q
i
(xn, αn)− 1

2
q
i
(xn−1, αn−1)

)
(8.57)

α∗i = αni + ∆t
dαi
dt

∣∣∣∣
PSE

(xn, αn). (8.58)

(2) The vorticity flux ν
∂ω

∂n
necessary on the body surface to cancel the slip

velocity computed by sub-step (1), is computed (Eq. (8.18)). However,
recalculation of the slip velocity on the body boundary may reveal that
the no slip condition is not satisfied. Vorticity flux due to the remaining
slip velocity is then re-calculated. The iteration continues until the no-slip
condition is satisfied, i.e., until the spurious slip velocity reduces to a value
within a preset allowance. The vorticity strength corresponds to a vorticity
flux that must be emitted during a time ∆t:

αn+1
i = α∗i + ∆t

dαi
dt

∣∣∣∣
wall

(xn+1, α∗). (8.59)

(3) The redistribution scheme is applied every few steps(herein every 5 to 10
time steps) to maintain spatial uniformity of the particle distribution. Once
the vorticity and velocity are updated after two substeps are taken, the
pressure equation (i.e., Eqs.(8.53) through (8.54)), is solved.

8.2.6.1 Redistribution

Vortex methods have been guaranteed on its convergence by the condition that
particle cores overlap at all times. Redistribution is an essential operation to
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maintain a good representation of the vorticity field. The vortex-in-cell method
is characterized by the information exchange between particles and grid, as is
explained in section 8.4.2. As a good quality scheme to bring the particles in-
formation to grid, and the grid information to the particles, the M ′

4 scheme was
introduced. The formula is also used for the redistribution of every few time
steps. The scheme is continuous and so is the first derivative. It is known as
a second order scheme. In summary, the M ′

4 formula is used at three stages
of the method. First, when particle vorticity is interpolated on a regular Carte-
sian grid where velocity are evaluated, second, when the grid values are inter-
polated back to particles, and finally to redistribute the disorted particles onto
uniform rectangular grid. In order to avoid for the number of particles to grow
at a too high rate, a newly generated particle having strength |α| < εα |α| and
Reh = |ω|h2/ν < Reh,trsh is deleted after redistribution. The particluar choice
for the cutoff parameters is different with application.

In order to remesh on the distorted Lagrangian particles, we overlay a uni-
form rectangular grid as shown in Figure 8.8 . It is necessary to accurately
interpolate the current vorticity field onto the new grid initially uniform-spaced
particle location (x̃) that replaces the distorted particle location (x). After redis-
tribution, the uniform grid cell centers become the location of the new particles.

(a) Before redistribution (b) After redistribution

Figure 8.8 Redistribution scheme for a general boundary in two-dimensions.

The new particle strengths are determined using an appropriate interpolation
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kernel Λ so that:

Γ̃i(x̃) ≈
N∑
j=1

Γj(xj) Λp(x̃i − xj) (8.60)

where Γ̃,Γ denote the new and old particle strength respectively, Λp interpola-
tion kernel of p-th order. The process is not of the usual interpolation type as it
is complicated by the fact that the particles are disordered. The basic analysis
of interpolation of this type is given by Schoenberg (1973).

Consider first the normalized 1-D problem with unit spacing, u = (x− x̃) /h.
In the Λ3(u) scheme, an old particle located at −1/2 ≤ u ≤ 1/2 gives

Λ3(u) =


(3− 2u) (4u2 − 1)/48 to the new particle located at −3/2

(1− 2u) (9− 4u2)/16 to the new particle located at −1/2

(1 + 2u) (9− 4u2)/16 to the new particle located at 1/2

(3 + 2u) (4u2 − 1)/48 to the new particle located at 3/2

If a wall is present, the redistribution of particles close to the wall must
be modified so that particles are prevented from penetrating the body. This is
achieved by using Λp

′
schemes. Two such schemes are detailed here, consider-

ing that an old particle is located at −1/2 ≤ u ≤ 1/2 and that the wall is at
u = −1

2 for the Λ2
′
scheme and u = −1 for the Λ3

′
scheme:

Λ2
′
(u) =


(u− 2− 1/2) (u− 1− 1/2)/2 at 1/2

(u− 1/2) (2− u+ 1/2) at 3/2

(u− 1/2) (u− 1− 1/2)/2 at 5/2

Λ3
′
(u) =


(1− 2u) (2u− 5) (2u− 3)/48 at −1/2

(2u− 5) (2u− 3) (1 + 2u)/16 at 1/2

(1− 2u) (2u− 5) (1 + 2u)/16 at 3/2

(1− 2u) (3− 2u) (1 + 2u)/48 at 5/2

In the present approach, a Λ3 scheme is used for particle located more than
3/2 from the wall, a Λ3

′
scheme for particles with distance between 1/2 and

3/2, and a Λ2
′

scheme for particles less than 1/2 from the wall (Λ3, Λ3
′

and
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Λ2
′

schemes is suggested by Ploumhans and Winckelmans (2000) for general
boundary).

The 2-D redistribution formulas are Cartesian products of their 1-D counter-
parts. In this case, the interpolation kernel is defined as

Λ(x, y) = Λ(x) Λ(y)

We use two steps. First, an old particle is redistributed in the x-direction and
temporary particles are created. This redistribution in the x-direction has cre-
ated three or four temporary particles. Each temporary particle is then redis-
tributed in the y-direction. Figure 8.9 gives an example of the redistribution
scheme.

(a) Before redistribution (b) Redistribution in the x-direction

(c) Redistribution in the y-direction (d) After redistribution

Figure 8.9 Two-dimensional redisribution scheme for a particle near a boundary. Λ3 scheme
for point A, and Λ3 Λ3

′
and Λ2

′
schemes for point B are used.
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8.2.6.2 Force calculation

Hydrodynamic forces on the solid bodies can be computed either (1) by inte-
gration of the pressures on the boundaries, or (2) from integral expression of
the system momentum balance. In vortex method, the second approach is very
robust and has an almost zero computational cost. The total force F on a solid
body can be computed from the time change of the linear impulse in the domain,

F = −ρ dI
dt

(8.61)

where ρ is the density and I is the first order moment of vorticity,

I =
1

d− 1

∫
V

x× ω dV (8.62)

with d the dimension of the space (d = 3 in 3-D, d = 2 in 2-D), and V the vol-
ume occupied by the fluid. The discretization of the equation is straight forward
as it needs just summation running over all particles.

Ix =
1

2

∫
V

(y ωz − z ωy) dV ≈
∑
p

(yp αz − zp αy)

Iy =
1

2

∫
V

(z ωx − xωz) dV ≈
∑
p

(zp αx − xp αz) (8.63)

Iz =
1

2

∫
V

(xωy − y ωx) dV ≈
∑
p

(xp αy − yp αx)

The coefficient for the drag and lift, when the flow direction generates drag in
x direction and lift in y respectively, with the surface area A,

CD =
Fx

1

2
ρU2
∞A

= − 2

U 2
∞A

dIx
dt

(8.64)

CL =
Fy

1

2
ρU2
∞A

= − 2

U 2
∞A

dIy
dt

(8.65)
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8.3 Some Comparative Results

8.3.1 Impulsively started cylinder

The time development of an incompressible viscous flow around an impulsively
started circular cylinder is a classical problem in fluid mechanics. Despite the
simplicity of its geometry, the flow structure is complicated and all possible
flow phenomena occur (Ta Phouc Loc and Bouard 1985). In this section, com-
parative studies of this problem are performed with the results of the Eulerian
formulation (Suh and Kim 1999) and other researchers’ work, including theo-
retical (Bar-Lev and Yang 1975), and numerical (Koumoutsakos and Leonard
1995, Ploumhans and Winckelmans 2000) investigations of the validity of the
Lagrangian formulation.

Input parameters for the present comparison are as follows: Re = U∞D/ν

= 550 , T = t U∞/D , ∆t = 0.05, blob size ε = 0.005, surface panel size
d = π/600 ≈ 0.0052. These parameters are chosen to satisfy the stability con-
dition ν ∆t/h2 = O(1) for the diffusion term, and to satisfy the stability con-
ditions of the second-order Adam-Bashforth scheme for the convection term,
and the explicit Euler scheme for time marching. N particles (or blobs) result
in the so-called ‘N-body problem’ in the evaluation of the Biot-Savart integral.
Therefore, the convection and diffusion terms are treated with the fast algo-
rithm (Greengard 1987) to reduce computing time. Computational parameters
used for the present comparison are tabulated in Table 8.1.

Figure 8.10 gives the comparison of vortex sheet strength with the results
by Ploumhans and Winckelmans (2000).
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Table 8.1 Parameters used in the numerical simulation of the flow around an impulsively
started circular cylinder.

Finite Volume Method Vortex Particle Method
Reynolds number 550 550
Time step, ∆t 0.01 0.01
Radius 0.5 0.5
Number of surface panels 600 600
Panel size about 0.005 about 0.005
Grid meshes 600× 40 ·
Particles · 9000 ∼ 70000
Computational domain 2.5 × diameter no limit
Computational time about 6 hours about 8 hours
(pentium IV) (400 time steps) (400 time steps)

Figure 8.10 Comparison of the accumulated spurious slip velocity distribution on the cylin-
der surface. Solid line(−): Lagrangian vortex method (present scheme); dashed line(−−): La-
grangian vortex method (Ploumhans & Winckelmans (2000)).
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The vortex sheet strength(Vs) is equivalent to the accumulation of spurious
slip velocity on the body boundary, which is calculated during the iterative pro-
cess for the no-slip condition. The results of Ploumhans and Winckelmans are
obtained in a manner such that vortex singularities are distributed on the body
surfaces, and the no-slip condition is conferred to the interior boundary sur-
faces, which is equivalent to a no-penetration condition. Figure 8.10 shows
that the distribution of Vs is in good agreement, except for some peak values.
This implies that the iterative process for the body boundary condition imposed
in FVM is also applicable to the vortex particle method.

