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High Cycle Fatigue vs Low Cycle Fatigue
 Each failure occurs by apparently different 

physical mechanisms

 High cycle fatigue

 Low cycle fatigue 
 Significant plastic strain occurs during at least some 

of the loading cycles. 

 Relatively short fatigue lives between 10~100,000 
cycles

 Ductility and resistance to plastic flow are important

 Post welding treatment and high tensile material are 
not effective.

 Engineering Structures are designed such that the 
nominal loads remain elastic. 

 However, stress concentrations often cause plastic 
strains to develop in the vicinity of notches.

 Crack initiation life is estimated.

2.1 INTRODUCTION
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Basic Definitions
 Engineering Stress and Strain

 The true stress is defined as the ratio of the 

applied load to the instantaneous cross 

sectional area

 The true strain is defined as the sum of all 

the instantaneous engineering strains.

 Incase of engineering strain.

2.2 MATERIAL BEHAVIOR - 2.2.1 Monotonic Stress-Strain Behavior
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True and engineering stress-strain

True and Engineering Stress-Strain Relationship (valid up to necking)

2.2 MATERIAL BEHAVIOR - 2.2.1 Monotonic Stress-Strain Behavior
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True and engineering stress-strain

2.2 MATERIAL BEHAVIOR - 2.2.1 Monotonic Stress-Strain Behavior

)1( eS 

 e 1ln
(ε, σ) =(0.182, 456)(e,S)=(0.2,380)

Comparison engineering and true stress-strain
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Stress-Strain relationship

 Total true strain (εt) = Linear elastic strain (εe)+ plastic strain (εp) 

 For most metals a log-log plot of true stress versus true plastic strain 

is modeled as a straight line.  

K : strength coefficient, n : strain hardening exponent.

 True fracture strength

Af : area at fracture, Pf : load at fracture.

2.2 MATERIAL BEHAVIOR - 2.2.1 Monotonic Stress-Strain Behavior

 True fracture ductility, true strain at final 

fracture.

RA : Reduction in area

 K can be defined in terms of σf and εf .
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Stress-Strain relationship

 Plastic strain can be defined in terms of these quantities. 

 Total strain can be expresses as 

 Elastic strain 

 Total strain can be rewritten as 

2.2 MATERIAL BEHAVIOR - 2.2.1 Monotonic Stress-Strain Behavior
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True and engineering stress-strain

 Example of True Stress-Strain Curve

 E = modulus of elasticity = 20600 MPa

 n = cyclic strain hardening exponent =0.193

 K = cyclic strength coefficient = 1210 MPa
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Low Cycle Fatigue Calculation Procedure

2.1 INTRODUCTION

Strain-life curve

True Strain Amplitude

Low Cycle Fatigue

Stabilized Cyclic Strain-
Stress Curve

True Strain-Stress 
Relations under inelastic 

loading : 
Hysteresis Curve 

1) Companion Sample 
2) Incremental Step Test 

Massing’s hypothesis 
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Low Cycle Fatigue Calculation Procedure

2.1 INTRODUCTION

Strain-life curve

True Strain Amplitude

Low Cycle Fatigue

Stabilized Cyclic Strain-
Stress Curve

True Strain-Stress 
Relations under inelastic 

loading : 
Hysteresis Curve 

1) Companion Sample 
2) Incremental Step Test 

Massing’s hypothesis 
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Initial 
loading

2.2.2 Cyclic Stress-Strain Behavior – Hysteresis loop

 Cyclic stress-strain curves are useful for assessing the 

durability of structures and components subjected to repeated 

loading. 

 Hysteresis loop : the response of a material subjected to 

inelastic loading.

 The area within the loop : plastic deformation work

done on the material

2.2 MATERIAL BEHAVIOR

Hysteresis Loop

 Total strain range. 

 Total strain amplitude

the elastic term may be replaced 
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2.2.2 Cyclic Stress-Strain Behavior – Baushinger effect

2.2 MATERIAL BEHAVIOR

1. Tensional loading :  past 

the yield strength, σy, to some 

value σmax 

2. Compressive loading : 

inelastic (plastic) strains 

develop before –σy is reached.

