Lecture Note of Innovative Ship and Offshore Plant Design Innovative Ship and Offshore Plant Design Part II. Offshore Plant Design Ch. 2 Sizing and Configuration of Topside Systems Spring 2019 Myung-II Roh Department of Naval Architecture and Ocean Engineering Seoul National University

[Summary] Mathematical Model for the Determination of Optimal Ope Condition for the Refrigerator (1/2)	T: Temperature, k: specific entrolpy, :: specific entropy Pressure · Specific volume · Specific volume · Power provided to the compressor per mass · Specific heat transfer from the refrigerant to the atmosphere · Specific heat transfer from the refrigerant of the refrigerant(Given) · Specific heat transfer from the refrigerant to the refrigerant(Given) · Specific heat transfer from the refrigerant to the set of the refrigerant(Given) · / Vapor fraction
1. Compressor	2. Condenser
1) Design Variables: P_1 , v_1 , T_1 , P_2 , v_2 , T_2 , T_3 , w	1) Design Variables: P_2 , v_1 , T_1 , P_3 , v_3 , T_3 , q_H
2) Constraint:	2) Constraint:
$h_1(P_1, v_1, T_1) + w = h_2(P_2, v_2, T_2)$ [The first law of the thermodynamics	s] $h_2(P_2, v_2, I_2) = q_H + h_3(P_3, v_3, I_3)$ [The first law of the thermodynamics]
$\eta = \frac{h_2(P_2, v_2, T_2) - h_i(P_i, v_i, T_i)}{h_s(P_2, v_s, T_s) - h_i(P_i, v_i, T_i)} \tag{Efficiency of the compressor}$	$P_2 = P_3 $ [Isobaric process] $v_1 = RT_{2-1-k_0} = a(T_2) \qquad v_2 - b$
$s_1(P_1,v_1,T_1) = s_2(P_2,v_S,T_S)$ [The second law of the thermodynamics	$P_2 = \frac{P}{P} + b - \frac{P_2}{P_2} \left(v_2 - sb \right) (v_2 - \sigma b) $ [Equation of state]
$v_1 = \frac{RT_1}{P} + b - \frac{a(T_1)}{P_1} \frac{v_1 - b}{(v_1 - sb)(v_1 - \sigma b)} $ [Equation of state	$v_{3} = \frac{RT_{3}}{P} + b - \frac{a(T_{3})}{P_{3}} \frac{v_{3} - b}{(v_{3} - cb)(v_{3} - \sigma b)} $ [Equation of state]
$v_{2} = \frac{RT_{2}}{b} + b - \frac{a(T_{2})}{b} \frac{v_{2} - b}{b}$	$P_3 = 10^{a - T_3 + C - 273.15}$ [Saturated pressure and temperature]
$P = P_2 (v_2 - \varepsilon b)(v_2 - \sigma b)$ required in the state	$T_3 > T_{amb} + \Delta T_{min}$ [Outlet temperature of the condenser]
3. Expansion Valve	4. Evaporator
1) Design Variables: P_{i} , v_{i} , T_{1} , P_{4} , v_{4} , T_{4} , v_{4J} , v_{4y} , v_{-f}	1) Design Variables: P_4 , v_4 , T_4 , P_1 , v_1 , T_1 , $v_{4,1}$, $v_{4,r}$, $r_{\perp}f_1M$, q_L
2) Constraint:	2) Constraint:
$h_3(P_3, v_3, T_3)$ [The first law of the thermodynamics	$M \cdot (1 - v_{f}) \cdot h_{4J}(P_{4}, v_{4J}, T_{4}) + M \cdot v_{f} \cdot h_{4,v}(P_{4}, v_{4,v}, T_{4}) + M \cdot q_{L}$
$= (1 - v_f) \cdot h_{4,i} (P_4, v_{4,i}, T_4) + v_f \cdot h_{4,v} (P_4, v_{4,v}, T_4)$	$= M \cdot h_1(P_1, v_1, T_1)$ [The first law of the thermodynamics]
$P_4 = 10^{\frac{d}{T_{\rm eff} - C - 273.15}}$ [Saturated pressure and temperature	$P_4 = P_1$ [Isobaric process]
$RT_3 = a(T_3) = v_3 - b$	$v_{i} = \frac{RT_{i}}{P} + b - \frac{a(T_{i})}{P} \frac{v_{i} - b}{(v_{i} - sb)(v_{i} - \sigma b)}$ [Equation of state]
$V_3 = \frac{1}{P} + b - \frac{1}{P_3} \frac{1}{(v_3 - \varepsilon b)(v_3 - \sigma b)}$ [Equation of state	
$\mathbf{v}_{t} = (1 - \mathbf{v}_{t} \mathbf{f}) \cdot \mathbf{v}_{t} + \mathbf{v}_{t} \mathbf{f} \cdot \mathbf{v}_{t}$	$v_4 = (1 - v_f) \cdot v_{4j} + v_f \cdot v_{4j}$
$v_{4,j} = \frac{RT_4}{P} + b - \frac{a(T_4)}{(v_{i,j} - cb)(v_{i,j} - \sigma b)} $ [Equation of state	$\mathbf{v}_{4,j} = \frac{RT_4}{P} + \dot{b} - \frac{\sigma(T_4)}{P_4} \frac{\mathbf{v}_{4,j} - \dot{b}}{(\mathbf{v}_{4,j} - \sigma \dot{b})} \text{ [Equation of state]}$
$v_{4,v} = \frac{RT_4}{D_c} + b - \frac{a(T_4)}{D_c} \frac{v_{4,v} - b}{D_c} $ (Equation of state	$\mathbf{v}_{4y} = \frac{RT_4}{P} + \dot{b} - \frac{\sigma(T_4)}{P_4} \frac{\mathbf{v}_{4y} - b}{\left(\mathbf{v}_{4y} - \sigma b\right)} \qquad \qquad$
$I = I_4 = \begin{pmatrix} v_{4,v} - c_U \end{pmatrix} \begin{pmatrix} v_{4,v} - c_U \end{pmatrix}$	$P_1 = 10^{A - \frac{B}{T_1 + C - 273.15}} \begin{array}{c} \text{[Saturated pressure and} \\ \text{temperature]} \end{array} M \cdot g_L = 20[kW] \qquad \text{[Given]} \end{array}$