A comparison is made in Figure 8.11 of Ix as a function of T = t U∞/D for

the x-component of momentum
(
I =

∫
S

x× ω dS
)

, Ix =

∫
S

y ω dS =
∑
p

yp αp,

and Figure 8.11 includes the analytical solution for early developing flows
(T < 0.25).

Figure 8.11 Comparison of Ix for the impulsively started cylinder problem (0 < T < 0.25).
Solid line (−): analytical solution (Bar-Lev & Yang (1975)); N: Lagrangian vortex method
(present scheme); �: Lagrangian vortex method (Ploumhans & Winckelmans (2000)).
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The numerical and analytical results are in good agreement. As shown in
Figure 8.12 , for a longer time interval, the two numerical methods give indis-
tinguishable results.

Figure 8.12 Comparison of Ix for the impulsively started cylinder problem (0 < T < 4).
Solid line (−): Lagrangian vortex method (present scheme); dashed line (−−): Lagrangian
vortex method (Ploumhans & Winckelmans (2000)).

The same comparison for the drag coefficient, CD = Fx/
1

2
ρU2
∞D with

Fx = −ρ dIx/dt, is shown in Figure 8.13 and Figure 8.14 . Here, the result
obtained by FVM is included. Figure 8.13 shows that, of the two methods, the
present Lagrangian scheme produces results somewhat closer to the analytical
results.
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Figure 8.13 Comparison of CD for the impulsively started cylinder problem (0 < T < 0.25).
Solid line (−): analytical solution (Bar-Lev & Yang (1975)); N: Lagrangian vortex method
(present scheme); �: Lagrangian vortex method (Ploumhans & Winckelmans (2000)).

Figure 8.14 Comparison of CD for the impulsively started cylinder problem (0 < T < 4). �:
Lagrangian vortex method; 4: Eulerian FVM; dashed line(−−): Lagrangian vortex method
(Ploumhans & Winckelmans (2000)).
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Figure 8.15 represents the comparison of the body vorticity between the
Eulerian FVM and the Lagrangian vortex method.

Figure 8.15 Comparison of the surface vorticity for the impulsively started cylinder problem
for Re = 550 at T = 0.5 and T = 4.0. Solid line(−): Eulerian FVM; ◦: Lagrangian vortex
method.

The front stagnation point of the cylinder corresponds to the angular position
of θ = π measured from the positive x-axis. The body vorticity obtained by the
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Lagrangian vortex method is the ‘filtered’ (smoothed) value. The Lagrangian
scheme has high-frequency noise in the values due to dispersed particles, so the
filtered value is taken by an inverse Fourier transformation of the 16 first modes.
The agreement between the two methods is seen to be quite satisfactory, but
with small differences at local extrema. It is observed that, as time progresses,
the local peaks of body vorticity become large. These local peaks occur at the
instant the vortical wake behind the cylinder develops.

Figure 8.16 shows the streamline patterns. It is found that the wake length
behind the cylinder is half the diameter of the cylinder at T = 2, and almost the
same as the diameter at T = 4. At T = 2, a secondary vortex is generated at
a position of about θ = 60◦. The results obtained from the Lagrangian vortex
method and the Eulerian FVM are found to be almost identical, but the La-
grangian scheme produces short wavelength oscillations at regions where there
are few nearby particles.

Figure 8.17 presents a comparison of iso-contours of vorticity between the
Lagrangian and Eulerian approaches. The agreement between the two is shown
to be very good, except that the minimum and maximum values of ω differ
slightly.

Figure 8.18 shows the pressure contours in the computational domain. The
results from the two methods are almost identical. As time advances, the pres-
sure distributions are rapidly changed near strong vortical flow structures. It is
seen that a low pressure region is formed at the core of the downstream wake.

Figure 8.19 presents a comparison of pressure coefficientsCP

(
≡ p− p∞

ρ q2
∞

)
on the body surface at several instants. It is observed that the agreement be-
tween these results is satisfactory.



8.3 Some Comparative Results 347

Figure 8.16 Comparison of the streamline patterns for the impulsively started cylinder prob-
lem for Re = 550 at T = 1, T = 2, T = 3 and T = 4. (left) Lagrangian vortex method; (right)
Eulerian FVM.
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Figure 8.17 Comparison of the vorticity contours for the impulsively started cylinder problem
for Re = 550 at T = 1, T = 2, T = 3 and T = 4. (left) Lagrangian vortex method; (right)
Eulerian FVM.
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Figure 8.18 Comparison of the pressure contours for the impulsively started cylinder problem
for Re = 550 at T = 1.0, T = 2.0, T = 3.0 and T = 4.0. (left) Lagrangian vortex method;
(right) Eulerian FVM.
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Figure 8.19 Comparison of Cp for the impulsively started cylinder problem for Re = 550 at
T = 1 and T = 4.0. Solid line(−): Eulerian FVM; Circle(◦): Lagrangian vortex method.

8.3.2 Impulsively started foil with varying angles of attack

We now take the case of the impulsively started NACA0021 with varying angles
of attack. The present image particle layer scheme is suitable for this case. The
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parameters used in the calculation are similar to the case of the impulsively
started cylinder (see Table 8.2).

Table 8.2 Parameters used in the numerical simulation of the flow around an impulsively
started NACA 0021 hydrofoil.

Eulerian FVM Lagrangian vortex method

Reynolds number 550 550

Time step,∆t 0.01 0.01

Thickness ratio 0.21 0.21

Number of surface panels 408 408

Angle of attack 5◦,10◦ 5◦,10◦

Grid meshes 408× 60 ·
Particles · 13000 ∼ 40000

Computational domain 3× chord no limit

Computational time about 31 hours about 50 hours

(pentium IV) (400 time steps) (400 time steps)

A hydrofoil section of NACA0021 is chosen for the computation. It is a
symmetrical hydrofoil whose thickness ratio is 21%. The thickness distribution
for the NACA0021 is given in Abbott and Doenhoff (1958).

The parameters used in the simulation are ∆T = 0.01 and Re = 550. The
Reynolds number is based on the uniform flow velocity and chord length of
the hydrofoil. There are 408 panels at body surface. The radius of all vortex
particles has used with ε = 0.0025. Image particles are located underneath
body panels. Redistribution is done every five time steps. If new particle has
|α| < 0.001 |α|max, it is deleted and the loss of circulation is redistributed
equally among the remaining particles. The integration scheme for convection
is a second order Adam-Bashforth (second order Runge-Kutta for the first step
just after each redistribution). For diffusion, a first order Euler explicit scheme
is used. A fast algorithm proposed by Greengard and Rohklin (1987), is used
for both convection and diffusion substeps. After vorticity and velocity are up-
dated through two fractional steps, the pressure equation is solved when needed.

Some experimental results were provided by Huang et al. (2001). His ex-
periments were conducted in a towing water tank. The particle tracking flow
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visualization (PTFV) and the particle image velocimetry (PIV) were used to
obtain a picture of vortex evolution on the suction surface of an impulsively
started NACA 0012 hydrofoil. Five characteristic vortex evolution regimes are
identified in the parameter domain of angle of attack.

The computing time is longer than in the case of the cylinder. The reason
may be that the number of iterations required for canceling the spurious slip
velocity and generating the vorticity flux on the body boundary is larger than
that in the case of the cylinder problem. As the angle of attack is higher, the
computing time is much longer. We applied the present scheme to the foil with
two angles of attack, 5◦ and 10◦.

Figure 8.20 shows the streamline patterns, the vorticity contours and the
pressure contours at Reynolds number 550 around the foil with angle of at-
tack 5◦. The two results are shown to be in good agreement. In the streamline
patterns, the reverse flows are captured near the trailing edge of the foil. As ob-
served in the results of the Lagrangian vortex method, the fields of velocity and
pressure are confined to the viscous region around the foil, because we consider
only the field where the vorticity evolves and exists.

Figure 8.21 shows the streamline patterns, the vorticity contours and pres-
sure contours at Reynolds number of 550 at T = 4.0 for the angle of attack of
10◦. This shows aspects similar to those of the previous case.

Figure 8.22 and Figure 8.23 show the comparison of the drag coefficients
and the lift coefficients. In the case of angle of attack 5◦, the results of La-
grangian vortex and Eulerian FVM methods are nearly identical.

On the other hand, in the case of angle of attack 10◦, there is a small dif-
ference between the results, especially at about T = 3.0. This may be due to
the strong starting vortex. When the angle of attack of the foil is higher, the
strength of the starting vortex is larger. Each scheme may reflect the evolution
of the vorticity on the body in a different manner. In fact, we only focus on the
unsteady flow simulation at an early stage. We may expect to obtain the same
steady-state characteristics.



8.3 Some Comparative Results 353

(a) Streamlines

(b) Vorticity

(c) Pressure

Figure 8.20 Streamline patterns, vorticity contours and pressure contours for the impulsively
started NACA0021 at Re = 550, α = 5◦ and T = 4.0. (left) Lagrangian vortex method; (right)
Eulerian FVM.
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(a) Streamlines

(b) Vorticity

(c) Pressure

Figure 8.21 Streamline patterns, vorticity contours and pressure contours for the impulsively
started NACA0021 foil at Re = 550, α = 10◦ and T = 4.0. (left): Lagrangian vortex method;
(right): Eulerian FVM.
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Figure 8.22 Comparison of drag and lift for the impulsively started NACA0021 foil at Re =
550 and α = 5. ◦: CD by Lagrangian vortex method; N: CL by Lagrangian vortex method;
dashed line(−−): CD by Eulerian FVM; solid line(−): CL by Eulerian FVM.