σy

σmax

2σy

σy

σmax

σy

σmax
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Constant strain amplitude

Stress response

Cyclic stress-strain 

response

2.2.3 Transient Behavior : Cyclic Strain Hardening

 The stress-strain response of metals is often drastically altered due 

to repeated loading.

1. Cyclically harden :  maximum stress increases  with each cycle of strain.

→ requires more load to keep imposing the constant strain.

2.2 MATERIAL BEHAVIOR

Cyclic Hardening
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Constant strain 

amplitude

Stress 

response

Cyclic stress-

strain response

2.2.3 Transient Behavior : Cyclic Softening

2. Cyclically soften : maximum stress increases with each cycle of strain

→ requires less load to keep imposing the constant strain.

3. Be cyclically stable : requires the same load

4. Have mixed behavior(soften or harden depending on strain range) 

2.2 MATERIAL BEHAVIOR

Cyclic Softening
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What is dislocation?

 Dislocation : a crystallographic(결정학상의) 

defect, or irregularity, within a crystal structure.

 A crystalline material : consists of a regular array 

of atoms, arranged into lattice planes.  

 An edge dislocation  : a defect where an extra 

half-plane of atoms is introduced mid way through 

the crystal, distorting nearby planes of atoms.

 A screw dislocation  : Imagine cutting a crystal 

along a plane and slipping one half across the 

other.

2.2 MATERIAL BEHAVIOR

Crystal lattice showing 
atoms and lattice planes

Edge dislocation

Screw dislocation
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2.2.3 Transient Behavior : Cyclic Hardening and Softening

 The reason of materials soften or harden

 For soft material : initially the dislocation density is low. The density 

rapidly increases due to cyclic plastic straining contributing to 

significant cyclic strain hardening

 For hard material : subsequent strain cycling causes a 

rearrangement of dislocations which offers less resistance to 

deformation and the material cyclically softens.

: the material will cyclically harden 

: the material will cyclically soften

2.2 MATERIAL BEHAVIOR
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2.2.3 Transient Behavior : Cyclic Hardening and Softening

 Between 1.2 and 1.4, small change in cyclic response. 

 Monotonic strain hardening exponent, n, can be used to predict the 

material's cyclic behavior.

 n> 0.20 the material will cyclically harden

 n< 0.10 the material will cyclically soften

 Cyclically stable condition reaches after 20~40% of the fatigue life. 

 Fatigue properties are usually specified at 50% of fatigue life when 

the material response is stabilized. 

2.2 MATERIAL BEHAVIOR
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Low Cycle Fatigue Calculation Procedure

2.1 INTRODUCTION

Strain-life curve

True Strain Amplitude

Low Cycle Fatigue

Stabilized Cyclic Strain-
Stress Curve

using 
1) Companion Sample 
2) Incremental Step Test 

True Strain-Stress 
Relations under inelastic 

loading : 
Hysteresis Curve Massing’s hypothesis 
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2.2.4 Cyclic Stress-Strain Curve Determination

1. Companion samples : A series of 

samples are tested at various strain 

levels and the stabilized hysteresis 

loops are superimposed and the tips 

of the loops are connected. Time 

consuming.

2. Incremental step test : widely 

accepted since quick and good results. 

The response stabilizes after 3-4 

blocks and fails after about 20 blocks. 

The tips of the stabilized hysteresis 

loops are connected → Cyclic Stress-

Strain Curve 

2.2 MATERIAL BEHAVIOR

Incremental step test

Companion samples
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2.2.4 Cyclic Stress-Strain Curve Determination

 An example of Incremental step test

2.2 MATERIAL BEHAVIOR

Strain History
Hysteresis loop & 

Cyclic Stress-Strain Curve
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Low Cycle Fatigue Calculation Procedure

2.1 INTRODUCTION

Strain-life curve

True Strain Amplitude

Low Cycle Fatigue

Stabilized Cyclic Strain-
Stress Curve

True Strain-Stress 
Relations under inelastic 

loading : 
Hysteresis Curve 

1) Companion Sample 
2) Incremental Step Test 

Massing’s hypothesis 
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2.2.4 Cyclic Stress-Strain Curve Determination

 After the incremental step test, if the specimen is pulled to failure, 

the stress-strain curve will be nearly identical to the one obtained by 

connecting the loop. 

