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A.1 Implementation of Kutta Condition in Two-Dimensions

The physical features behind the Kutta condition, although the interpretation
is not complete, are complex as explained before. The object of the numeri-
cal implementation of the Kutta condition here is to determine the jump in the
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disturbance potential (4φv) at the T. E. for which acceptable results may be
obtained.

Following the feature of the ‘Maskell’ trailing-edge flow for the velocity at
the T. E., we can define the tangential velocities (i.e., shed vorticity) on both the
upper and lower surfaces at the T. E. by imposing a stagnation point at either
the upper or the lower trailing-edge point. Then the difference of the velocity
there is assigned to the shed vorticity.

Accordingly we can evaluate the jump in disturbance potential at the T. E.
(4φv|TE) such that a surface potential distribution near the T. E. satisfies the be-
havior of the tangential velocities corresponding to the local flow characteristics
near the T. E.

In practice, the Kutta condition is implemented first by attaching the wake to
the T. E. (or by specifying a point where the vorticity leaves the body surface)
and evaluating 4φv|TE from the values of the disturbance potential of the panels
(φj).

Let us approximate the disturbance potential distributions (φ) on the upper
and the lower surfaces near the T. E. as a parabolic form of the parameter s:

φu (s) = au s
2 + bu s+ cu , (A.1)

φ` (s) = a` s
2 + b` s+ c` , (A.2)

where the parameter s is arc-length along the body surface contour from the
T. E. with positive taken as counterclockwise (see Figure 4.5 ) and the subscripts
u and ` refer to the upper and the lower surface, respectively. The coefficients
bu, b`, cu and c` are to be determined by imposing the Kutta condition, but
the coefficients au and a` (which have been kept in the following derivation) are
ignored in the final expression (A.10) for 4φv|TE by assuming their contribution
to be higher order.

Similar procedure has been presented by Ingham et al. (1981) 1 for the prob-
lems with two regions of different physical features, in which the two analytical

1Ingham, D. B., Heggs, P. J. and Manzoor, M. (1981), “The Numerical Solution of Plane Potential Problems
by Improved Boundary Integral Equation Methods,” Journal of Computational Physics, vol. 42, pp. 77–98.
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solution forms of the Laplace equation for the two regions in the neighborhood
of the discontinuity are introduced and then the appropriate physical matching
conditions at the common interface are enforced to determine the coefficients
associated with those forms. Another simple application of this procedure has
been introduced by Batchelor (1967) to flow problem near a stagnation point. 2

Then taking the gradient of (A.1) and (A.2) and then including the undis-
turbed velocity q∞(≡ q

o
− q

F
) give the total tangential components (positive

as counterclockwise) on the upper and the lower surface near the T. E. can be
expressed as, respectively,

qtu(s) = (q∞ +∇φu) · tu = q∞ · tu + 2au s+ bu , (A.3)

qt`(s) = (q∞ +∇φ`) · t` = q∞ · t` + 2a` s+ b` . (A.4)

Then the potential jump at the T. E. from (A.1) and (A.2) can be written as

4φv|TE = φu (0)− φ` (0) = cu − c` . (A.5)

This potential jump is expressed in terms of quantities in the panel-method ap-
proximation as:

4φv|TE = cu − c` = (φ1 − au s2
1 − bu s1)− (φN − a` s2

N
− b` sN), (A.6)

where φ1 and φN are the (unknown) disturbance potential, respectively, on the
two adjacent panels to the T. E. (i.e., the 1st panel from the T. E. on the upper
surface and the N -th panel on the lower surface) (see Figure 4.5 ). But we
specify the coefficients au , bu , a` and b` by applying the Kutta condition at the
T. E.