Figure 8.23 Comparison of drag and lift for the impulsively started NACA0021 foil at Re =
550 and α = 10. ◦: CD by Lagrangian vortex method; N: CL by Lagrangian vortex method;
dashed line(−−): CD by Eulerian FVM; solid line(−): CL by Eulerian FVM.
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8.3.2.1 Angle of attack : 90 deg.

At very large angles of attack, the bluff body effect becomes dominant. The
starting vortex is generated from both the leading and the trailing edges. The
vortex evolving from the sharp trailing edge appears to be a little larger than one
from the leading edge. The corresponding results are shown in Figures 8.24 ,
8.25 , and 8.26 .

(a) T = 0.250

(b) T = 0.500

(c) T = 0.750

(d) T = 1.000

Figure 8.24 Iso-contours of vorticity around NACA 0012 hydrofoil at α = 90o and Re =
1200.
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(a) T = 0.250

(b) T = 0.500

(c) T = 0.750

(d) T = 1.000

Figure 8.25 Streamlines around NACA 0012 hydrofoil at α = 90o and Re = 1200.
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(a) T = 0.786 (b) T = 0.750

(c) T = 1.048 (d) T = 1.000

Figure 8.26 Comparison of the streamlines around NACA 0012 hydrofoil with the ex-
perimetal result (Huang et al. 2001) at α = 90o and Re = 1200.
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8.4 Vortex-In-Cell Methods

8.4.1 Introduction

The computation of velocity and stretching is realized through the vector po-
tential and vorticity formulation on the immersed Cartesian grid. The present
method is similar to the immersed boundary vortex-in-cell method by Cottet and
Poncet (2003) in terms of the use of unified interpolation formulas. But, the use
of panel method makes it possible to impose both the no through flow condition
and no slip condition on the body surface. The vorticity flux from the panel sat-
isfies the no slip condition and the singularity distribution over the panel does
not make the flow across the body surface. The panel method is set up on the
triangular discretization of the body surface and linear distribution of the singu-
larities on the panel. The implementation has advantages over constant strength
method that eliminates the discontinuities of singularities between panels and
reduces the size of matrix elements as well. In the present method, the panel
method is also utilized for the calculation of pressure field. The inversion result
of the influence coefficient matrix can be adopted without any modification due
to the integral equation formulation for the pressure.

Figure 8.27 Comparison of CPU times for velocity evaluations in 3-D. Krasny tree-code vs.
VIC with Fishpack and 64 points interpolation formulas. VIC1: Cartersian grid with 100 %
particles; VIC2: Polar grid with 65 % particles; VIC3: Polar grid with 25 % particles. From
Cottet (1999).
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8.4.2 Rotational velocity component: FFT scheme based on regular grid

(a) Before particle strength assignment on the grid

(b) After assignment, strengths assigned onto hollow circle inside body are reserved for PSE

Figure 8.28 Regular immersed grids for FFT.

The present work uses FFT based Poisson solver to calculate rotational velocity
field. A regular Cartesian grid is placed so that the grid compactly encloses the
vortex particles including the body. The grid is immersed in the body, and the
vorticity field is extended so that vorticity has zero value on the grid inside the
body. The vorticity of the particles is distributed to the Cartesian grid by the
interpolation formula,

ωg =
1

Vp

N∑
p

αpW

(
xp − xg
h

)
W

(
yp − yg
h

)
W

(
zp − zg
h

)
(8.66)
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where g and p are subscripts for grid and particle quantities, respectively, and
W (x) is the interpolation kernel. In the present work the third order M ′

4 kernel
is chosen. The kernel is defined by

W (x) = M ′
4(x) =


1− 5

2 |x|
2 + 3

2 |x|
3, for |x| ≤ 1

1
2 (2− |x|)2 (1− |x|), for 1 < |x| < 2

0, for |x| ≥ 2

(8.67)

The kernel preserves the first three moments of the distribution, the total, linear
and angular impulse of the fields, twice continuously differentiable and sym-
metric. The VIC method needs regridding of particles on regular locations on
occasion to preserve the accuracy, and the kernel is also used for the regular
distribution of the distorted particles.

After the interpolation step the Poisson equation for vector potential is solved
by following the procedure which is introduced as Fourier transform method
in the book “Numerical Recipes in C”. Here the procedure is briefly recited
for the two dimensional Poisson equation ∇2ψ = −ω with Dirichlet boundary
condition. The finite difference representation of the equation is, approximating
the Laplacian via the second order central difference scheme,

ψi+1,j − 2ψi,j + ψi−1,j

h2
+
ψi,j+1 − 2ψi,j + ψi,j−1

h2
= −ωi,j (8.68)

where ψi,j represents function value at a point (xi, yj) and h is grid spacing. If
we substitute the discrete inverse sine transforms,

ψi,j =
2

IJ

I−1∑
m=1

J−1∑
n=1

ψ̂m,n sin
πim

I
sin

πjn

J
(8.69)

ωi,j =
2

IJ

I−1∑
m=1

J−1∑
n=1

ω̂m,n sin
πim

I
sin

πjn

J
(8.70)

in the finite difference equation (8.68), we can get the relation between Fourier
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coefficients,

ψ̂m,n =
h2 ω̂m,n

2
(

cos
πm

I
+ cos

πn

J
− 2
) (8.71)

We can get ψi,j on the regular grid by the inverse sine transform (8.69).

In 3-D, the inverse sine transform has one more term and the relation between
Fourier coefficients becomes similar form,

ψ̂l,m,n =
h2 ω̂l,m,n

2

(
cos

πl

I
+ cos

πm

J
+ cos

πn

K
− 3

) (8.72)

Above procedure was explained for homogeneous Dirichlet condition at bound-
ary. As the grid is set up so that it tightly includes the particles, the values of
ψ on the sides of the VIC grid become non trivial. When the boundary values
of ψ are known, the procedure can be simply modified by taking them over to
the right-hand side. If we write the solution as ψ = ψ′ + ψB, where ψ′ = 0 on
the boundary, while ψB has nonzero values only on the boundary, which is the
given boundary value, the finite difference equation (8.68) becomes equivalent
to the case of zero boundary condition. The equation for a boundary takes the
form, say for i = I − 1,

ψ′I,j + ψ′I−2,j + ψ′I−1,j+1 + ψ′I−1,j−1 − 4ψ′I−1,j = h2 ωI−1,j − ψBI,j (8.73)

so whenever the boundary value is non-zero, the source term h2 ωI−1,j(be care-
ful that one grid inside from boundary) is replaced by

h2 ωI−1,j − ψBI,j (8.74)

The values on the boundary is evaluated using the expression (8.23) by fast
algorithm developed by Kim (2003). If the boundary is located far from the
particle positions, the homogeneous boundary condition may be used, but this
approach involves too much grid and the advantage of using compact grid can-
not be taken.

The velocity on the grid is computed by fourth order finite difference method
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from the definition uω = ∇× ψ, for example, the component u is

u =
∂ψz
∂y
− ∂ψy

∂z

=
ψzi,j−2,k − 8ψzi,j−1,k + 8ψzi,j+1,k

− ψzi,j+2,k

12h

−
ψyi,j,k−2 − 8ψyi,j,k−1 + 8ψyi,j,k+1

− ψyi,j,k+2

12h

(8.75)

The velocity on the particle position is then interpolated from the velocities
of the grid. The same interpolation formula M ′

4 is used. The velocity on the
grid very close to the body can have singular behavior since sub-grid scale can
have a significant effect when applying finite difference formula. The velocity
at such a point is directly evaluated using the Biot-Savart formula. The points
are found by a criteria that the distance from the body is less than half of the
grid size.

8.4.3 Potential velocity component: Panel method with linearly varying
singularity distribution

For the solution of the Laplace equation ∇2φ = 0, the identity with a distribu-
tion of singularities on the surface is applied to the discretized surface so that
the strengths of them determined by the boundary condition. This technique is
known as the popular ‘panel method’. The no through flow condition is em-
ployed to points on the surface, unlike Cottet & Poncet (2003)’s method. Fig-
ure 8.29 shows the difference between Cottet & Poncet (2003) and the present
work in handling no through flow condition.
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(a) Immersed boundary VIC, Cottet & Poncet (2003)

(b) Present work

Figure 8.29 Two types for enforcement of the no-penetration flow condition in the regular
grid system.

The present method is extended in the context of the VIC of this work to
a linear distribution of singularities on a triangular panel. This choice is more
flexible, since surface of a complex geometry can be more uniformly discretized
with triangular elements. Furthermore, the discontinuity of the singularities,
which is present between panels in constant strength panel method, can be
avoided with the linear variation. And, as the number of panels becomes ap-
proximately twice that of the vertices, it would be a great benefit that the un-
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knowns in the resulting system of linear equations can be notably decreased
with the unknowns defined on the panel vertices.

The Green’s scalar identity expresses the potential φ within the fluid domain
as a sum of each contribution in terms of the surface value of φ and its normal
derivative n · ∇φ on each panel of the discretized boundary surface Si,

φ(x) = − 1

4π

∑
i

∫∫
Si

{
1

r
n · ∇ξφ− φ(ξ)n · ∇ξ

(
1

r

)}
dSξ (8.76)

where φ(ξ) is the surface distribution of doublets, and n · ∇ξ is that of sources.
The strength of source σ corresponds to the no through flow boundary condition,

σ = n · ∇ξφ = −n · (U∞ + uω) (8.77)

If the equation (8.76) is discretely applied for each vertex with the surface inte-
grals evaluated assuming that the source and doublet are linearly distributed on
each panel, we can get the linear system of algebraic equations.