 Massing’s hypothesis : the stabilized hysteresis loop may be 

obtained by doubling the cyclic stress-strain curve. 

2.2 MATERIAL BEHAVIOR

Stabilized Cyclic 
Stress-Strain Curve

Doubling Hysteresis Loop
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Cyclic true stress versus plastic strain

 Log-log plot of the completely reversed stabilized cyclic true stress 

versus true plastic strain

Where,  = cyclically stable stress amplitude

ε = cyclically stable plastic strain amplitude

K′ = cyclic strength coefficient

n′ = cyclic strain hardening exponent (0.10 ~0.25, average 0.15)

2.3 STRESS-PLASTIC STRAIN POWER LAW RELATION

Log-log plot of true 
cyclic stress versus true 

cyclic plastic strain

 Total strain is 
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 Total strain is 

 An arbitrary point P1(σ1,ε1) 

on Cyclic Stress-Strain Curve,

 From Massing’s hypothesis, P1 can be located on hysteresis curve , 

P′1(∆σ1, ∆ε1) .

Hysteresis loop by Massing’s hypothesis

2.3 STRESS-PLASTIC STRAIN POWER LAW RELATION

Cyclic stress-strain Curve
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Example of Experiment data

 Example of actual Monotonic and Cyclic Stress Strain 

Curve.

2.5 DETERMINATION OF FATIGUE PROPERTIES
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Initial application of strain follows stress- strain curve 

All successive strains follows hysteresiss curve.

Example 2.1

Q : Consider a test specimen with the following material properties :

E = modulus of elasticity = 30 X 103 ksi

n′ = cyclic strain hardening exponent =0.202

K′ = cyclic strength coefficient = 174.6 ksi

Fully reversed cyclic strain with a strain range, ∆ε, of 0.04. Determine the 
stress-strain response of the material.

2.3 STRESS-PLASTIC STRAIN POWER LAW RELATION

1
1 1

1 ( ) n

E K

 
  


202.0

1
1

3

1 )
4.176

(
1030

02.0
ksiksi





 ksi1.771 

1

2( )
2

n

E K

 
 

 
  


ksi2.154

ksi1.7712  

ksi02.012  

26

①

②

-0.01 ②’

If ① → ②’

144.4ksi 

2 1 67.3ksi     
2 1 0.01ksi     

-0.01

-67.3



OPen INteractive Structural Lab

Low Cycle Fatigue Calculation Procedure

2.1 INTRODUCTION

Strain-life curve

True Strain Amplitude

Low Cycle Fatigue

Stabilized Cyclic Strain-
Stress Curve

True Strain-Stress 
Relations under inelastic 

loading : 
Hysteresis Curve 

1) Companion Sample 
2) Incremental Step Test 

Massing’s hypothesis 
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Strain Life Curve

 Stress life (S-N) data on a log-log scale. 

 Plastic strain –life (ε1-N) data on log-log coordinates by Coffin and 
Manson

 Total strain and the elastic term

2.4 STRAIN-LIFE CURVE
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Strain Life Curve

2.4 STRAIN-LIFE CURVE
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Strain Life Curve

 Transition fatigue life, 2Nt

 Short lives : more plastic strain, wider loop. 

Long lives : less plastic loop, narrower loop.

 As the ultimate strength increases, the transition life decreases and elastic 

strains dominate for a greater portion of the life range. 