A.1.1 Steady flow cases

As a special case, first let us consider steady flow for which a stagnation point
(for non-cusped foils) should be located at the T. E. Then it means qtu(0) = 0

2See Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge,
p. 105.
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and qt`(0) = 0. Applying these constraints to (A.3) and (A.4) gives

bu = −q∞ · tu
∣∣∣
TE

and b` = −q∞ · t`
∣∣∣
TE

. (A.7)

With these coefficients, (A.6) reduces to

4φv|TE = cu − c`
= φ1 − au s2

1 + q∞ · tu
∣∣∣
TE

s1 − φN + a` s
2
N
− q∞ · t`

∣∣∣
TE

sN

= φ1 − φN + a` s
2
N
− au s2

1 − q∞ · (tN sN) + q∞ · (t1 s1)

= φ1 − φN + q∞ · 4r , (A.8)

where the term (a`s2
N
−aus2

1) has been neglected, being of higher order compared
with other terms and 4r(= r1 − rN) represents difference of position vectors
of the control points of the two adjacent panels (Figure 4.5 ).

Equation (A.8) is the same as the Kutta condition for steady two-dimensional
lifting flow suggested first by Lee (1987). 3 He pointed out that the ‘implicit’
Kutta condition imposed just as 4φv|TE = φ1 − φN , 4 may lead to inaccurate
results for extreme cases such as for a circular cylinder at 90o angle of attack (for
which the lift calculated by using this ‘implicit’ Kutta condition is incorrectly
about half of the analytical one).

A.1.2 Unsteady flow cases

Next, we can follow a similar procedure for unsteady flow. First the tangential
speed at the T. E. either on the upper or the lower surface, depending on the sign
of dΓB/dt as mentioned previously, should be specified in order to determine
the unknown coefficients bu and b` in (A.6). According to the behavior of the
‘Maskell’ trailing edge flow, the tangential speeds at the T. E. on both the upper
and the lower surfaces are expressed in terms of a vortex strength at the T. E.

3Lee, J. T. (1987), A Potential Based Panel Method for the Analysis of Marine Propellers in Steady Flow,
Department of Ocean Engineering, MIT, Report no. 87-13.

4For example, see Maskew, B. (1982), “Prediction of Subsonic Aerodynamic Characteristics: a Case for Low-
Order Panel Methods,” Jounal of Aircraft, vol. 19, no. 2, pp. 157–163.
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(γTE) as: 
qt` = γTE , qtu = 0, if dΓB/dt < 0

qt` = 0, qtu = γTE , if dΓB/dt > 0

qt` = 0, qtu = 0, if dΓB/dt = 0

(A.9)

Substituting these relations into (A.3) and (A.4) in order find bu and b`, then
neglecting the term (a` s2

N
− au s2

1) as the steady flow cases and recalling q∞ ≡
q
o
− q

F
, we obtain the following expression for 4φv|TE :

4φv|TE =


φ1 − φN + (q

o
− q

F
)TE · 4r + γTE sN , if dΓB/dt < 0

φ1 − φN + (q
o
− q

F
)TE · 4r − γTE s1, if dΓB/dt > 0

φ1 − φN + (q
o
− q

F
)TE · 4r , if dΓB/dt = 0

(A.10)

In a numerical code, from two circulation values at successive time steps an
approximation for γTE may be used:

γTE =
Γ

(k−1)
B − Γ

(k)
B

4v1
(A.11)

Here4v1 (that is given as an input parameter in a numerical code) is the length
of the straight-line element of the wake sheet leaving the T. E. Consequently an
iteration procedure is required to obtain unknown Γ

(k)
B at the present instant of

time, which is equal to the negative value of 4φv|TE.

A.2 Implementation of Kutta Condition in 3-D Steady Flows

The Kutta condition has been applied originally in the steady two-dimensional
flow case for uniqueness of solution mathematically and for regular flow in the
vicinity of the trailing edge (T. E.) physically. It eventually implies that the rear
stagnation point is at the T. E. for a non-cusped sharp-edged foil in order to sat-
isfy both the pressure-equality condition and the condition of finite velocity at
the T. E.. But if we applied this interpretation in steady three-dimensional flow,
the two conditions of pressure equality and finite velocity can not be satisfied
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exactly at the T. E., since there is inherently a velocity difference across the
sharp T. E.. and (iii) to satisfy the pressure equality condition at the T. E..