Mathematical Model for the Determination of - Optimization Method	Optimal Operating Condition for the Refrigerator
 Optimization Method Optimization Problem Design variables (Operating conditions) [21] P_μ T_μ v_μ T_μ v_S v_{d,μ} v_{d,v} v f, w, M, q_L q_H (i=1,2,3,4) Equality constraints [19] Compressor (6) Godenser (4) Expansion valve (5) Expansion valve (5) Inequality constraints [1] Objective function: Minimize the compressors power Minize f = M · w Temperature, k: specific enthalpy, x: specific entropy Persure Specific volume Specific heat transfer from the refigerant to the atmosphere q: Specific heat transfer from the refigerated space to the refigerant(Given) 	Modified optimization problem• Free variables $[2 = 21 - 19]$ $: T_1, P_2$ • Inequality constraints [1]④ Calculation of objective function Minize $f = M \cdot w$ ⑤ Assume the free variable to calculate smaller value of the objective function
	 2 → Determine the 19 variables using Newton-Raphson method

Mathematical Model for the Determination of Optimal Operating Condition of the Generic Liquefaction Cycle (2/6)

1. Design variables (Operating conditions : P_i , T_i , v_i ($i = 1_p$,, 21_p , 1_m ,, 26_m , 1_{NG} ,, 5_{NG}), $T_{S,2p}$, $T_{S,19p}$, $T_{S,21p}$, $T_{S,2m}$, $T_{S,4m}$, $T_{S,6m}$, $v_{S,2p}$, $v_{S,19p}$, $v_{S,21p}$, $v_{S,2m}$, $v_{S,4m}$, v_{4} , w_{4} , w_{5} , $w_{6,c_{1}}$, c_{2} , \dot{m}_{pre} , \dot{m}_{main} , $v_{-}f_{10}$, $v_{-}f_{15}$, z_{-},pre (5) [187] 7: Temperature //? Pressure /v: Specific volume /2 _{ym} : mole fraction of the component / at the precooling part / w: work imput to the compressor per mass c: flow rate ratio between inlet and outlet 4 / m _{me} ; mass flow rate at the precooling refrigerant *subscript 'NG': natural gas, Subscript 'main': main cooling refrigerant j = 1,2,3), z _{k,main} (k = 1,2,3,4)
 Equality constraints [165] 2.1 Equality constraints of precooling part [8 	3]
7) Evaporator 2: [14] $c_{2} \cdot (1-c_{1}) \cdot \dot{m}_{\mu\nu} \cdot h_{10\rho} (R_{10\rho}, T_{10\rho}, Y_{10\rho}, z_{1,\rho\nu}) + c_{2} \cdot (1-c_{1}) \cdot \dot{m}_{\mu\nu} \cdot h_{12\rho} (R_{22\rho}, T_{12\rho}, Y_{12\rho}, z_{1,\rho\nu})$ $+ (1-c_{2}) \cdot (1-c_{1}) \cdot \dot{m}_{\mu\nu} \cdot h_{11\rho} (R_{14\rho}, T_{14\rho}, Y_{14\rho}, z_{1,\rho\nu}) +$ $+ \dot{m}_{main} \cdot h_{ac} (R_{ac}, T_{ac}, Y_{ac}, z_{1,aam}) + \dot{m}_{NC} \cdot h_{NC} (R_{1NC}, T_{NC}, Y_{NC}, z_{1,NC})$ $= c_{2} \cdot (1-c_{1}) \cdot \dot{m}_{\mu\nu} \cdot h_{11\rho} (R_{11\rho}, T_{11\rho}, Y_{11\rho}, Z_{1,\rho\nu}) + c_{2} \cdot (1-c_{1}) \cdot \dot{m}_{\mu\nu} \cdot h_{32\rho} (R_{11\rho}, T_{13\rho}, Y_{13\rho}, Z_{1,\rho\nu})$ $+ (1-c_{2}) \cdot (1-c_{1}) \cdot \dot{m}_{\mu\nu} \cdot h_{12\rho} (R_{12\rho}, T_{12\rho}, Y_{12\rho}, Y_{12\rho}, Z_{1,OC}) \cdot Y_{20G}, z_{2,OC})$ $+ (1-c_{2}) \cdot (1-c_{1}) \cdot \dot{m}_{\mu\nu} \cdot h_{12\rho} (R_{12\rho}, T_{12\rho}, Y_{13\rho}, Y_{13\rho}, Z_{1,OC}) + d_{12\rho} (R_{11\rho}, T_{11\rho}, Y_{11\rho}, Y_{12\rho}, Y_{12\rho}, Y_{12\rho}, Y_{12\rho}, Y_{12\rho}, Y_{12\rho}, Y_{12\rho}, Y_{12\rho})$ $N_{11\rho} (R_{11\rho}, R_{11\rho}, Y_{11\rho}, Y_{11\rho}, Y_{11\rho}, Y_{12\rho}, Y_{12\rho}, Y_{12\rho}, Y_{12\rho}, Y_{12\rho}, Y_{12\rho}, Y_{12\rho}, Y_{12\rho})$ $N_{12\rho} = V_{12\rho} (T_{22\rho}, R_{22\rho}, T_{2\rho\nu})$	9) Evaporator 3: [11] $(1-c_{2}) \cdot (1-c_{1}) \cdot \dot{m}_{\mu\nu} \cdot \dot{h}_{12\rho} (P_{12\rho}, T_{12\rho}, v_{12\rho}, z_{j,\rhow}) + (1-c_{2}) \cdot (1-c_{1}) \cdot \dot{m}_{\mu\nu} \cdot \dot{h}_{12\rho} (P_{12\rho}, T_{12\rho}, v_{12\rho}, z_{j,\rhow}) + \dot{m}_{max} \cdot \dot{h}_{max} (P_{max}, T_{max}, V_{max}, z_{max}) + \dot{m}_{max} \cdot \dot{h}_{max} (P_{max}, v_{max}, z_{max}) + \dot{m}_{max} (P_{max}, z_{max}, z_{max}) + \dot{m}_{max} (P_{max}, z_{max}) + \dot$
Innovative Ship and Offshore Plant Design. Spring 2019. Myung-II Roh	rydlab 28