2.4 STRAIN-LIFE CURVE

Relationship between transition 
life and hardness for steels
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Brinell Hardness number

 A measure of the hardness of a material obtained by pressing a hard 

steel ball into its surface.

 the ratio of the load on the ball in kilograms to the area of the 

depression made by the ball in square millimeters

 Endurance limit (Fatigue Limit) of S-N Curve of base material is 

related to hardness

Se(ksi) ≈ 0.25 x BHN for BHN <400

100 ksi (=689MPa) for BHN > 400

Reference

)(

2
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Strain-Life Curve

 Definition of failure

 Separation of specimen : common for uniaxial loading

 Development of given crack length (often 1.0mm) 

 Loss of specified load carrying capability (often 10 or 50% load 

drop)

→ Not a large difference in life between these criteria

 Factor of 2

 Strain-life approach measure life in terms of reversals (2N), the 

stress-life method Cycles (N)

 Strain-life approach uses both strain range (∆ε) and amplitude 

(εa). 

 hysteresis curve can be modeled as twice  the Cyclic σ-ε curve 

versus

2.4 STRAIN-LIFE CURVE
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Methods to determine Properties

 The strain-life equation requires four empirical constants (                  ). 

These can be obtained from fatigue data.

 Although these, relationships may be useful, Kʹ and nʹ are usually obtained 

from a curve fit of the cyclic stress –strain data using 

2.5 DETERMINATION OF FATIGUE PROPERTIES
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Methods to determine Properties

 Approximate methods

 Fatigue strength coefficient ′f

(corrected for necking)                 

(steels with hardness below 500BHN)                             

 Fatigue strength exponent, b : -0.05~-0.12 for most metals, average of -

0.085

 Fatigue ductility coefficient, ε′f :

RA : the reduction in area

 Fatigue ductility exponent c : not well defined,  -0.5~-0.7 

2.5 DETERMINATION OF FATIGUE PROPERTIES
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Example 2.2

2.5 DETERMINATION OF FATIGUE PROPERTIES

Q : From the monotonic and cyclic strain-life data for smooth steel specimens. 

Determine the cyclic stress-strain and strain-life constants

Monotonic data   Sy = 158 ksi,  E=2.84 X103 ksi

Su = 168 ksi,  f =228 ksi

%RA = 52      εf =0.734
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Example 2.2

2.5 DETERMINATION OF FATIGUE PROPERTIES
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Example 2.2

 Fatigue strength coefficients ′f and b by fitting a power law relationship 

between ∆/2 and 2N f

 Fatigue ductility coefficients ε′f and c by fitting a power law relationship 

between ∆ εp/2 and 2N f

2.5 DETERMINATION OF FATIGUE PROPERTIES
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Example 2.2

 The cyclic strength coefficient, K′ and the cyclic strain hardening 

exponent, n′. 

1) by fitting a power law relationship to stress amplitude ∆/2 versus 

plastic strain amplitude ∆ εp/2. → Preferred

2) From the relationship

From strain-life data v.s. from approximations

2.5 DETERMINATION OF FATIGUE PROPERTIES

( )n

pK 
 094.0',216'  nksiK

( )

f
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b
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c
  227 , 0.104K ksi n  
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b : average of -0.085

c : -0.5~-0.7
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Mean stress effect

 Mean strain  is negligible but mean stress has a significant effect on 

the fatigue life.

 At longer lives, mean compressive stress effect is valid.  

 At high strain amplitudes (0.5% to 1% or above), mean stress tends 

toward zero. 

2.6 MEAN STRESS EFFECTS

Effect of mean stress on 
strain-life curve

Mean stress relaxation
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Modification to strain-life equation I

 Morrow suggested.  

 The strain-life equation, 

2.6 MEAN STRESS EFFECTS

0
(2 )

2 2

f be
fN

E E

     
 

0
(2 ) (2 )

2

f b c

f f fN N
E

 


 
 

Morrow’s mean stress 
correction

Independence of elastic/plastic 
strain ratio from mean stress

Same ratio of elastic 
to plastic strain, but, 
vastly different mean 

stress

Ratio of elastic to plastic 
strain is dependant on mean 

stress?
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“Fatigue life decreases as mean tensile 
stress 0 increase.”
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 Smith, Watson, and Topper (SWT)’s modification. For completely 

reversed loading

 Multiplying the strain-life equation by this term, results in 

 The term σmax 

Modification to strain-life equation I

 Manson and Halford’s modification

 Too much mean stress effect at short 

lives. 

2.6 MEAN STRESS EFFECTS
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It becomes 
undefined when 
σmax is negative.

No fatigue 
damage occurs 
when σmax <0 ?
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