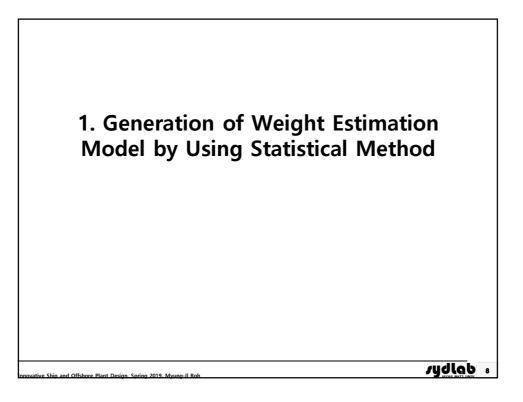
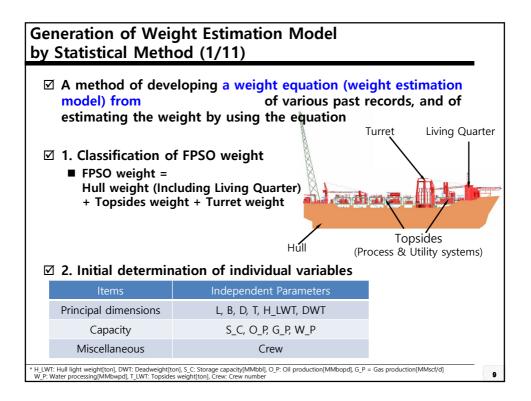
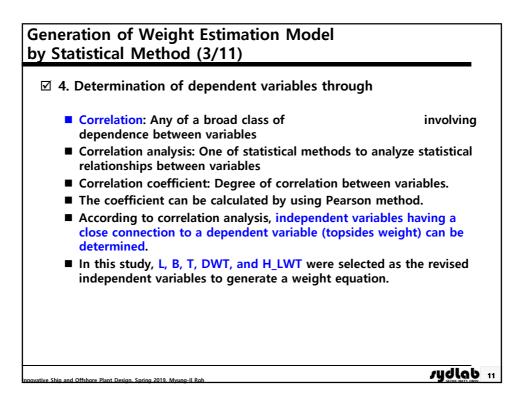

Contents	
☑ Ch. 1 Introduction to Offshore Plant Design	
☑ Ch. 2 Sizing and Configuration of Topside Systems	
Ch. 3 Weight Estimation of Topside Systems	
Ch. 4 Layout Design of Topside Systems	
nnovative Ship and Offshore Plant Design Spring 2019. Myung-II Roh	rydlab 2







☑ 3.	Pa	st r	eco	rds	of FF	SOs tl	nrough	litera	ture	e surv	/ey (T	otal 1	10 FP	SOs)
	L [m]	B [m]	D [m]	T [m]	Storage capacity [MMbbl]	Oil production [MMbopd]	Gas production [MMscf/d]	Water processing [MMbwpd]	Crew	DWT [ton]	Topside [ton]	Hull [ton]	L/Q [ton]	Total weight [ton]
Akpo	310	61	31	23	2.00	0.185	530.00	0.420	220	303,669	37,000	70,500	2,860	110,36
USAN	310	61	32	24	2.00	0.160	500.00	0.420	180	353,200	27,700	75,750	3,072*	106,52
Kizomba A	285	63	32.3	24	2.20	0.250	400.00	0.420	100	340,660	24,400	56,300	1,170	81,87
Kizomba B	285	63	32.3	25	2.20	0.250	400.00	0.420	100	340,660	24,400	56,300	1,170	81,87
Greater Plutonio	310	58	32	23	1.77	0.220	380.00	0.400	120	360,000	24,000	56,000	2,200*	82,20
Pazflor	325	61	32	25	1.90	0.200	150.00	0.380	240	346,089	37,000	82,000	3,227	122,22
CLOV	305	61	32	24	1.80	0.160	650.00	0.380	240	350,000	36,300	63,490	2,900	102,69
Agbami	320	58.4	32	24	2.15	0.250	450.00	0.450	130	337,859	34,000	68,410	2,590	105,00
Dalia	300	60	32	23	2.00	0.240	440.00	0.405	160	416,000	30,000	52,500	2,500	85,00
Skarv-Idun	269	50.6	29	19	0.88	0.085	670.00	0.020	100	129,193	16,100	40,600	1,930*	56,70