Let us approximate the disturbance potential distributions (φ) on the upper
and the lower surfaces near the T. E. as a linear form of the local coordinates
(geometrical parameters) ξ and η: 5

φu(ξu, η) = au ξu + bu η + cu , (A.12)

φ`(ξ`, η) = a` ξ` + b` η + c` , (A.13)

where the parameter η is arclength along the T. E. positive taken as spanwise
direction (see Fig. 2 in reference Mangler & Smoth (1970)) and the parameters
ξu and ξ` are arclength along the upper surface and the lower surface, respec-
tively, measured from the T. E. and normal to the T. E.. Here the subscripts u
and ` refer to the upper and the lower surface, respectively. Then the potential
jump at the T. E. from (A.12) and (3.8) can be written, including its spanwise
variation term,

4φ = φu (0, η)− φ` (0, η) = cu − c` + (bu − b`) η (A.14)

This potential jump is expressed in terms of unknown quantities in the panel-
method approximation as:

4φ = (φ1 − φN)− (auξu1 − a`ξ`N)− (buη1 − b`ηN) + (bu − b`)η (A.15)

where φ1 and φN are the (unknown) disturbance potential, respectively, at
the control points of the two adjacent panels to the T. E. (i.e., the 1st panel
from the T. E. on the upper surface and the N -th panel on the lower surface).
ξu1, ξ`N , η1, ηN are the local coordinates of the control points. Then taking the
gradient of (A.12) and (3.8) and then including the undisturbed velocity q

o
give

5Similar procedure has been presented by Ingham et al. (1981) for the problems with two regions of different
physical features, in which the two analytical solution forms of the Laplace equation for the two regions in the
neighborhood of the discontinuity are introduced and then the appropriate physical matching conditions at the
common interface are enforced to determine the coefficients associated with those forms. Also this procedure has
been applied to irrotational solenoidal flow near a stagnation point (Batchelor (1967)).
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the total tangential speeds on the upper and the lower surface near the T. E.:

q2
u = (q

o
· eξu + au)

2 + (q
o
· eη + bu)

2 (A.16)

q2
` = (q

o
· eξ` + a`)

2 + (q
o
· eη + b`)

2 (A.17)

where eξu, eξ` and eη are the unit vectors of the local coordinate system at the
trailing edge point.

According to the Mangler and Smith’s analysis, vanishing the tangential
speed at the T. E. either on the upper or the lower surface allows us to deter-
mine the unknown coefficients au and a` in (A.15):

au = −q
o
· eξu +

√
−D , a` = −q

o
· eξ`, if D < 0

au = −q
o
· eξu , a` = −q

o
· eξ` +

√
D, if D > 0

au = −q
o
· eξu , a` = −q

o
· eξ`, if D = 0

(A.18)

whereD = 2(q
o
·eη)(bu−b`)+(b2

u−b2
`). Here bu and b` are still unknown repre-

senting variation of the perturbation potential in η-direction on the upper surface
and the lower surface at the T. E. panels. Consequently this model requires an
iteration procedure to determine these coefficients by fitting the potential values
at the T. E. panels in that direction.

As a special case of two-dimensional steady flow, (for which a stagnation
point should be located at the T. E.) it holds qu = 0 and q` = 0. Applying these
constraints to (A.16) and (A.17) gives

au = −q
o
· eξu and a` = −q

o
· eξ` (A.19)

With these coefficients, (A.15) reduces to

4φ = φ1 − φN + q
o
· 4r (A.20)

where4r(= r1−rN) denotes difference of position vectors of the control points
of the two adjacent panels. Lee, J. T. (1987) suggested this equation as the Kutta
condition for steady two-dimensional lifting flows, by which he has shown sig-
nificant improvement on accuracy of numerical solutions compared to those
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obtained by the so-called Morino’s Kutta condition. Accordingly Eq. (A.15)
contains the Kutta condition Eq. (A.8) for two-dimensional flows.
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