(1 +Dkk)φk −
N−(k)∑
m=1

φmDkm = σk Ekk +

N−(k)∑
m=1

σmEkm (8.78)

Dkm =

Lm∑
n=1

1

4π

∫∫
Sm

n · ∇
(

1

r

)
dSξ

Ekm =

Lm∑
n=1

1

4π

∫∫
Sm

1

r
dSξ

where Lm is the number of panels which have the vertex m in common. Dkk

and Ekk are the special case that the field point coincides with the source point.
Due to the linear distribution of the singularities, it should sum up all the con-
tributions from each panel when the surface integral is calculated. As shown in
Figure 8.30 , when the induced potential is calculated at the point k by the unit
strength on m, all the panels filled with gray should be involved with the other
nodes having value zero.
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Figure 8.30 Schematic arrangement of a field point k due to a singularity distribution element
composed of several triangular panels. There is a linear variation of the singularity density over
each panel with unit strength at a source point m and zero strength on other neighboring points
of the element.

The surface integrations are evaluated using explicit simple analytic expres-
sions for the linear distributions derived by Suh (1992). The expressions are
line integrals along the contour of the panel, which can be easily evaluated with
global coordinates.

The slip velocity induced by the singularity distribution exist on the surface
of the body. This component equivalently becomes the strength of the vortex
sheet, which will be diffused in the field for the satisfaction of the no slip con-
dition.

∆γ = n× q
s

= n× (U∞ + uω +∇φ) (8.79)

The velocity field is finally corrected by superimposing the potential compo-
nent, uφ(x) = ∇φ(x), which can be calculated by the similar integration for-
mula, with the solution of linear system (8.78),

uφ(x) =
1

4π

∑
i

∫∫
Si

{
φ(ξ)

( n
r3
− 3

n · r
r5

r
)

+ (n · ∇ξφ)
r

r3

}
dSξ (8.80)

One advantage can be obtained that the pressure field can be computed with
the similar procedure when the panel method is selected as a method to satisfy
no through flow condtion. As it will be described in the subsequent section, the
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integral equation for pressure Eq. (6.41) is very similar to the scalar identity,
except with the one additional term that involves a volume integral of the cross
product of velocity and vorticity. In system of the resulting linear equations,
the right hand side only would be different, so we can directly use the inversion
result of the same matrix.

8.4.4 Stretching term in 3-D

In a VIC method the grid values of velocities and vorticities can be directly used
for finite differencing in the stretching when they are interpolated onto the grid.
Furthermore, a VIC method can have an advantage of being conservative on the
grid, if the conservative form∇ · (ω u) of the stretching term is implemented.

In order to treat the stretching term, the vorticity and velocity are first multi-
plied on the grid, the divergence is then computed by 4th order finite difference
formula and interpolated on the particle locations along with the velocity.

8.4.5 Stability issue

Although the vortex method demands more loose stability condition than clas-
sical CFL type condition due to the Lagrangina advection of the particle, there
exist stability criteria constrained by the explicit diffusion solver with PSE
(ν δt ≤ C h−2) and by the strain of the flow (∆t ≤ C |∇u|−1). Even though
these conditions are fulfilled, the current study experienced an unstable behavior
of solution, when the method is applied to the simulation of flow past a rectan-
gular wing, if the particle core size(smoothing parameter) or time step does not
meet the condition for the conservation of vortex strength in wall diffusion,

ε <
√

2 ν ∆t =

√
2∆t

Re
, (8.81)

where Re =
UL

ν
(U = L = 1). The particle size should be made small as the

Reynolds number of the flow increases. Figure 8.31 shows the behavior of
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the maximum residual slip when the vortex sheet diffusion to the initial parti-
cle layer is iterated with the change of the particle strength. The vortex sheet
is firstly evaluated from the potential flow of the impulsive start. As shown
in the figure, the residual slip increases with the parameters ε = 0.008633,
∆t = 0.005 when the Reynolds number is Re = 200. This choice of paramters
resulted eventually in unstable solution, as 0.008633 >

√
2× 0.005× 0.005 =

0.007071. The computations of flow past a rectangular wing are performed with
the appropriate selection of the parameters. However, the condition does not
necessarily need to be satisfied for the simulation of flow past a sphere.

Figure 8.31 Behavior of the maximum residual slip velocity during the iteration. Here σ = ε.

8.4.5.1 Stability criterion

To gauge the quality of a numerical simulation, one has to consider the mesh
Reynolds number. In vortex methods, it is natural to use the mesh Reynolds
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number based on vorticity:

Reh =
|ω|h2

ν

A well-resolved simulation is one such that

Reh = O(1). (8.82)

as this ensures that the relevant viscous scales presented in the flow are resolved.
To accurately resolve the diffusion phenomena, it is required to have

ν ∆t

h2
= O(1). (8.83)

Multiplying (8.82) by (8.83), one finds that (Ploumhans & Winckelmans 2000)

|ω| ∆t = O (1)

Also, in the PSE the algorithm is stable under the condition (Cottet &
Koumoutsakos 2000)

ν ∆t

ε2
<

1

λ

It was done by an analysis of the stabiblity of the PSE by Ploumhans and Winck-
elmans (2000). For the Gaussian smoothing function, one finds 1/λ = 0.595

for the Euler explicit scheme.

8.4.6 Outline of the VIC scheme

With each building block of the VIC scheme described in the previous sections,
one time step of the algorithm can be outlined as follows.

1. Create the grid used to solve the Poisson equation. It is chosen so that it
tightly includes the vortex particles, and has regular Cartesian shape im-
mersed in the body. The maximum and minimum particle position are first
located and the VIC grid boundary is set up at several grid size apart from
the extreme particle positions to ensure that the grid is not changed too
often.



370 VORTEX PARTICLE METHODS

2. Interpolate the strengths of the particles onto the grid, to obtain the vortic-
ity field ω = α/V on the grid. The M ′

4 high order interpolation scheme
was introduced for this purpose. The vorticity field is extended into the
body, inside which the vorticity value is assigned by zero. The vorticity
values replaced by zero are saved at another array for the PSE to be per-
formed with including them.

3. Obtain the Dirichlet boundary condition for ψ on the sides of the VIC grid,
using the fast algorithm by Kim (2003).

4. Solve the Poisson equation∇2ψ = −ω on the VIC grid using an FFT Pois-
son solver. The solver uses the grid with ψ provided on the boundaries and
with ω known inside. From the manipulation of the Fourier coefficients ψ̂
and ω̂, the ψ field on the grid is constructed.

5. Evaluate the rotational velocity field, uω, from ψ, using finite differences
(the fourth order scheme used here). Evaluate the potential field with the
resulting residual normal component of the rotational velocity plus free
stream plugged into the boundary condition for the integral equation(no
through flow condition). Superimpose the potential velocity field on the
rotational field. Finally, the grid values are interpolated on to the particle
locations.

6. Evaluate the stretching term, ∇ · (q ω), using finite differences on the
grid. The conservative form leads to better results than the other form like
(∇q) ·ω. The stretching on the mesh is also sent back to particle positions.

7. Update the vortex strengths due to the stretching and diffusion. The parti-
cle strength exchange for diffusion includes the strengths interpolated into
the grid inside the body.

αn+1
i − αni

∆t
= h3∇ · (ω q) +

dαi
dt

∣∣∣∣
PSE

8. Convect the particle with the interpolated velocity information on it. The
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time integration of the ordinary differential equation

Dxi
Dt

= U∞ +∇× ψ +∇φ

is treated differently according to whether the particles are redistributed
on regular location or not. In the case particle redistribution has been done
prior to the time step, the second order Runge-Kutta scheme is used to
convect particles.

x∗,n+1
i = xni + ∆t q

i
(xn, αn)

xn+1
i = xni +

1

2
∆t
(
q
i
(xn, αn) + q

i
(x∗,n+1, α∗,n+1)

)
After the first explicit Euler step, the velocity field is evaluated once more
with the induced residual slip and wall diffusion due to the location change.
In the case particle redistribution has not been done prior to the time step,
as we have the velocity of a particle from the previous time step, the second
order Adams-Bashforth scheme is used for update of particle positions.

xn+1
i = xni + ∆t

(
3

2
q
i
(xn, αn)− 1

2
q
i
(xn−1, αn−1)

)

9. After the convection substep, a slip velocity comes to be present at the
body boundary. The slip velocity q

s
is translated into vortex sheet by ∆γ =

n × q
s
, and the vortex sheet is diffused by the wall diffusion formula to

cancel the slip velocity. This algorithm is an immersed boundary method.
Its schematic diagram is shown in Figure 8.32 . The normal component of
the residual slip makes up the source strength in the integral equation for
the potential field correction.
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Figure 8.32 Diffusion of vorticity on a regular Cartesian grid in VIC methods. Vorticity
correction is performed in the iterative way for satisfying the boundary condition at the surface.
From Cottet & Poncet (2003).

8.4.7 Pressure calculation by panel method with a linearly varying singu-
larity

The method of solving the pressure equation (6.26) with the boundary con-
dition (6.35), when the integral equation (6.41) is formulated, is very similar
to the procedure of finding potential field for the no through flow correction.
The surface integral term can be discretized in the exactly same manner as the
distribution of the potential on the triangular panel. The volume integral term,
which is similar in form to Biot-Savart integral, must be manipulated with the
Lagrangian particle representations.