orrela	ation Ana	lysis											
		LBP	В	D	т	S_C	0_P	G_P	W_P	CREW	DWT	T_LWT	H_LWT
LBP	Pearson Correlation	1	.365	.513	.676*	.464	.298	490	.643	.649*	.586	.810"	.848
	Sig. (2-tailed)		.300	.129	.032	.177	.403	.150	.045	.042	.075	.004	.002
	N	10	10	10	10	10	10	10	10	10	10	10	10
в	Pearson Correlation	.365	1	.865**	.887**	.908**	.669	456	.858**	.305	.783**	.520	.538
	Sig. (2-tailed)	.300		.001	.001	.000	.034	.186	.001	.392	.007	.123	.109
D	N	10	.865	10	.924	.894	.803	10	.918	10	10 927**	10	.479
0	Pearson Correlation Sig. (2-tailed)	.513 .129	.865	1	.924	.894	.803	560 .092	.918	.155 .670	.927	.447	.479
	N	10	10	10	10	10	.005	10	10	10	10	10	10
T	Pearson Correlation	.676	.887**	.924	1	.873	.668	620	.889	.415	.826	.669*	.749
1	Sig. (2-tailed)	.032	.001	.000		.001	.035	.056	.001	.234	.003	.034	.013
	N	10	10	10	10	10	10	10	10	10	10	10	10
S_C	Pearson Correlation	.464	.908	.894	.873	1	.854	492	.946	.114	.825	.507	.515
	Sig. (2-tailed)	.177	.000	.000	.001		.002	.149	.000	.755	.003	.135	.127
	N	10	10	10	10	10	10	10	10	10	10	10	10
0_P	Pearson Correlation	.298	.669	.803"	.668	.854	1	604	.794**	225	.747	.251	.164
	Sig. (2-tailed)	.403	.034	.005	.035	.002		.065	.006	.533	.013	.484	.651
	N	10	10	10	10	10	10	10	10	10	10	10	10
G_P	Pearson Correlation	490	456	560	620	492	604	1	481	085	498	258	488
	Sig. (2-tailed)	.150	.186	.092	.056	.149	.065		.159	.816	.143	.471	.152
W P	N Pearson Correlation	10 .643	10 .858 ^{**}	10 .918**	10	.946**	.794	481	10	.248	10 .901 ²⁴	10	.584
VV_P	Pearson Correlation Sig. (2-tailed)	.643	.858	.918	.889	.946	.794	481	1	.248	.901	.595	.584
	Sig. (2-tailed)	.045	10	10	10	10	.006	10	10	.490	10	10	10
CREW	Pearson Correlation	.649	.305	.155	.415	.114	225	085	.248	10	.284	.837	.709
	Sig. (2-tailed)	.042	.392	.670	.234	.755	.533	.816	.490	·	.426	.003	.022
	N	10	10	10	10	10	10	10	10	10	10	10	10
DWT	Pearson Correlation	.586	.783	.927**	.826	.825	.747	498	.901	.284	1	.529	.444
	Sig. (2-tailed)	.075	.007	.000	.003	.003	.013	.143	.000	.426		.116	.199
	N	10	10	10	10	10	10	10	10	10	10	10	10
T_LWT	Pearson Correlation	.810	.520	.447	.669	.507	.251	258	.595	.837"	.529	1	.778
	Sig. (2-tailed)	.004	.123	.195	.034	.135	.484	.471	.070	.003	.116		.008
	N	10	10	10	10	10	10	10	10	10	10	10	10
H_LWT	Pearson Correlation	.848**	.538	.479	.749*	.515	.164	488	.584	.709	.444	.778	1
	Sig. (2-tailed) N	.002 10	.109 10	.162 10	.013	.127 10	.651 10	.152	.076	.022	.199 10	.008	10