Mathematical Model for the	Determination of Optimal
Operating Condition of the	Generic Liquetaction Cycle (5/6)
1. Design variables (Operating conditi : $P_i, T_i, v_i (i = 1_p,, 21_p, 1_m,, 26_m, 1_{NG},, 5_{NG}),$ $T_{S,2p}, T_{S,19p}, T_{S,21p}, T_{S,2m}, T_{S,4m}, T_{S,6m}, v_{S,2p}, v_{S,19p}, v_{S,21p}, v_{S,21p}, v_{M}, w_1, w_2, w_3, w_4, w_5, w_6, c_1, c_2, \dot{m}_{pre}, \dot{m}_{main}, v_{-f_{10}}, v_{-f_{15}}, z_{-f_{10}}, v_{-f_{10}}, v_{-f_{10}}, v_{-f_{10}}, z_{-f_{10}}, v_{-f_{10}}, v_{-f_{$	Ons. [187] <i>T</i> : Temperature / <i>P</i> : Pressure / <i>v</i> : Specific volume / z_{pper} : mole fraction of the component <i>j</i> at the precooling part <i>j</i> w: work input to the compressor per mass <i>j</i> c: flow rate ratio between inlet and outlet 4 / m_{pyc} : mass flow rate at the precooling refrigerant *Subscript *NG': natural gas, Subscript *main': main cooling refrigerant <i>j</i> , <i>pre</i> (<i>j</i> = 1, 2, 3), $z_{k,main}$ (<i>k</i> = 1, 2, 3, 4)
2. Equality constraints [165] 2.2 Equality constraints of main cooling p	part [80]
7) Phase Separator 1: [7]	9) Phase Separator 2: [7]
$h_{10m}(P_{10m}, T_{10m}, v_{10m}, z_{k,main})$	$v_{10} \cdot h_{15m} (P_{15m}, I_{15m}, v_{15m}, v_{-f_{10}} \cdot z_{k,main})$
$= v_{f_{10}} \cdot h_{14m} \left(P_{14m}, T_{14m}, v_{14m}, v_{f_{10}} \cdot z_{k,main} \right)$	$= v_{-}f_{15} \cdot v_{-}f_{10} \cdot h_{19m} \left(P_{19m}, I_{19m}, v_{-}g_{15} \cdot v_{-}f_{10} \cdot z_{k,main} \right)$
+ $(1 - v_{f_{10}}) \cdot h_{11m} (P_{11m}, T_{11m}, v_{11m}, (1 - v_{f_{10}}) \cdot z_{k,main})$	+ $(1 - v_{-}f_{15}) \cdot v_{-}f_{10} \cdot h_{16m} (P_{16m}, T_{16m}, v_{16m}, (1 - v_{-}f_{15}) \cdot v_{-}f_{10} \cdot z_{k,main})$
$P_{10m} = P_{11m}, P_{10m} = P_{14m}$	$P_{15m} = P_{16m}, P_{15m} = P_{19m}$
$I_{10m} = I_{11m}, I_{11m} = I_{14m}$	$I_{15m} = I_{16m}, I_{16m} = I_{19m}$
$v_{11m} = v_{11m} \left(P_{11m}, T_{11m}, (1 - v_{-}f_{10}) \cdot z_{k,main} \right), \ v_{14m} = v_{14m} \left(P_{14m}, T_{14m}, v_{-}f_{10} \cdot z_{k,main} \right)$	$v_{16m} = v_{16m} (P_{16m}, I_{16m}, (1 - v_{-}J_{15}) \cdot v_{-}J_{10} \cdot z_{k,main}), v_{19m} = v_{19m} (P_{19m}, I_{19m}, v_{-}J_{15} \cdot v_{-}J_{10} \cdot z_{k,main})$
$ \begin{aligned} 0 & \mathbf{U} \mathbf{U} \mathbf{Q} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} + 1 \mathbf{U} \mathbf{U} \\ & (1 - \mathbf{v}_{-f_{10}}) \cdot \vec{m}_{main} \cdot h_{1m} \left(P_{1m} \cdot T_{1m} \cdot \mathbf{v}_{1m} (1 - \mathbf{v}_{-f_{10}}) \cdot \mathbf{z}_{1,min} \right) \\ & + \mathbf{v}_{-f_{10}} \cdot \vec{m}_{main} \cdot h_{1m} \left(P_{1m} \cdot T_{1m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{-f_{10}} \cdot \mathbf{z}_{1,min} \right) \\ & + \vec{m}_{NG} \left(P_{NOG} \left(P_{NOG} \cdot T_{MOG} \cdot \mathbf{v}_{NOG} \right) \\ & = (1 - \mathbf{v}_{-f_{10}}) \cdot \vec{m}_{main} \cdot h_{1m} \left(P_{2m} \cdot T_{2m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \right) \\ & + \mathbf{v}_{-f_{10}} \cdot \vec{m}_{main} \cdot h_{1m} \left(P_{2m} \cdot T_{2m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \right) \\ & + \mathbf{v}_{-f_{10}} \cdot \vec{m}_{main} \cdot h_{1m} \left(P_{2m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \right) \\ & + \mathbf{v}_{-f_{10}} \cdot \vec{m}_{main} \cdot h_{1m} \left(P_{2m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \right) \\ & + \mathbf{v}_{-f_{10}} \cdot \vec{m}_{main} \cdot h_{1m} \left(P_{2m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \right) \\ & + \mathbf{v}_{-f_{10}} \cdot \vec{m}_{main} \cdot h_{2m} \left(P_{2m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \right) \\ & + \mathbf{v}_{-f_{10}} \cdot \vec{m}_{main} \cdot h_{2m} \left(P_{2m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \right) \\ & + \mathbf{v}_{-f_{10}} \cdot \vec{m}_{main} \cdot h_{2m} \left(P_{2m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \right) \\ & + \mathbf{v}_{-f_{10}} \cdot \vec{m}_{1m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \cdot \mathbf{v}_{1m} \right) \\ & + \mathbf{v}_{-f_{10}} \cdot \mathbf{v}_{1m} \right) \\ & + \mathbf{v}_{-f_{10}} \cdot \mathbf{v}_{1m} \cdot$	$ \begin{array}{l} \textbf{(1)} \textbf{(2)} \textbf{(2)} \textbf{(2)} \textbf{(1)} \textbf{(1)} \textbf{(1)} \textbf{(1)} \textbf{(2)} \textbf{(1)} \textbf{(2)} (2$