∂H

∂n
= − 1

Re
n · (∇× ω) = − 1

Re
(t · ∇ω) = − 1

Re

∂ω

∂t
(8.84)

where t is the unit tangential vector along the axis of symmetry on the body
surface in axisymmetric flow. The source term can be evaluated in a general
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case by using the Stokes’s theorem,∫
S

n · (∇× ω) dS =

∫
C

ω · dl (8.85)

The value of n · (∇× ω) for the node point i, is obtained by the approximation
of the line integral,

n · (∇× ω)i ≈
1

S

∑
j

ωj · dlj (8.86)

where lj is the line connecting the center of the panels, which has node i as one
of their vertices. ωj is the mean value of the vorticities at the ends of a line, and
S is the area of the polygon made up by the lines. Figure 8.33 illustrates the
polygon for the evaluation of the source term. The surface value of the vorticity
is obtained by just switching a surface point into the particle representation of
the vorticity field. The value of vorticity at the center of each panel is computed
from applying the inverse distance weight to the vorticity at the vertices of the
panel.

Figure 8.33 Schematic arrangement for boundary condition of the pressure head H .

By using the vector relation∇· (u×ω) G = ∇· ((u×ω)G)− (u×ω) ·∇G,
the integrand of the volume integral can be modified as∫

V

∇ · (u× ω)GdV =

∮
S

n · (u× ω)GdS −
∫
V

(u× ω) · ∇GdV (8.87)



374 VORTEX PARTICLE METHODS

The first integral in the right-hand side vanishes because the velocity on the
body boundary is zero and the vorticity becomes zero at far field. Substituting
the particle representation of the vorticity field for ω in the above equation, we
can get the discretized volume integral as follows.∫

V

∇ · (u× ω)GdV = −
∫
V

(u× ω) · ∇GdV

= −
N∑
k=1

uk × αk · ∇G
∫
Vk

ζk dV

= −
N∑
k=1

(uk × αk) ·
x− xk
|x− xk|3

q

(
x− xk
εk

) (8.88)

where

q(ρ) =

{
erf

(
ρ√
2

)
− ρ

√
2

π
exp

(
−ρ

2

2

)}
(8.89)

The use of cutoff function can avoid the singularity in the gradient of the Green
function. The final form of the discretization reduces to the similar one in (8.78)
with the volume integral having on the right hand side.

8.5 Numerical Results by VIC Methods

In this section, the present VIC method is applied to the flow simulation around
several 2-D and 3-D bodies. The flow field around impulsively started two di-
mensional bodies are firstly simulated, for a circular cylinder and a NACA0012
hydrofoil section. For 3-D, the flow around a sphere is simulated as a typical ex-
ample of wake flow behind a bluff body. The VIC algorithm then is also applied
to the rectangular wing of finite span.
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8.5.1 Two dimensional flows

In the case of two dimensional flow the vorticity is a scalar variable and the
governing equation for it does not carry the stretching term,

Dω

Dt
= ν∇2ω (8.90)

The diffusion is the only process to change strengthes of particles. Moreover,
the vector potential becomes scalar field known as stream function. The Poisson
equations for the vector potential and the vorticity reduce to one component,

∇2ψ = −ω (8.91)

The velocity components (u, v) are given by,

u =
∂ψ

∂y
, −v =

∂ψ

∂x
(8.92)

The stream function can be obtained on the boundaries using two dimensional
Green’s function

ψ = − 1

2π

∫
ω ln r dS (8.93)

8.5.1.1 Impulsively started circular cylinder

In this section the result of computation is provided for the flow over a circular
cylinder impulsively set into motion with a constant speed U∞ in the direction
negative x coordinate. For this problem, a large number of experimental and
numerical results has been available in the literature. The Reynolds number is
defined as Re = DU∞/ν, where D is the diameter of the cylinder and ν is
the kinematic viscosity. The computational results are presented for a Reynolds
number 550.

The computational parameters are given in the Table 8.3. The cylinder sur-
face is discretized by 600 line panels with even length. The particle size is bal-
anced with the panel size and, at the same time, is chosen to meet the stability
restriction.
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Table 8.3 Parameters used in the numerical simulation of the flow around an impulsively
started circular cylinder.

Reynolds number 550

Number of panels 600

Blob size, σ 0.00521

Time step, ∆t 0.01

Cutoff parameter, εΓ 0.001

Figure 8.34 shows a comparison between the analytical expression of im-
pulse Ix for short times by Bar-Lev and Yang (1975) and Ix computed by the
present scheme. The comparison includes the result computed by Ploumhans
and Winckelmans (2000). The present scheme gives slightly different values
for the very earlier time (t < 0.10).

The time history of the drag coefficent is compared in Figure 8.35 for short
times and 8.36 for longer times. For the early developed flows, the present
scheme predicts the drag coefficients close to the analytical results. The com-
parison for longer times with Ploumhans and Winckelmans (2000) in Figure
8.36 does not show distinguishable results, while the impulse shows slightly
different longer time behavior as presented in Figure 8.34 . This means that the
absolute values of the impulses are slightly different between the two method,
but the changes of the impulse are revealed to have similar time rates. The dif-
ference seems to be caused by the parameters chosen by each scheme.

The profiles of streamwise centerline velocity in the wake is shown in Fig-
ure 8.37 with the experimental results by Bouard & Coutanceau (1980). Their
results are provided with the time nondimensinalized by the radius of cylinder,
whereas the present scheme uses the diameter as the characteristic length. The
time in the figure represents nondimensional time by the diameter of the cylin-
der. There is good qualitative agreement, but the length of the wake(distance to
the point the velocity profile crosses the x axis) is computed somewhat shorter
than the experiment. Due to the use of compact grid for velocity computation,
the profiles of the present scheme are not presented beyond the extent of the
grid.
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(a) Short time

(b) Long time

Figure 8.34 Comparison of Ix for an impulsively started circular cylinder at Re = 550.
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Figure 8.35 Drag coefficient of an impulsively started circular cylinder at early stage of times
for Re = 550.

Figure 8.36 Drag coefficient of an impulsively started circular cylinder for Re = 550.
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Figure 8.37 Velocity distribution along wake centerline for an impulsively started circular
cylinder for Re = 550.

Computed streamlines are shown in Figure 8.38 . Note that the cylinder
moves to the left. A large recirculating flow region of closed streamlines is
clearly captured behind the cylinder. The streamwise length of this recirculat-
ing region grows in time. The region is also called as the separation bubble.

The streamline at t = 3.0 is compared with the results obtained in the exper-
iment of Bouard and Coutanceau (1980) in Figure 8.39 . The computed stream-
line in the large recirculating flow region are in good visual agreement with
those of the experiment. Along with the large recirculating regions, smaller sec-
ondary recirculation zones between rear half of the cylinder and the separation
bubbles are observed in the computation, as well as in the experiment.
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(a) t = 1.0

(b) t = 2.0

(c) t = 3.0

(d) t = 4.0

Figure 8.38 Instantaneous streamlines around impulsively started circular cylinder at Re =
550.
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(a) Streamlines from experiment, Bouard & Coutanceau

(b) Streamlines from the present method

Figure 8.39 Comparison of streamlines for an impulsively started circular cylinder for Re =
550.
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8.5.1.2 Impulsively started NACA0012 hydrofoil

As a second representative for simulation in two dimension, an impulsively
started NACA0012 section hydrofoil is selected in order to examine suitability
of the method for the analysis of thin streamlined body with sharp edge. The
Reynolds number is 1200, based on the chord length of the section. The pa-
rameters used in the simulation are listed in Table 8.4. The computations are
performed at two angles of attack, α = 0◦ and 30◦.

Table 8.4 Parameters used in the numerical simulation of the flow around an impulsively
started NACA 0012 hydrofoil.

Reynolds number 1200

Number of panels 800

Blob size, σ 0.00249

Time step, ∆t 0.005

Cutoff parameter, εΓ 0.001

Figure 8.40 compares impulse Ix with the result of Lee (2005) for zero
angle of attack. In his vortex method, a fast algrithm is used for the convection
velocity and image particles are located underneath body panels to correct PSE
diffusion. As shown in the figure, the impulses are in good agreement for long
times as well as for short times.

The method is applied next to the flow at angle of attack α = 30◦. After
the impulsive start, the starting vortex is formed from the trailing edge and shed
into the wake as shown in Figure 8.41 . At the same time, the flow is separated
from the leading edge and a vortex is generated. The leading edge vortex rolls
downstream along the suction side and convects slowly near the surface. Two
secondary vortices can be seen to have been formed upstream of the separated
vortex. The computed streamlines are compared with the experimental results
by Huang et al. (2001). Figures 8.42 and 8.43 show the observation results
using the particle tracking flow visualization along with the streamlines from
the present scheme. The large separation vortex from leading edge and the two
secondary vortices are clearly seen in the figures.
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(a) Short time

(b) Long time

Figure 8.40 Comparison of Ix for an impulsively started NACA0012 hydrofoil at zero angle
of attack for Re = 1200.
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Figure 8.41 Vorticity contours for an impulsively started NACA0012 hydrofoil for α = 30◦

and Re = 1200. The time is at T = 0.5, 1.0, 2.0, 3.0 from top.
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(a) Streamlines from experiment, Huang et al (2001), t = 1.043

(b) Streamlines from the present method, t = 1.0

Figure 8.42 Comparison of streamlines at T = 1.0 with the experimental snapshot for an
impulsively started NACA 0012 hydrofoil at α = 30◦ for Re = 1200.
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(a) Streamlines from experiment, Huang et al (2001), t = 2.348

(b) Streamlines from the present method, t = 2.0

Figure 8.43 Comparison of streamlines at T = 2.0 with the experimental snapshot for an
impulsively started NACA 0012 hydrofoil at α = 30◦ for Re = 1200.
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8.5.2 Three dimensional flows

8.5.2.1 Sphere

The flow past a sphere is considered as an example for three dimensional bluff
body flow analysis. It has been investigated numerically and experimentally
at Reynolds number Re = U∞D/ν between about 0.5 and several thousand
by many authors. From the experimental work of Taneda (1956), it is found
that a recirculating zone develops close to the rear stagnation point at about
Re = 30. This recirculating zone or wake expands toward streamwise direction
as well as along the surface of the sphere with further increase in the Reynolds
number. The flow remains steady and axisymmetric up to Re = 210 ∼ 212.
Defining locations on the surface by the angle from the front stagnation point,
the separation point moves forward from about 130◦ at Re = 100 to about 115◦

at Re = 300.