sult of	Correlation	n Analysis						
		L	В	т	W_P	DWT	H_LWT	T_LWT
L	Cor. coeff.1	1.00	0.37	0.68	0.64	0.59	0.85	0.81
	p-value ²	-	0.30	0.03	0.05	0.08	0.00	0.00
	N ³	10.00	10.00	10.00	10.00	10.00	10.00	10.00
В	Cor. coeff.	0.37	1.00	0.89	0.86	0.78	0.54	0.52
	p-value	0.30	-	0.00	0.00	0.01	0.11	0.12
	Ν	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Т	Cor. coeff.	0.68	0.89	1.00	0.89	0.83	0.75	0.67
	p-value	0.03	0.00	-	0.00	0.00	0.01	0.03
	Ν	10.00	10.00	10.00	10.00	10.00	10.00	10.00
DWT	Cor. coeff.	0.59	0.78	0.83	0.90	1.00	0.44	0.53
	p-value	0.08	0.01	0.00	0.00	-	0.20	0.12
	Ν	10.00	10.00	10.00	10.00	10.00	10.00	10.00
H_LWT	Cor. coeff.	0.85	0.54	0.75	0.58	0.44	1.00	0.78
	p-value	0.00	0.11	0.01	0.08	0.20	-	0.01
	Ν	10.00	10.00	10.00	10.00	10.00	10.00	10.00
							coefficients v	vith T_LWT eight equatior

Generation of Weight Estimation Model by Statistical Method (6/11)

☑ 5. Generation of weight equation through

- Regression analysis: One of statistical methods
- The case of one independent variable is called simple linear regression. For more than one independent variable, it is called multiple linear regression.
- In this study, the backward elimination method was used to generate the final regression equation.
 - Starting with all candidate variables, testing the deletion of each variable using a chosen model comparison criterion, deleting the variable (if any) that improves the model the most by being deleted, and repeating this process until no further improvement is possible
 - Through the backward elimination method, L, B, T, and DWT were selected as the final independent variables to generate a weight equation.

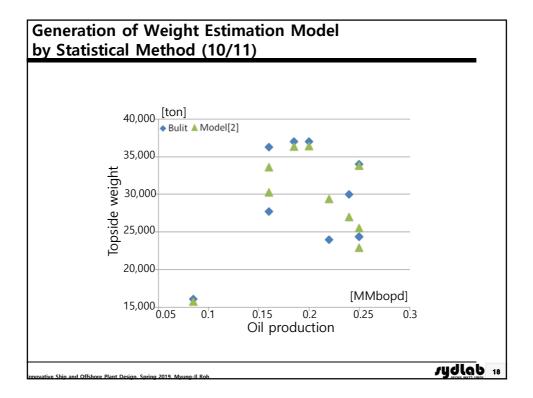
sult	of regressio	n analysis 🕈	"Model 2" wa p value (less		as the fin	al regress	ion mode	by consider
	Model	Beta ¹⁾	Std. Error ²⁾	VIF ³⁾	t ⁴⁾	PV ⁵⁾	R ^{2 6)}	PV of F ⁷⁾
	(Const.)	-192,557.8	138,275.4		-1.39	0.24	0.78	0.165
	L	573.6	372.8	1.42	1.54	0.20		
1	В	2,213.4	1,763.9	1.13	1.26	0.28		
1	Т	-2,222.3	3,874.6	-0.52	-0.57	0.60		
	DWT	-55.3	71.9	-0.59	-0.77	0.49		
	H_LWT	-0.2	0.5	-0.39	-0.44	0.68		
	(Const.)	-137,044.7	5,4129.1		-2.53	0.05	0.77	0.074
	L	429.7	168.9	1.07	2.54	0.05		
2	В	1766.5	1,327.3	0.90	1.33	0.24		
	т	-2554.6	3,483.1	-0.60	-0.73	0.50		
	DWT	-29.1	37.7	-0.31	-0.77	0.48		
	(Const.)	-117,509.5	45,270.8		-2.60	0.04	0.75	0.032
3	L	334.8	104.2	0.83	3.21	0.02		
3	В	932.6	657.9	0.48	1.42	0.21		
	DWT	-31.0	36.1	-0.33	-0.86	0.42		
	(Const.)	-88,217.0	29,166.8		-3.03	0.02	0.72	0.012
4	LBP	288.4	87.4	0.72	3.30	0.01		
	В	506.7	423.6	0.26	1.20	0.27		