$v_{ANG} = v_{ANG} \left(T_{ANG}, P_{ANG}, z_{ING} \right)$	$v_{25m} = v_{25m} \left(P_{25m}, T_{25m}, v_{-} f_{10} \cdot z_{k,main} \right), v_{5NG} = v_{5NG} \left(T_{5NG}, P_{5NG}, z_{l,NG} \right)$ 31

Mathematical Model for the Determination of Optimal Operating Condition of the Generic Liquefaction Cycle (6/6)

1. Design variables (Operating : $P_i, T_i, v_i (i = 1_p,, 21_p, 1_m,, 26_m, 1_{NG},, 5_{NG}$ $T_{S,2p}, T_{S,19p}, T_{S,21p}, T_{S,2m}, T_{S,4m}, T_{S,6m}, v_{S,2p}, v_{S,19}$	(conditions) [187] $(c), (c), (c), (c), (c), (c), (c), (c),$	T: Temperature / P: Pressure / v: Specific volume / z _{ppp} : mole fraction of the component j at the precooling part / w: work input to the compressor per mass c: flow rate ratio between inlet and outlet 4 / m _{pre} : mass flow rate at the precooling refrigerant *Subscript 'NG': natural gas, Subscript 'main': main cooling refrigerant
 w₁, w₂, w₃, w₄, w₅, w₆, c₁, c₂, m_{pre}, m_{main}, v₋. Equality constraints [165] Equality constraints of main of the property of the p	$f_{10}, v_{f_{15}}, z_{j, pre} (j = 1, 2, 3), z$ cooling part [80]	$r_{k,main}$ (k = 1, 2, 3, 4)
11) Evaporator 6: [6] $v_{-f_{15}}, v_{-f_{10}}, \dot{m}_{main}, \dot{h}_{2m}(P_{2mn}, V_{2mn}, V_{-f_{15}}, v_{-f_{10}}, \dot{z}_{1,main})$ $+v_{-f_{15}}, v_{-f_{10}}, \dot{m}_{main}, \dot{h}_{2m}(P_{2mn}, V_{2mn}, V_{2mn}, V_{-f_{15}}, v_{-f_{10}}, \dot{z}_{1,main})$ $+\dot{m}_{NG}, \dot{h}_{NG}(P_{3NG}, V_{3NG}, V_{3NG}, \dot{z}_{1,m})$ $=v_{-f_{15}}, v_{-f_{10}}, \dot{m}_{main}, \dot{h}_{2mn}(P_{2mn}, T_{2mn}, v_{2mn}, v_{-f_{15}}, v_{-f_{10}}, \dot{z}_{1,main})$ $+v_{-f_{15}}, v_{-f_{10}}, \dot{m}_{main}, \dot{h}_{2mn}(P_{2mn}, T_{2mn}, v_{2mn}, v_{-f_{15}}, v_{-f_{10}}, \dot{z}_{1,main})$ $+v_{-f_{15}}, v_{-f_{10}}, \dot{m}_{main}, \dot{h}_{2mn}(P_{2mn}, T_{2mn}, v_{2mn}, v_{-f_{15}}, v_{-f_{10}}, \dot{z}_{1,main})$ $+v_{-f_{15}}, v_{-f_{10}}, \dot{m}_{2mn}, \dot{h}_{2mn}(P_{2mn}, T_{2mn}, v_{1mn}, v_{1mn}, v_{1mn})$ $P_{3mn} = P_{2mn}, P_{22mn} = P_{21m}$ $P_{21m} = v_{21m}(P_{21m}, T_{21m}, v_{-f_{15}}, v_{-f_{10}}, \dot{z}_{1,main})$ $P_{21m} = v_{21m}(P_{21m}, T_{21m}, v_{-f_{15}}, v_{-f_{10}}, \dot{z}_{1,main})$ 12) Expansion valve 4: [2] $h_{12m}(P_{12m}, T_{12m}, v_{1m}, (1 - v_{-f_{10}}), \dot{z}_{1,main})$ $= h_{12m}(P_{12m}, T_{12m}, v_{1m}, (1 - v_{-f_{10}}), \dot{z}_{1,main})$ $v_{13m} = v_{13m}(P_{13m}, T_{13m}, (1 - v_{-f_{10}}), \dot{z}_{1,main})$	13) Expansion value 5: [2 $h_{17a}(P_{17a}, T_{17a}, v_{17a}, (1-v_{-}f_{15}) \cdot v_{-}$ $v_{18a} = v_{18a}(P_{18a}, T_{18a}, (1-v_{-}f_{15}) \cdot v_{-}$ 14) Expansion value 6: [2 $h_{21a}(P_{21a}, T_{21a}, v_{-1a}, v_{-}f_{15} \cdot v_{-}f_{16} \cdot v_{-}g_{22a} = v_{22a}(P_{22a}, T_{22a}, v_{-}f_{15} \cdot v_{-}f_{16} \cdot v_{-}g_{22a} = v_{22a}(P_{22a}, T_{22a}, v_{-}f_{15} \cdot v_{-}f_{16} \cdot v_{-}g_{2a} = v_{22a}(P_{22a}, T_{22a}, v_{-}f_{15} \cdot v_{-}f_{16} \cdot v_{-}g_{16} - h_{13a}(P_{13a}, T_{13a}, v_{13a}, t_{-}g_{-}g_{-}g_{-}g_{-}g_{-}g_{-}g_{-}g$	$\begin{aligned} 2_{10} &= f_{150} \cdot z_{L,main} = h_{15m} (P_{15m} \cdot T_{15m} \cdot v_{15m} \cdot (1 - v_{-} f_{15}) \cdot v_{-} f_{10} \cdot z_{L,main}) \\ &= f_{10} \cdot z_{L,main} = h_{22m} (P_{22m} \cdot T_{22m} \cdot v_{22m} \cdot v_{-} f_{15} \cdot v_{-} f_{10} \cdot z_{L,main}) \\ &= z_{L,main} = h_{22m} (P_{22m} \cdot T_{22m} \cdot v_{22m} \cdot v_{-} f_{15} \cdot v_{-} f_{10} \cdot z_{L,main}) \\ \\ &= f_{10} \cdot z_{L,main} = h_{10} \cdot v_{-} f_{10} \cdot h_{25m} (P_{25m} \cdot T_{25m} \cdot v_{25m} \cdot v_{-} f_{10} \cdot z_{L,main}) \\ \\ &= f_{10} \cdot z_{L,main} + v_{-} f_{10} \cdot h_{25m} (P_{25m} \cdot