In this work, the flows at Re = 50, 100 are simulated and compared with
the numerical solution of Johnson & Patel (1999). The sphere of radius 0.5 is
discretized into triangular panels, and the number of panels is 10,008. Figure
8.44 shows the discretization of the sphere.

Figure 8.44 Surface panel discretization of a sphere.

The number of vertices is about half of the panels. The grid size h is selected
to be square root of mean area of the panels h =

√
Amean, where Amean =
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∑
Ai/N . The time step for the simulation is ∆t = 0.02, 0.015 for the Reynolds

number of 50, 100, respectively. The value of εα = 10−4 and Reh,trsh = 10−4

are used.

The drag coefficients from the derivative of the linear impulse are plotted
in Figure 8.45 along with the classical curve of Cd = Cd(Re) for the flow
past a sphere. The drag coefficient Cd is calculated at the final stage of the
computation when the change of the linear impulse is thought to come into a
steady phase and shows good agreement with the curve. The drag coefficients
are made further comparison with the computation by Johnson & Patel (1999)
in Figure 8.46 , and also show good agreement with their results.

Figure 8.45 Comparison of drag coefficient of a sphere with experiments.

The streamline patterns, vorticity contours and pressure fields at several early
moments for Re = 100 are provided in Figures 8.47 , 8.48 , and 8.49 , respec-
tively.

The streamlines, vorticity contours and contours of pressure coefficients are
also compared with the numerical results of Johnson & Patel (1999), in Figures
8.50 ∼ 8.53 . The length of the separation bubble in the flow direction(left to
right) seems to be in good agreement.
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Figure 8.46 Comparison of drag coefficient of a sphere with the numerical one by Johnson
& Patel (1999).

Figure 8.51 compares the length and position of the vortex center, and shows
good agreement with the results of Johnson & Patel. The downstream exten-
sions of vorticity contour of± 0.5 from the present method show slightly shorter
than the results by Johnson & Patel. Figure 8.54 compares the streamline of the
present scheme with the visualization by Taneda (1956). As the Reynolds num-
ber of the expmeriment is 118, which is larger than the present computation, the
recirculating zone expands more downstream. But, the general appearance of
the flow including separation point looks very similar to the computed result.
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Figure 8.47 Streamlines about an impulsively started sphere for Re = 100. The time is at
T = 1.0, 2.0, 3.0 from top.
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Figure 8.48 Vorticity contours for an impulsively started sphere for Re = 100. The time is
at T = 1.0, 2.0, 3.0 from top.
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Figure 8.49 Pressure coefficient contours for an impulsively started sphere for Re = 100.
The time is at T = 1.0, 2.0, 3.0 from top.
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(a) Streamlines from the present method (t = 7.5)

(b) Streamlines computed by Johnson & Patel (1999)

Figure 8.50 Comparison of streamlines about a sphere for Re = 100 with the numerical ones
by Johnson & Patel (1999).
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(a) Separation length, xs

Reynolds Number, Re

y
c

x
c
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1.0

Johnson & Patel (1999)

Present method

(b) Vortex position, (xc, yc)

Figure 8.51 Comparison of wake pattern for a sphere with the numerical one by Johnson &
Patel (1999). xs denotes the distance from the sphere of the end point of the wake. xc and yc
are the center position of the vortical shedding wake.
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(a) Cp from the present method (t = 7.5)

(b) Cp computed by Johnson & Patel (1999)

Figure 8.52 Comparison of pressure contours for a sphere for Re = 100 with the numerical
one by Johnson & Patel (1999).
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(a) Contours from the present method (t = 7.5)

(b) Contours computed by Johnson & Patel (1999)

Figure 8.53 Comparison of vorticity contours for a sphere for Re = 100 with the numerical
one by Johnson & Patel (1999).
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(a) Streamlines from the present method

(b) Visualization from experiment (Re = 118), Taneda

Figure 8.54 Comparison of streamlines for a sphere for Re = 100 with the experimental
ones by Taneda (1956).

Figures 8.55 ∼ 8.57 show the streamlines, vorticity contours, and con-
tours of the pressure coefficient at Re = 50 and 100. For the two Reynolds
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numbers the general characteristic feature of the flow remains the same with
the changes only in separation location, the center of recirculating flow, and
the length of wake. The separation point moves upstream with the increase of
Reynolds number. At Reynolds number of 100, the opposite sign of vorticity
exists between the surface of the sphere and the separation vortex.

(a) Re = 50

(b) Re = 100

Figure 8.55 Comparison of streamlines between two Reynolds numbers.
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(a) Re = 50

(b) Re = 100

Figure 8.56 Comparison of pressure coefficient contours between two Reynolds numbers.
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(a) Re = 50

(b) Re = 100

Figure 8.57 Comparison of vorticity contours between two Reynolds numbers.

8.5.2.2 Rectangular wing

The present method is finally demonstrated on the flow past a three dimensional
wing of rectangular planform. The NACA0012 section profile is employed for
the illustration of the method. Figure 8.58 shows discretization of the rectangu-
lar wing. The ratio of span to chord is 1:1 for the figure. The panels on the side
surfaces are constructed in the fully unstructured manner, where as the upper
and lower surfaces of the wing have regular shape of triangles. The surfaces
are firstly discretized into square rectangles, then the respective rectangles are
divided into two triangles.
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The simulation is performed for the rectangular wing with aspect ratio of
2 at angle of attack α = 7◦. The Reynolds number is 100 based on the wing
chord length. The time step for the simulation is ∆t = 0.012. The streamtraces
around the tip and the pressure coefficient in the center plane of the wing are
compared with the FLUENT results in Figure 8.59 . A stream trace starting be-
low of the pressure side turns around the wing side, and forms into swirling flow
downstream of the wing. It is clearly seen that the four stream traces are turn-
ing around each other by the tip vortex formation. It is seen from the pressure
field in the center plane that the stagnation point is constituted near the leading
edge of the wing. The pressure drop on the suction side is also illustrated in the
figure.

Figure 8.60 shows the streamwise component of the vorticity, ωx at several
sreamwise planes, x = 0.67, 0.8, 1.0. The trailng edge is positioned at x = 0.5

when the angle of attack is zero. Figure 8.61 shows the tip vortex core position
at the same streamwise planes plotted in Figure 8.60 . The coordinates of the
core are extracted from the figure in such a manner that ωx has a maximum
value in each plane. The tip vortex core moves downward vertically and inside
horizontally.

8.5.3 Features of vortex-in-cell method

An algorithm of VIC and panel method combination is developed and applied
to the simulation of the viscous flow around impulsively started 2-D and 3-D
objects. The main features of the present method are summarized as follows:

• The convection velocity of the vortex particles is efficiently computed on
a regular Cartesian grid using an FFT based Poisson solver. The boundary
of the grid compactly encloses the particles so as to reduce the domain size
of the computation.

• The boundary conditions are enforced on the surface of the body for the
tangential and normal components of the velocity. The tangential compo-
nent of the slip is cancelled by the diffusion of vortex sheet, and the normal
component is suppressed by the singularity which is linearly distributed
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(a) Wing side discretization

(b) Wing upper and lower surface discretization

Figure 8.58 Surface panel discretization of a rectangular wing. Number of the panels is
11,416.



8.5 Numerical Results by VIC Methods 403

(a) Streamtraces and pressure coefficient, the present method

(b) Streamtraces and pressure coefficient, FLUENT

Figure 8.59 Comparison of streamtraces and pressure coefficient for a rectangular wing for
Re = 100 with the results obtained by FLUENT.
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Figure 8.60 Streamwise vorticity contours at downstream locations x = 0.67, 0.8, and 1.0 at
t = 1.92.

over a panel on the body. The use of panel method makes it possible for
the application points of the two components of the boundary conditions
to coincide on the center of the panel.

• The particle strength exchange (PSE) is modified to include the particles
positioned inside of the body in the spirit of the immersed boundary nature
of the method. The spurious slip resulting from the symmetric treatment
near the body is corrected in the wall diffusion step for the no slip condi-
tion.

• The calculation of the pressure field is designed to use the solution method
of integral equation approach, which is the same as the singularity dis-
tribution method for the no through flow condition. The matrix elements
constructed and inverted once in the early stage of the method can be used
throughout the method.

• The applicability of the present scheme is illustrated on the flow past 2-D
and 3-D bodies in impulsive start. The method is in good agreement with
other vortex method computation or the experimental work.
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(a) Spanwise location of the center

(b) Vertical location of the center

Figure 8.61 Location of the tip vortex center along downstream.
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The proposed method is regarded as one possible solution of overcoming
the leakage problem across a body boundary in the Cottet & Poncet (2003)’s
method by the combination of vortex in cell method with a panel method. The
panel method is formulated on the discretized surface panel in orde not to gen-
erate through flow component. This approach has an advantage in the computa-
tion of surface pressure as well as pressure field. The linear system of equations,
constituted in the course of making normal boundary condition to be satisfied,
can be applicable to the pressure calculation with the only change in the right
hand side of the system.