Generation of Weight Estimation Model by Statistical Method (8/11)

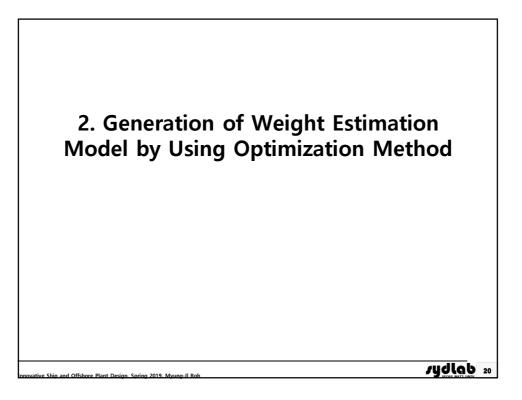
Generation of weight equation model for offshore plant topside
 The topside weight can be estimated from the following model which is comprised of L, B, T, and DWT.

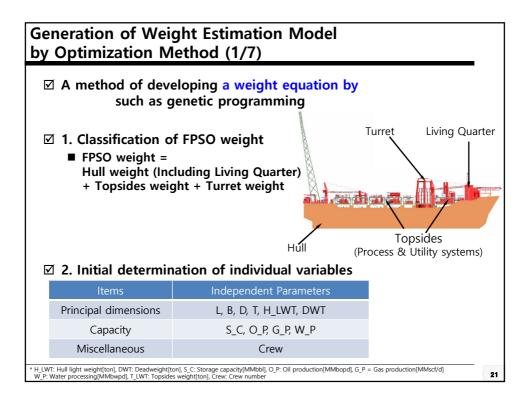
```
T_{LWT} = \beta_0 + (L)\beta_1 + (B)\beta_2 + (T)\beta_3 + (DWT)\beta_4
where,

\beta_0 = -137044.7

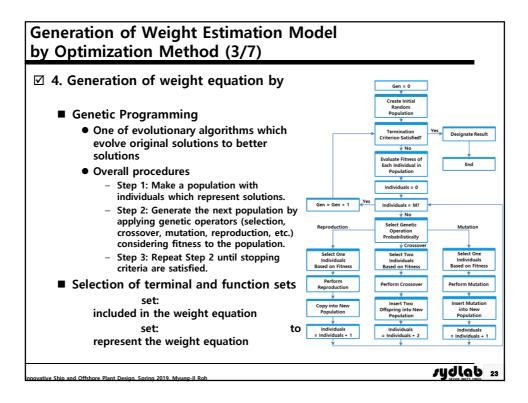

\beta_1 = 429.7

\beta_2 = 1766.5

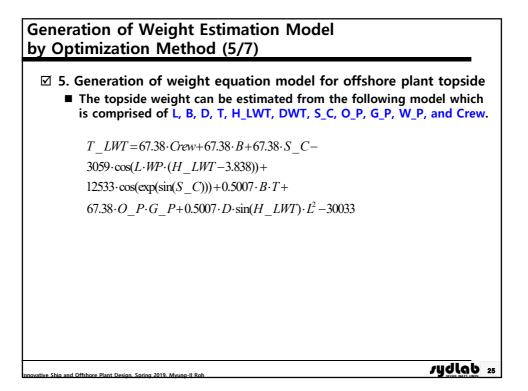

\beta_3 = -2554.6

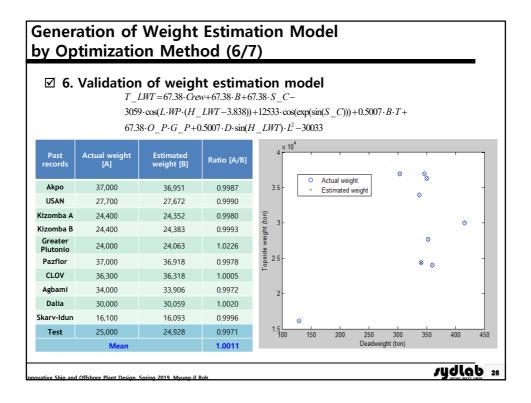

\beta_4 = -29.1
```