T_{25m} \cdot v_{25m} \cdot v_{-} f_{10} \cdot z_{L,main}) \\ \\ &= f_{10} \cdot f_{10} \cdot z_{L,main} = h_{10} \cdot (1 - v_{-} f_{15}) \cdot v_{-} f_{10} \cdot z_{L,main}) \\ \\ &= v_{-} f_{10} \cdot v_{-} f_{10} \cdot v_{-} f_{10} \cdot z_{L,main}) \\ \\ &= v_{-} f_{10} \cdot v_{-} f_{10} \cdot z_{L,main}) \\ \\ &= (T_{24m} \cdot P_{24m} \cdot v_{-} f_{10} \cdot z_{L,main}) \\ \\ &= (T_{24m} \cdot P_{24m} \cdot v_{-} f_{10} \cdot z_{L,main}) \\ \\ &= (T_{24m} \cdot P_{24m} \cdot v_{-} f_{10} \cdot z_{L,main}) \\ \\ &= (T_{24m} \cdot P_{24m} \cdot v_{-} f_{10} \cdot z_{L,main}) \\ \end{aligned}$

Mathematical Mo Operating Conditi	del for the Deter on of the DMR (mination of Optimal Cycle (1/2) oction of the refrigerant							
1. Design variables (Operating of : $P_i, T_i, v_i (i = 1,, 26, 28, 29, 30), T_{S,1},$	conditions) [107] $T_{s,11}, T_{s,13}, v_{s,1}, v_{s,11}, v_{s,13}, w_1, w_2, w_3, w_1$	$ \begin{array}{c} \hline \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \end{array} \\$							
2. Equality constraints [91] $\sum_{j=1}^{3} z_{j,pr}$	$z_{k} = 1, \sum_{k=1}^{4} z_{k,main} = 1$	T: Temperature / P: Pressure / v: Specific volume / z_{pper} : mole fraction of the component j at the precooling part / w: work input to the compressor per mass / c: flow rate ratio between inlet and outlet 4 / m_{pre} : mass flow rate at the							
2.1 Equality constraints of	precooling part [49]	precooling refrigerant *Subscript 'NG': natural eas. Subscript 'main': main cooling refrigerant							
1) Compressor 1: [6]	4) Tee: [6]	8) Compressor 2: [5]							
$h_{12}\left(P_{12}, T_{12}, v_{12}, z_{j, pre}\right) + w_{1} = h_{1}\left(P_{1}, T_{1}, v_{1}, z_{j, pre}\right)$	$h_3(P_3, T_3, v_3, z_{j,pre}) = c \cdot h_4(P_4, T_4, v_4, z_{j,pre}) + (1 - 1)$	$ (1-c) \cdot h_{7}(P_{1}, T_{7}, v_{7}, z_{j, pre}) $ $ (1-c) \cdot h_{0}(P_{10}, T_{10}, v_{10}, z_{j, pre}) + w_{2} = (1-c) \cdot h(P_{11}, T_{11}, v_{11}, z_{j, pre}) $							
$\eta = \frac{h_s(P_1, T_{s,1}, v_{s,1}, z_{j,pre}) - h_{12}(P_{12}, T_{12}, v_{12}, z_{j,pre})}{h_1(P_1, T_1, v_1, z_{j,pre}) - h_{12}(P_{12}, T_{12}, v_{12}, z_{j,pre})}$	$P_3 = P_4, P_3 = P_7$ $T_4 = T_7$	$\eta = \frac{h_s(P_{11}, T_{s,11}, \mathbf{v}_{s,11}, z_{j,pre}) - h_{10}(P_{10}, T_{10}, \mathbf{v}_{10}, z_{j,pre})}{h_{11}(P_{11}, T_{11}, \mathbf{v}_{11}, z_{j,pre}) - h_{10}(P_{10}, T_{10}, \mathbf{v}_{10}, z_{j,pre})}$							
$s_{12}(P_{12}, T_{12}, v_{12}, z_{j,pre}) = s_1(P_1, T_{s,1}, v_{s,1}, z_{j,pre})$	$v_4 = v_4 (T_4, P_4, z_{j,pre}), v_7 = v_7 (T_7, P_7, z_{j,pre})$)							
$v_{12} = v_{12}(T_{12}, P_{12}, z_{j,pre})$	5) Expansion Valve 1: [2]	$S_{10}(r_{10}, r_{10}, v_{10}, z_{j,pre}) = S_{11}(r_{11}, r_{S,11}, v_{S,11}, z_{j,pre})$							
$v_{S,1} = v_{S,1}(T_{S,1}, P_1, z_{j,pre})$	$h_4(P_4, T_4, v_4) = h_5(P_5, T_5, v_5)$	$v_{S,11} = v_{S,11} \left(P_{11}, T_{S,11}, z_{j,pre} \right)$							
$v_1 = v_1(T_1, P_1, \boldsymbol{z}_{j, pre})$	$v_5 = v_5 \left(T_5, P_5\right)$	$v_{11} = v_{11}(T_{11}, P_{11}, z_{j,pre})$							
2) Sea water cooler 1: [3]	6) Heat exchanger 2: [11]								
The temperature of the outlet of the sea water cooler is usually given. T=310K	$\begin{split} & (1-c) \cdot M_{pre} \cdot h_{7} \left(P_{7}, T_{7}, v_{7}, z_{j, pre} \right) + (1-c) \cdot M_{pre} \\ &= (1-c) \cdot M_{pre} \cdot h_{8} \left(P_{8}, T_{8}, v_{8}, z_{j, pre} \right) + (1-c) \cdot M_{p} \end{split}$	$ \cdot h_{5}\left(P_{3}, T_{9}, v_{9}, z_{j,pre}\right) + M_{min} \cdot h_{15}\left(P_{15}, T_{15}, v_{15}, z_{k,min}\right) + M_{NG} \cdot h_{25}\left(P_{25}, T_{25}, v_{25}, z_{l,NG}\right) \\ \cdot w_{e} \cdot h_{10}\left(P_{10}, T_{10}, v_{10}, z_{j,pre}\right) + M_{min} \cdot h_{16}\left(P_{16}, T_{16}, v_{16}, z_{k,min}\right) + M_{NG} \cdot h_{29}\left(P_{29}, T_{29}, v_{29}, z_{l,NG}\right) $							
$P_1 = P_2$	$P_7 = P_8, \ P_9 = P_{10}, P_{15} = P_{16}, P_{28} = P_{29} \qquad T_8 =$	$T_{16}, T_8 = T_{29}$							