8.6 Concluding Remarks

This course presents a vorticity-based integro-differential formulation for the
numerical solution of unsteady incompressible flows. The integral approach
that is a fundamental part of the present formulation is directly applicable for
solving the integral equation for the pressure field as well. The present scheme
includes a pressure calculation which is a distinctive feature, not previously
treated in most vorticity-based methods. These aspects have been adapted for
the vorticity-velocity-pressure formulation by an Eulerian description.

For the kinematics of flow and the physical interpretation of the velocity field
(q = uw + ∇φ + U∞), a Lagrangian vortex method connected with the panel
method has been presented. An iterative process was used in order to enforce
the no-slip condition through the vorticity flux at the body boundary. For a thin
body, we suggest the use of an image particle layer for the zero-vorticity flux
condition on the solid boundary.

By applying the present scheme for the impulsively-started cylinder and the
impulsively-started NACA0021 foil with angles of attack, we performed com-
parisons with existing results, and with the results of an Eulerian FVM.

Although the present work has mainly focused on comparative studies, future
work would address (i) the treatment of turbulence models, (ii) the extension of
the vortex method to three-dimensional flow problems, and (iii) the develop-
ment of efficient numerical schemes associated with the solution procedure.
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8.6.1 LES in vortex methods

The direct numerical simulation of turbulent flows is possible for low Reynolds
number. Number of elements required for large Reynolds number of practical
application is very large so that the actual simulation is restricted. With the
current computer resource, the large eddy simulation is possible in which we
take modeling for the small-scale (subgrid-scale) turbulence in the viscous wake
and in the boundary layers.

The vortex method has been thought of as a natural approach to the sim-
ulation of turbulent flows. The use of vortex particles that convect with the
flow in a Lagrangian manner has been considered as a way of minimizing nu-
merical diffusion, which is an important matter in turbulent flow solution. The
discretization of the vorticity field using a smoothing function

ω(x, t) =
N∑
i=1

ζε(x− xi)αi (8.94)

can be considered to be some kind of filtering (normally, particle filtering) op-
eration in LES. The filtered voriticity transport equation

Dω

Dt
= ω · ∇u+ ν∇2ω −∇ · T (8.95)

differs from the laminar version in that vorticity stress term ∇ · T is added,
where Tij = (ωi uj − ωi uj) − (ui ωj − ui ωj) is the subfilter scale vorticity
stress.

If we take the vorticity version of the Smagorinsky model for that term,−∇·
T = ∇ · (νt∇ω), the turbulent diffusion can be treated in a similar way to the
particle strength exchange of the laminar diffusion. Cottet (1999) suggested a
simple selective model that the eddy diffusivity νt comes into action in region
of intense vortex activity, where the flow is strongly three dimensional.

νt =

{
C2
s ∆2 |ω|, for β0 < βm < π − β0

0, otherwise
(8.96)
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The region of nonzero eddy diffusivity is where the angle βm between the vor-
ticity at a given grid point and the average neighboring vorticity becomes an-
tialigned. The turbulent diffusion then becomes particle strength exchange with
average eddy diffusivity,

∇ · (νt∇ω) =
1

2 ε2

∑
j

(νti + νtj) (αj − αi) ηε(xi − xj) (8.97)

The extension of the VIC algorithm developed in this work to the turbulent flow
analysis is expected to be realized in future work.

Figure 8.62 Turbulent flow past a cylinder by VIC method. Cylindrical grid: 256×128×128
in a domain 4π × 2π × 2π filled with 25 % particles; CPU time: 8 min/RK4 iteration on alpha
single processor, 3 hours/shedding cycle. From Cottet & Poncet (2003).

8.6.2 Interaction between flow and bubble

The vorticity transport equation for two-dimensional incompressible flow of a
viscous fluid can be rewritten, without ignoring the external force, as

Dω

Dt
= ν∇2ω +∇× f (8.98)

where f is the external force caused by all the bubbles in fluid. The external
force is accounted for here the total force f

B
acting on the bubble; f = −f

B
.
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Equation of motion for a single bubble yields the following trajectory equa-
tion for a bubble of changing volume:

mB
duB
dt

= ρ VB
Du

Dt
− 1

2
ρ VB

(
duB
dt
− Du

Dt

)
+

1

2
ρ (u− uB)

dVB
dt

+
1

2
ρ π R2CD |u− uB| (u− uB) (8.99)

where the forces with the gravitational acceleration are neglected in this study;
the gravity and the buoyant force.

Recall that the force acting on the bubble is

f
B

= FU + FM + F V + FD (8.100)

where

FU = Unsteady force due to the acceleration of the undisturbed flow

FM = Convential added mass force

F V = Additional added mass force due to the volume variation

FD = Drag force

The hydrostatic forces, i.e. the bouyancy and graivity force, are accounted for
without directly producing any disturbace. Because the forces that are included
Du/Dt term are not produced by the bubble motion, they must be negligible.
Hence, Equation (8.99) is rewritten as

ρ VB
duB
dt

= ρ (u− uB)
dVB
dt

+ ρ π R2CD |u− uB| (u− uB) (8.101)

where ρB is neglected due to ρB � ρ. With the drag force FD and the additional
added mass force F V due to volume variation, (8.101) accounted for the force
acting on the fluid element which occupies the same volume and velocity of the
bubble. These external forces can be considered as the disturbance exerted by
the motion of the bubble.

Suppose now that the disturbance is separated into two parts, the disturbance
induced by the translational motion of the bubble and the distubance induced
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Figure 8.63 Schematic diagram of interaction between the motion of a single bubble and the
ambient viscous flow.

by the volumetric motion as shown in Figure 8.63 .

f = F V + FD (8.102)

8.6.2.1 Disturbance by volumetric motion

The disturbance which is induced by the pure volumetric motion of the bubble,
can be considered as mass source/sink in flow according to Eq. (8.101). Ac-
cording to Lagally Theorem, that is, the force on the bubble is proportional to
the source strength and to the magnitude of the velocity (u− uB) induced at
the location of the source by all mechanisms other than the source itself. The
direction of the force coincides with that of the relative velocity vector. Thus,
the force which is the volumetric motion of the bubble is defined as

F V = ρ (u− uB)
dVB
dt

= ρQ (u− uB) (8.103)

The strength of the mass source/sink becomes

Q =
dVB
dt

= 4πR2Ṙ (8.104)

Recall that the velocity potential φ is used to enforce the no-through-flow
boundary condition,

u′ = U∞ + uω + ∇φ (8.105)
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and that the velocity potential for the pure radial motion of the bubble is defined
by

φB = − 1

4 π

Q
r

= − R2Ṙ

r
(8.106)

Hence, with the velocity induced by the radial motion of the bubble, the flow
velocity is rewritten as

u′′ = U∞ + uω + ∇φ + ∇φB (8.107)

where

∇φB =
R2Ṙ

r2
er (8.108)

The symbol er denotes the unit vector in the outward radial direction from the
bubble.

Owing to the no-through-flow boundary condition, the normal component of
the velocity on the body surface becomes zero as

n · u′′ = n · (U∞ + uω + ∇φ + ∇φB) = 0 (8.109)

Then, substituting Eqn. (8.109) into Eqn. (4.2), it is found that

1

2
φ−

∮
C

φ (n · ∇G) d` = −
∮
C

(n · (U∞ + uω +∇φB)) Gd` (8.110)

The velocity potential on the body surface is implicitly computed. The velocity
at the field is adjusted by the velocity potential obatained by the above equation.

8.6.2.2 Disturbance by translational motion

Previous to computing the disturbance induced by the pure translational motion
of the bubble, consider the definition of the hydrodynamic force F with the
hydrodynamic impluse I (Lamb 1932, Saffman 1992); thus,

F = − ρ ∆I

∆t
(8.111)
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In two-dimensional case, the components of the hydrodynamic impluse (Ix, Iy)
are defined as

Ix =
∑

yi Γi , Iy = −
∑

xi Γi (8.112)

and then the components of the force (Fx, Fy) are

Fx = −ρ ∆Ix
∆t

, Fy = −ρ ∆Iy
∆t

(8.113)

Figure 8.64 Local coordinates for the hydrodynamic impulse of the bubble

Also, the drag force FD acting on a sphere in creeping flow at very low
Reynolds numbers is defined as (Batchelor 1973)

FD = − ρ ∆Ix
∆t

= 12πµR (u− uB) (8.114)

or equivalently
∆Ix = − 12πνR (u− uB) ∆t (8.115)

From these definitions, it is considered that the vorticity generated by the
translational motion of the bubble, which is exerted by the only drag force (the
effect exerted by the lift force is neglected in this study). Then, it can be mod-
eled that a symmetrical pair of two-dimensional vorticity of finite size on the
bubble surface is generated monotonically during ∆t.

yup Γup + ydn Γdn = − 12π ν R (u− uB) ∆t (8.116)
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The vorticity strength is obtained as |Γ| = 6πν |u− uB|∆t at |y| = R. The
magnitude of the induced vorticity is rewritten with with non-dimensional value
as

|Γ∗| = 6π

Re
|u∗ − u∗B| ∆t∗ (8.117)

with Reynolds number Re = U∞L/ν for the flow. The vorticity induced by
the bubble (Figure 8.65 ) is computed by differentiating directly over the La-
grangian control points, without requiring the interpolation onto the grid. In

Figure 8.65 Schematic of the vorticity generation

fact, the actual vortices shedding behind a sphere would be of ring type. There-
fore an axisymmetric ring vortex model equivalent to the drag forces is more
realistic than the present model taken herein. Such a three dimensional numeric
modelling is beyond of the present workscope, even through there still exists in-
consistency on the bubble interactions, in the respect of overall two dimensional
analysis.
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(a) Cavitation number Ca = 1.0

