

Contents	
☑ Ch. 1 Introduction to Ship Design	
☑ Ch. 2 Design Equations	
☑ Ch. 3 Design Model	
Image: Ch. 4 Deadweight Carrier and Volume Carrier	
☑ Ch. 5 Freeboard Calculation	
☑ Ch. 6 Resistance Prediction	
☑ Ch. 7 Propeller and Main Engine Selection	
☑ Ch. 8 Hull Form Design	
☑ Ch. 9 General Arrangement (G/A) Design	
☑ Ch. 10 Structural Design	
☑ Ch. 11 Outfitting Design	
nnovative Ship and Offshore Plant Design, Spring 2016, Myung-II Roh	sydlab 2

Weight Estimation: Method 4	Weight equation of a ship
Estimate the structural weight(W) outfit weight	$\rho \cdot L \cdot B \cdot T \cdot C_B \cdot (1+\alpha) = W$
(W) and machinery weight(W) in components	= DWT + LWT (3)
(n_{a}) , and machinery weight (n_{m}) in components.	Method (4): $LWT = W + W + W$
How can you estimate lightweight more accura	tely?
We assume that a ship is composed of hull str Based on this assumption, the lightweight estim if we could estimate the weight of each compor	ucture, outfit, and machinery. aation would be more accurate, nents.
Method 4:	
\mathbb{A} How can you estimate W_s , W_o , and W_m ?	
Assume that $W_{\underline{s}}$, $W_{\underline{o}}$, $W_{\underline{m}}$ are dependent on the	principal dimensions.
nnovative Ship and Offshore Plant Design, Spring 2016. Myung-II Roh	rydlab 12

Outfit Weight Estimation: Method 4-2	
$LWT = W_s + \frac{W_o}{W_o} + W_m$	
Assume that the outfit weight (W_o) is a function of L , B : W_o	f = f(L, B)
To estimate the outfit weight, we will use the area variable I	<i>.</i> - <i>B</i> .
$W_o = f(L \cdot B)$	
For example, assume that outfit weight (W_o) is proportional	to L·B.
Method 4-2:	
where, the coefficient C_o can be obtained from the basis ship.	
	W_s : structural weight W_o : outfit weight W_m : machinery weight
annutive Chin and Office an Deat Davies Coving 2010 Margar II Date	JUDIO 15

Machinery Weight	Estimation: Method 4-3
	$LWT = W_s + W_o + \overline{W_m}$
To estimate the machine is a function of <i>NMCR</i> :	ery weight, assume that the machinery weight (W_s) $W_m = f(NMCR)$
For example, assume that	at machinery weight is proportional to NMCR:
Method 4-3:	
where, the coefficient C_m c	an be obtained from the basis ship.
* NMCR (Nominal maximum combination available for t capacity, and cost of the er	continuous rating) is the maximum power/speed he engine and is a criteria for the dimensions, weight, ngine.
Then, how can you	estimate the <i>NMCR</i> ?
nnovative Shin and Offshore Plant Design, Spring 2016, Muung-II	rydlab 16

Determination of the Principal Dimensi by the Volume Equation - Method 1	Ons • <u>Volume equation of a ship</u> $V_{CH} = f(L, B, D)$ Given: Cargo hold capacity, Find: L, B, D <u>Method ():</u> $f(L, B, D) = C_{CH} \cdot L \cdot B \cdot D$
How can you estimate the cargo hold capac	ity?
Method 1: Assume that the	
where, the coefficient C_{CH} can be obtain	ed from the basis ship.
It will be noted that finding a solution to because there are <u>3 unknown variables</u> <i>L</i> this equation is also a kind of <u>indetermin</u> Moreover, the unknown variables are mut this equation is a kind of <u>nonlinear equa</u> This kind of equation is called a <u>nonline</u> has infinitely many solutions.	o this equation is a complex matter, , <i>B</i> , <i>D</i> with one equation, that means <u>nate equation</u> . Iltiplied by each other, that means <u>tion</u> . ar indeterminate equation, which
nnovative Ship and Offshore Plant Design, Spring 2016, Myung-Il Roh	

Estimation of Shipb	uilding Cost (2/2)
Method to obtain the coefficie	nt related with the cost
The shipbuilding cost is composed Shipbuilding Cost=(Man-hour for the +(Man-hour for the or +(Man-hour for the or +Additional cost * The shipbuilding cost of the VLCC If we assume that the shipbuilding the weight of the ship is composed machinery weight the chipbuilding	d as follows: e steel structure + Material cost for the steel structure) outfit +Material cost for the outfit) nachinery +Material cost for the machinery) is about \$130,000,000. g cost is proportional to the weight of the ship and d of the steel structure weight, outfit weight and g cost can be represented as follows.
Building $Cost = C_{PS} \cdot W_S + C_{PO} \cdot W_S$ $\begin{bmatrix} C_{PS} : \text{Coefficient related with the cost of the stee} \\ Structure \\ C_{PO} : \text{Coefficient related with the cost of the outfit} \\ C_{PM} : \text{Coefficient related with the cost of the machinery} \end{bmatrix}$	$V_{O} + C_{PM} \cdot W_{M}$ $C_{PS} = \frac{(\text{Man-hour for the steel structure + Material cost for the steel structure)}}{W_{S}}$ $C_{PO} = \frac{(\text{Man-hour for the outfit + Material cost for the outfit)}}{W_{O}}$ $C_{PM} = \frac{(\text{Man-hour for the machinery + Material cost for the machinery)}}{W_{M}}$

		Korea	Japan	China
Material Cost	Steel	17	17	18
	Equipment	42	43	47
	Sub sum	59	60	65
Labor Cost		27	29	19
General Cost		14	13	16
Total sum		100	100	100