$v_2 = v_2(T_2, P_2, z_{j,pre})$	$v_8 = v_8 \left(T_8, P_8, z_{j,pre}\right), v_{10} = v_{10} \left(T_{10}, P_{10}, z_{j,pre}\right)$	$\left(T_{10}, P_{10}, z_{j,pre}\right), v_{16} = v_{16}\left(T_{16}, P_{16}, z_{k,main}\right), v_{29} = v_{29}\left(T_{29}, P_{29}, z_{j,NG}\right)$							
3) Heat exchanger 1: [11]		7) Expansion Valve 2: [2]							
$M_{pre} \cdot h_2(P_2, T_2, v_2, z_{j, pre}) + c \cdot M_{pre} \cdot h_5(P_5, T_5, v_5, z_{j, pre})$	$+ M_{main} \cdot h_{14} (P_{14}, T_{14}, v_{14}, z_{k,main}) + M_{NG} \cdot h_{NG} (P_{NG})$	$n_{8}(P_{8}, I_{8}, V_{8}, Z_{j, pre}) = n_{9}(P_{9}, I_{9}, V_{9}, Z_{j, pre})$							
$= M_{pre} \cdot h_3 \left(P_3, T_3, v_3, z_{j, pre} \right) + c \cdot M_{pre} \cdot h_6 \left(P_6, T_6, v_6, z_{j, pre} \right)$	h_{w} + $M_{main} \cdot h_{15} (P_{15}, T_{15}, v_{15}, z_{k,main}) + M_{NG} \cdot h_{28} (P_{2})$	$v_{g} = v_{g} (I_{g}, P_{g}, z_{j,nc})$ (9) Common header 1: [3]							
$P_2=P_3, \ P_5=P_6, \ P_{14}=P_{15}, \ P_{NG}=P_{28} \qquad T_3=T_{15},$	$T_{3} = T_{28}$	$c \cdot h_6(P_6, T_6, v_6, z_{1,pre}) + (1-c) \cdot h_{11}(P_{11}, T_{11}, v_{11}, z_{1,pre})$							
$v_{3} = v_{3} \left(T_{3}, P_{3}, z_{j, pre}\right), v_{6} = v_{6} \left(T_{6}, P_{6}, z_{j, pre}\right), v_{15} = v_{15}$	$(T_{15}, P_{15}, z_{k,main}), v_{28} = v_{28}(T_{28}, P_{28}, z_{l,NG})$	$= h_{12} \left(P_{12}, T_{12}, v_{12}, z_{j, pre} \right) \qquad P_6 = P_{11}, P_6 = P_{12} \qquad \textbf{37}$							

Mathematical Model for the Determination of Optimal Mathematical initiation of the DMR Cycle (2/2m) ostion of the refrigerant Depending Condition of the DMR Cycle (2/2m) ostion of the refrigerant Main coding: Nitroger, Methane, Ethane, Propane Natural Gas: Methane(25%), Hotane(0.5%), Hota 1. Design variables (Operating conditions) [107] $: P_{i}, T_{i}, v_{i} (i = 1, ..., 26, 28, 29, 30), T_{S,11}, T_{S,13}, v_{S,11}, v_{S,11}, v_{S,11}, w_{i}, w_{2}, w_{3}, c, M_{pre}, M_{main}, v_{\perp} f, z_{j,pre} (j = 1, 2, 3), z_{k,main} (k = 1, 2, 3, 4)$ r_{t} pre, r_{t} m_{min} $r_{t} = j_{-,pre} (j = i_{s,2}, j), r_{t}$ m_{min} $(r_{t} = i_{s,2}, j, r_{t})$ T: Temperature / P. Pressure / v. Specific volume / z_{ppe} : mole fraction of the component *j* at the precooling part / w: work input to the compressor per mass / c: flow rate ratio between inlet and outlet 4 / m_{pr} : mass flow rate at the precooling refrigerant / r_{s} / z_{pr} fraction at stream 16 *Subscript 'NG': natural gas, Subscript 'main': main cooling refrigerant 2. Equality constraints[91] 2.2 Equality constraints of main cooling part [40] **10)** Compressor 3: [6] $h_{26}(P_{26}, T_{26}, v_{26}, z_{k,main}) + w_3 = h(P_{13}, T_{13}, v_{13}, z_{k,main})$ 13) Heat exchanger 3: [10] $v_{-}f \cdot M_{main} \cdot h_{20} \left(P_{20}, T_{20}, v_{20}, v_{-}f \cdot z_{k,main} \right) + \left(1 - v_{-}f \right) \cdot M_{main} \cdot h_{17} \left(P_{17}, T_{17}, v_{17}, \left(1 - v_{-}f \right) z_{k,main} \right) + \left(1 - v_{-}f \right) \cdot M_{main} \cdot h_{17} \left(P_{17}, T_{17}, v_{17}, \left(1 - v_{-}f \right) z_{k,main} \right) + \left(1 - v_{-}f \right) \cdot M_{main} \cdot h_{17} \left(P_{17}, T_{17}, v_{17}, \left(1 - v_{-}f \right) z_{k,main} \right) + \left(1 - v_{-}f \right) \cdot M_{main} \cdot h_{17} \left(P_{17}, T_{17}, v_{17}, \left(1 - v_{-}f \right) z_{k,main} \right) + \left(1 - v_{-}f \right) \cdot M_{main} \cdot h_{17} \left(P_{17}, T_{17}, v_{17}, \left(1 - v_{-}f \right) z_{k,main} \right)$ $\frac{h_{5,13}(P_{13}, T_{5,13}, v_{5,13}, z_{k,main}) - h_{26}(P_{26}, T_{26}, v_{26}, z_{k,main})}{+ M_{main} \cdot h_{25}(P_{25}, T_{25}, v_{25}, z_{k,main}) + M_{NG} \cdot h_{29}(P_{29}, T_{29}, v_{29}, z_{1,NG})}$ $h_{13}(P_{13}, T_{13}, v_{13}, z_{k,main}) - h_{26}(P_{26}, T_{26}, v_{26}, z_{k,main})$ $= v_{f} \cdot M_{main} \cdot h_{21} (P_{21}, T_{21}, v_{21}, v_{f} \cdot z_{k,main}) + (1 - v_{f}) \cdot M_{main} \cdot h_{18} (P_{18}, T_{18}, v_{18} (1 - v_{f}) z_{k,main})$ $s_{26}\left(P_{26}, T_{26}, v_{26}, z_{k,main}\right) = s_{13}\left(P_{13}, T_{5,13}, v_{5,13}, z_{k,main}\right)$ $+\boldsymbol{M}_{main}\cdot\boldsymbol{h}_{26}\left(\boldsymbol{P}_{26},\boldsymbol{T}_{26},\boldsymbol{v}_{26},\boldsymbol{z}_{k,main}\right)+\boldsymbol{M}_{NG}\cdot\boldsymbol{h}_{30}\left(\boldsymbol{P}_{30},\boldsymbol{T}_{30},\boldsymbol{v}_{30},\boldsymbol{z}_{l,NG}\right)$ $P_{20} = P_{21}, P_{17} = P_{18}, P_{25} = P_{26}, P_{29} = P_{30}$ $T_{21} = T_{30}, T_{21} = T_{18}$ $v_{26} = v_{26}(T_{26}, P_{26}, z_{k,main})$ $v_{21} = v_{21} \left(T_{21}, P_{21}, v_{-}f \cdot z_{k, main} \right), v_{18} = v_{18} \left(T_{18}, P_{18}, \left(1 - v_{-}f \right) z_{k, main} \right), v_{30} = v_{30} \left(T_{30}, P_{30}, z_{l, NG} \right)$ $v_{s,13} = v_{13}(T_{s,13}, P_{13}, z_{k,main})$ 16) Expansion Valve 4: [2] 14) Expansion Valve 3: [2] $v_{13} = v_{13}(T_{13}, P_{13}, z_{k,main})$ $h_{18}(P_{18},T_{18},v_{18},(1-v_{-}f)z_{k,\min}) = h_{19}(P_{19},T_{19},v_{19},(1-v_{-}f)z_{k,\min}) + h_{22}(P_{22},T_{22},v_{22},v_{-}f\cdot z_{k,\min}) = h_{23}(P_{23},v_{23},v_{-}f\cdot z_{k,\min}) = h_{23}(P_{23},v_{-}f\cdot z_{k,\min}) = h_{23}(P_{23},v_{-}f$ $v_{23} = v_{23} (T_{23}, P_{23}, v_{-}f \cdot z_{k,main})$ $v_{19} = v_{19} (T_{19}, P_{19})$ 11) Sea water cooler 2: [3] The temperature of the outlet of the sea water cooler is usually given. T=305K 15) Heat exchanger 4: [6] $v_f \cdot M_{\textit{main}} \cdot h_{21} \left(P_{21}, T_{21}, v_{21}, v_f \cdot z_{k,\textit{main}}\right) + v_f \cdot M_{\textit{main}} \cdot h_{23} \left(P_{23}, T_{23}, v_{23}, v_f \cdot z_{k,\textit{main}}\right) + M_{\textit{NG}} \cdot h_{30} \left(P_{30}, T_{30}, v_{30}, z_{l,\textit{NG}}\right)$ $P_{13} = P_{14} \qquad v_{14} = v_{14}(T_{14}, P_{14}, z_{k,main})$ $= v_{-}f \cdot M_{main} \cdot h_{22} \left(P_{22}, T_{22}, v_{22}, v_{-}f \cdot z_{k,main} \right) + v_{-}f \cdot M_{main} \cdot h_{24} \left(P_{24}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{LNG} \left(P_{LNG}, T_{LNG}, v_{LNG}, z_{l,NG} \right) + M_{NG} \cdot h_{24} \left(P_{24}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{22}, T_{22}, v_{22}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{24}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{23}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{24}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{23}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{24}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{23}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{24}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{23}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{23}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{23}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{23}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{23}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{23}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{23}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{24}, T_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{24}, v_{24}, v_{-}f \cdot z_{k,main} \right) + M_{NG} \cdot h_{24} \left(P_{24}, v_{24}, v_{2$ $P_{21} = P_{22}, P_{23} = P_{24}, T_{22} = T_{31} \quad v_{22} = v_{22} \left(T_{22}, P_{22}, v_{-}f \cdot z_{k,main} \right), v_{24} = v_{24} \left(T_{24}, P_{24}, v_{-}f \cdot z_{k,main} \right)$ 12) Phase separator: [7] 17) Common header 2: [4] $h_{16}(P_{16},T_{16},v_{16},z_{k,main}) = v_{-}f \cdot h_{20}(P_{20},T_{20},v_{20},v_{-}f \cdot z_{k,main}) + (1-v_{-}f) \cdot h_{17}(P_{17},T_{17},v_{17},(1-v_{-}f)z_{k,main}) \\ (1-v_{-}f) \cdot h_{19}(P_{19},T_{19},v_{19},(1-v_{-}f)z_{k,main}) + (1-v_{-}f) \cdot h_{17}(P_{17},T_{17},v_{17},(1-v_{-}f)z_{k,main}) \\ (1-v_{-}f) \cdot h_{19}(P_{19},T_{19},v_{19},(1-v_{-}f)z_{k,main}) + (1-v_{-}f) \cdot h_{17}(P_{17},v_{17},v_{17},(1-v_{-}f)z_{k,main}) \\ (1-v_{-}f) \cdot h_{19}(P_{19},T_{19},v_{19},(1-v_{-}f)z_{k,main}) + (1-v_{-}f) \cdot h_{19}(P_{19},T_{19},v_{17},v_{17},(1-v_{-}f)z_{k,main}) \\ (1-v_{-}f) \cdot h_{19}(P_{19},v_{19},v_{19},(1-v_{-}f)z_{k,main}) + (1-v_{-}f) \cdot h_{19}(P_{19},v_{19},v_{19},(1-v_{-}f)z_{k,main}) \\ (1-v_{-}f) \cdot h_{19}(P_{19},v_$ $+v_{f} \cdot h_{24} \left(P_{24}, T_{24}, v_{24}, v_{f} \cdot z_{k,main} \right) = h_{25} \left(P_{25}, T_{25}, v_{25}, z_{k,main} \right)$ $P_{16} = P_{17}, \ P_{16} = P_{20} \qquad T_{17} = T_{20} \qquad T_{16} = T_{17}$ $v_{17} = v_{17} \left(T_{17}, P_{17}, \left(1 - v_{f} \right) z_{k,main} \right), v_{20} = v_{20} \left(T_{20}, P_{20}, v_{f} - f \cdot z_{k,main} \right)$ $P_{19} = P_{24}, \ P_{19} = P_{25} \quad v_{25} = v_{25}(T_{25}, P_{25}, z_{k, main})$ 38