(b) Cavitation number Ca = 0.1

Figure 8.66 Bubble behavior for two different cavitation numbers. Initial bubble radius
Ro = 1, 000µm


	blue INTRODUCTION
	Decomposition of Velocity Fields
	Outline of Course Work

	blue VECTOR ANALYSIS
	 Introduction
	Definition of domain
	Fundamental function analysis

	Vector Calculus
	Definition of vector quantity
	Symbol of vectors
	Basic unit tensors
	Kronecker delta tensor
	Permutation tensor
	Multiplication of basic tensors
	Example of permutation tensor

	Multiplication of vectors
	Scalar product
	Vector product
	Scalar triple product
	Vector triple product

	Vector derivatives
	Gradient
	Divergence
	Curl
	Laplacian
	Differential operators
	Directed derivative

	Expansion formulas

	Integral Theorems
	Divergence theorem
	Stokes theorem
	Volume integrals of a vector
	Volume integral of first moment

	Surface integrals of a vector
	Surface integrals of first moment


	Curvilinear Coordinates on Lines and Surfaces
	Intrinsic line frame
	Example: Propeller pitch helix
	Example: Streamline intrinsic frame

	Curvilinear orthogonal coordinates
	Line element
	Gradient
	Divergence
	Curl
	Laplacian
	Convection term


	Tensors of Second Order
	Dyadic products
	Gradient of a vector

	Transport Theorem
	Moving Coordinate Systems
	Velocity due to rigid body rotation
	Transformations of moving coordinates

	Mathematical Identities
	Green's scalar identity
	Uniqueness of scalar identity
	Type of boundary conditions
	Vector identity
	Integral expression of Helmholtz decomposition
	Green functions
	Uniqueness of vector identity
	Classification of vector fields

	Improper Integrals
	Examples
	Principal value integrals


	blue BASIS OF FLUID FLOWS
	Introduction
	Basic definitions
	Assumptions and axioms
	Description of fluid motion
	Lagrangian description
	Eulerian description

	Particle tracing lines
	Example of particle tracing lines


	Kinematics
	Continuity
	Vorticity, circulation, and velocity potential
	Vorticity
	Vortex line and vortex tube
	Circulation and vorticity flux
	Vortex strength
	Velocity potential

	Helmholtz decomposition of a velocity field
	Velocity field of a vortex: Biot-Savart integral

	Dynamics
	Forces
	Body forces
	Surface forces
	Stress and stress tensor

	Example: Stress tensors for low Reynolds number flows
	Velocity field
	Stream function approach
	Stress tensor and drag

	Surface tension
	Equations of motion: Navier-Stokes equations
	Bernoulli equation
	Kelvin's theorem
	Viscous diffussion
	Cases of inviscid flow


	Potential Flows
	Laplace equation
	Kinematic boundary condition
	Alternative form

	Dynamic boundary condition: Free surface condition
	Examples
	Flow past a sphere
	Flow around a circular cylinder



	blue SINGULARITY DISTRIBUTION METHODS
	General Statements
	Techniques for solving Laplace equation
	Preview of singularity methods
	Boundary integral forms
	Disturbance flow about a body

	Surface Distributions of Singularity
	Interior flow field
	Source distributions
	Vortex distributions
	Source and vortex distributions
	Remarks for singularity distributions
	Doublet distribution and solid angle
	Equivalence of doublet and vortex distributions

	Limiting Form of Expressions
	Introduction
	Schematic implementation
	Scalar functions
	Source distribution
	Doublet distribution

	Vector functions

	Example : Circular Cylinder in Uniform Flow
	Point doublet at center
	Potential distribution
	Stream function formulation
	Source distribution
	Vortex distribution

	Direct Formulation for Surface Speed
	Boundary condition for interior flow
	Example: Vortex distribution over a circle

	Numerical Error
	Error measures


	blue POTENTIAL BASED METHODS
	Introduction
	Discretization of a Body Surface
	Evaluation of the integrals for a line element 

	Trailing Wake Sheet Behind a Lifting Body
	Boundary condtions
	Vortex distribution on wake sheet
	Doublet distribution (potential jump) on wake sheet
	Shedding vortex at trailing edge

	Kutta Condition
	Steady Kutta condition
	Unsteady Kutta condition

	Analytic Solution for Elliptic Section in Steady Uniformly Sheared Flows
	Conformal mapping
	Mapping coefficients
	Pressure, lift and moment
	Summarized results

	Unsteady Lifting Flows for Two-Dimensional Hydrofoils
	Equations of motion in a moving frame
	Representation of unsteady motion of a hydrofoil
	Representation of velocity field in a moving frame
	Formulation of boundary value problems for the disturbance potential.
	Bernoulli-like equation in a moving frame
	Integral equation for disturbance potential
	Vortex model of shed wake sheet: Typical example
	Solution procedures
	Numerical results: Steady flow cases
	Numerical results: Unsteady flow cases
	Start-up problems
	Harmonic heave motion
	Concluding remarks on combined motions


	Formulation in Three-dimensions
	Extension to 3-D wing
	Velocity components at a panel surface
	Non-lifting flow about an ellipsoid
	Lifting flow about a circular wing


	blue ANALYTICAL EVALUATION OF BOUNDARY INTEGRALS
	Introduction
	Transformation of the Surface Integrals to Contour Integrals
	Constant Density Distributions over a Planar Polygon
	Source distribution: Potential
	Source distribution: Velocity
	Doublet distribution: Potential
	Doublet distribution: Velocity
	Basic integrals
	Test calculations for constant distributions
	Extension to linear distributions

	Bilinear Source and Doublet Distribution
	Introduction
	Transformation of the surface integrals for Stokes' theorem
	Induced potential due to source distribution
	Induced velocity due to source distribution
	Induced potential and velocity due to doublet distribution
	Closed-forms of the basic integrals


	blue VORTICITY BASED METHODS
	Introduction
	Various vortical flows
	Recent developments
	CFD modeling
	Physical interpretation
	Vortex particle method
	Vortex-In-Cell method


	Vorticity-Velocity-Pressure Formulation
	Navier-Stokes equations in Helmholz decomposition
	Vorticity transport equation
	Pressure Poisson equation
	Kinematic boundary condition
	Dynamic boundary condition
	Integral approach of formulation
	Two-dimensional formulation

	Stream function approach: VIC method
	Particle method in solving the vorticity transport equation
	Hydrodynamic Forces 


	blue FINITE VOLUME METHODS
	Introduction
	Numerical Implementation
	Vorticity transport equation
	Numerical schemes
	No-slip boundary condition with vorticity flux

	Biot-Savart integral
	Evaluation of line integrals
	Computational enhancement

	Pressure Poisson equation
	Formulation
	Application of panel methods

	Computational procedure

	Lid-driven Cavity Flows
	Formulation
	Comparison with analytic solution

	Impulsively Started Circular Cylinder
	General aspects
	Computational grids
	Numerical results
	Analytic solution in early time stage
	Time step
	Computational domain
	Reynolds number
	Pressure, velocity and vorticity fields


	Oscillating Circular Cylinder Problems
	Key parameters
	Flow characteristics
	Formulation for moving frame fixed to cylinder
	Numerical simulation
	Case 1: KC=7, =143 (Re=1000)
	Case 2: KC=10, =20 (Re=200)
	Case 3: KC=16, =62.5 (Re=1000)



	blue VORTEX PARTICLE METHODS
	Introduction
	Numerical Implementation
	Particle representation of vorticity field
	Two-dimensions
	Three-dimensions

	Velocity field
	Regularized velocity field

	Field viscous diffusion: PSE scheme
	Image layer method in two-dimensions
	Image layer method in three-dimensions

	 No-slip condition: Vorticity flux at wall
	Wall viscous diffusion in two-dimensions
	Wall viscous diffusion in three-dimensions

	Pressure equation
	Computational procedure
	Redistribution
	Force calculation


	Some Comparative Results
	Impulsively started cylinder
	Impulsively started foil with varying angles of attack
	Angle of attack : 90 deg.


	Vortex-In-Cell Methods
	Introduction
	Rotational velocity component: FFT scheme based on regular grid
	Potential velocity component: Panel method with linearly varying singularity distribution
	Stretching term in 3-D
	Stability issue
	Stability criterion 

	Outline of the VIC scheme
	Pressure calculation by panel method with a linearly varying singularity

	Numerical Results by VIC Methods
	Two dimensional flows 
	Impulsively started circular cylinder
	Impulsively started NACA0012 hydrofoil

	Three dimensional flows
	Sphere
	Rectangular wing

	Features of vortex-in-cell method

	Concluding Remarks
	LES in vortex methods
	Interaction between flow and bubble 
	Disturbance by volumetric motion
	Disturbance by translational motion



	blue NUMERICAL IMPLEMENTATION OF KUTTA CONDITION
	Implementation of Kutta Condition in Two-Dimensions
	Steady flow cases
	Unsteady flow cases

	Implementation of Kutta Condition in 3-D Steady Flows

	blue INTEGRATION FOR SINGULARITY DISTRIBUTIONS
	Introduction
	Related work for closed-form expressions
	Stokes' theorem
	Basic vector operations

	Induced Potential Due to Source Distribution
	Transformation of Eq. (B.18) into line integrals

	Induced Velocity Due to Source Distribution
	Induced Potential Due to Doublet Distribution
	Induced Velocity Due to Doublet Distribution

	blue CODE PRpan FOR PANEL METHOS
	Introduction
	Program Lists of Subroutine PRpan

	blue EVALUATION OF THE BIOT-SAVART INTEGRAL
	Introduction
	Integral representation

	Biot-Savart Integral in 2-D 
	Transformation of integral
	Analytic form of integrals

	Biot-Savart Integral in 3-D
	Transformation of integral
	Specific line integrals


	blue References
	blue General References