[bai], T[K], v[m	1³/m	ol], w[J/m	ol], r	m[mol/s], W[l	(W]			R	esult	ob	taiı	ned b	by	Ver	hkata	ratl	hnam ¹⁾ :		[%]]: Differe
<u>e</u>	sult of	ota	ined	by	this stu	udy:		. ÷.			[%]			[%			[%			[%	
21	19.17	P11	7.59	P21	48.57	Ts1	349.62		P1	19.20	0.2%	P11	7.60	0.2%	P21	48.60	0.1%	Ts1	349.59	0.0%	
1	355.42	T11	312.51	T21	143.54	Ts11	305.49		T1	360.25	1.3%	T11	313.59	0.3%	T21	144.70	0.8%	Ts11	305.75	0.1%	
1	0.001274	v11	0.003078	v21	0.000045	Ts13	388.66		v1	0.001291	1.3%	v11	0.003089	0.3%	v21	0.000045	0.8%	Ts13	389.24	0.1%	
2	19.20	P12	7.59	P22	48.57	vs1	0.0014673		P2	19.20	0.0%	P12	7.60	0.2%	P22	48.60	0.1%	vs1	0.001467	0.0%	
2	310.00	T12	308.94	T22	113.00	vs11	0.0032314		T2	310.00	0.0%	T12	313.79	1.5%	T22	113.00	0.0%	vs11	0.003234	0.1%	
	0.000122	v12	0.003044	v22	0.000040	vs13	0.0006245		v2	0.000122	0.0%	v12	0.003092	1.5%	v22	0.000040	0.0%	vs13	0.000625	0.1%	
5	19.20	P13	48.57	P23	3.18	w1[J/mol]	2738.87		P3	19.20	0.0%	P13	48.60	0.1%	P23	3.00	6.0%	w1[J/mol]	2767.71	1.0%	
;	273.33	T13	413.82	T23	106.95	w2	1099.84		Т3	273.10	0.1%	T13	418.13	1.0%	T23	106.89	0.1%	w2	1103.87	0.4%	
	0.000087	v13	0.000663	v23	0.000304	w3	8233.20		v3	0.000087	0.1%	v13	0.000669	1.0%	v23	0.000304	0.1%	w3	8441.32	2.5%	
4	19.20	P14	48.57	P24	3.18	с	0.6000		P4	19.20	0.0%	P14	48.60	0.1%	P24	3.00	6.0%	с	0.5980	0.3%	
ŧ	273.33	T14	305.00	T24	140.47	mpre[mol/s]	0.8982		T4	273.10	0.1%	T14	305.00	0.0%	T24	141.79	0.9%	mpre[mol/s]	0.913	1.6%	
ŀ	0.000087	v14	0.000389	v24	0.002884	mmain	0.9776		v4	0.000087	0.1%	v14	0.000389	0.0%	v24	0.002911	0.9%	mmain	1	2.2%	
5	7.59	P15	48.57	P25	3.18	zpre_Ethane	0.2481		P5	7.60	0.2%	P15	48.60	0.1%	P25	3.00	6.0%	z1_Ethane	0.2481	0.0%	
5	269.94	T15	273.33	T25	140.36	zpre_Propane	0.6410		T5	269.73	0.1%	T15	273.10	0.1%	T25	140.26	0.1%	z2_Propane	0.6416	0.1%	
5	0.000158	v15	0.000248	v25	0.001089	zpre_n-Butane	0.1110		v5	0.000159	0.1%	v15	0.000248	0.1%	v25	0.001090	0.1%	z3_n-Butane	0.1103	0.6%	
6	7.59	P16	48.57	P26	3.18	zmain_Nitrogen	0.0710		P6	7.60	0.2%	P16	48.60	0.1%	P26	3.00	5.9%	z1_Nitrogen	0.070	1.4%	
6	306.51	T16	240.00	T26	236.43	zmain_Methane	0.4153		Т6	313.93	2.4%	T16	240.00	0.0%	T26	236.95	0.2%	z2_Methane	0.4180	0.6%	
6	0.003020	v16	0.000141	v26	0.006349	zmain_Ethane	0.2887		v6	0.003093	2.4%	v16	0.000141	0.0%	v26	0.006363	0.2%	z3_Ethane	0.2990	3.5%	
7	19.20	P17	48.57	P28	65.00	zmain_Propaane	0.225054		P7	19.20	0.0%	P17	48.60	0.1%	P28	65.00	0.0%	z4_Propaane	0.2130	5.7%	
,	273.23	T17	240.00	T28	273.33	Objective function(W)	11.497		17	273.00	0.1%	T17	240.00	0.0%	T28	273.10	0.1%	Objective function(W)	11.976	4.0%	
ł	0.000087	v17	0.000071	v28	0.000286	Tunction(11)		1.	v7	0.000087	0.1%	v17	0.000071	0.0%	v28	0.000286	0.1%	inite (init)			1
3	19.20	P18	48.57	P29	65.00				P8	19.20	0.0%	P18	48.60	0.1%	P29	65.00	0.0%				
3	240.00	T18	143.54	T29	240.00				Т8	240.00	0.0%	T18	144.70	0.8%	T29	240.00	0.0%				
8	0.000079	v18	0.000052	v29	0.000210			1	v8	0.000079	0.0%	v18	0.000053	0.8%	v29	0.000210	0.0%				
9	2.80	P19	3.18	P30	65.00				P9	2.80	0.1%	P19	3.00	6.0%	P30	65.00	0.0%				
9	236.90	T19	139.21	T30	143.54				Т9	236.50	0.2%	T19	139.14	0.1%	T30	144.70	0.8%				
)	0.000257	v19	0.000368	v30	0.000043				v9	0.000258	0.2%	v19	0.000368	0.1%	v30	0.000044	0.8%				
0	2.80	P20	48.57						P10	2.80	0.1%	P20	48.60	0.1%				•			
0	267.67	T20	240.00						T10	268.67	0.4%	T20	240.00	0.0%	Í						
0	0.007509	v20	0.000312						v10	0.007537	0.4%	v20	0.000312	0.0%	í						