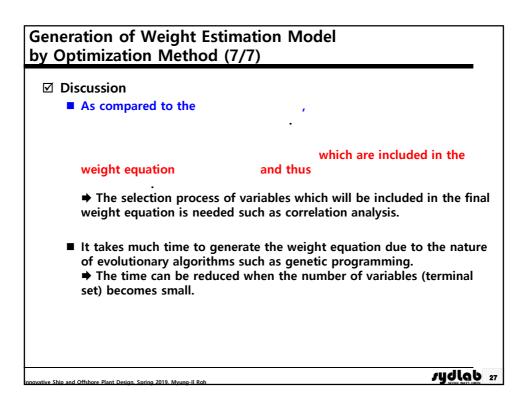
lidation of we	eight estimation	model	
Past records	Actual weight [A]	Estimated weight [B]	Ratio[A/B]
Akpo	37,000	36,347	1.020
USAN	27,700	33,614	0.820
Kizomba A	24,400	25,505	0.960
Kizomba B	24,400	22,951	1.060
Greater Plutoni	o 24,000	29,388	0.820
Pazflor	37,000	36,431	1.020
CLOV	36,300	30,275	1.200
Agbami	34,000	33,784	1.010
Dalia	30,000	26,993	1.110
Skarv-Idun	16,100	15,770	1.020
Mean	-	-	1.003
COV (Coefficient of Variatio		-	0.116



Generation of Weight Estimation Model by Statistical Method (11/11)	
 Discussion It is very important Based on experts' experience, the variables which are less impact on the weight estimation should be excluded. 	t
To estimate more accurate weight, it is needed and to discuss the standard of weight control (e.g., the inclusion of L/Q in hull or topsides weight).	
If the detailed weight information on each module from past records is available, it is possible to generate a weight estimation model for topside modules.	
anovative Ship and Offshore Plant Design. Spring 2019. Myung-II Roh	19






☑ 3.	Pa	st r	eco	rds	of FF	SOs tl	nrough	litera	ture	e surv	vey (T	otal 1	IO FP	SOs)
	L [m]	B [m]	D [m]	T [m]	Storage	Oil production [MMbopd]	Gas	Water processing [MMbwpd]		DWT [ton]	Topside [ton]	Hull [ton]	L/Q [ton]	Total weight [ton]
Akpo	310	61	31	23	2.00	0.185	530.00	0.420	220	303,669	37,000	70,500	2,860	110,36
USAN	310	61	32	24	2.00	0.160	500.00	0.420	180	353,200	27,700	75,750	3,072*	106,52
(izomba A	285	63	32.3	24	2.20	0.250	400.00	0.420	100	340,660	24,400	56,300	1,170	81,87
Kizomba B	285	63	32.3	25	2.20	0.250	400.00	0.420	100	340,660	24,400	56,300	1,170	81,87
Greater Plutonio	310	58	32	23	1.77	0.220	380.00	0.400	120	360,000	24,000	56,000	2,200*	82,20
Pazflor	325	61	32	25	1.90	0.200	150.00	0.380	240	346,089	37,000	82,000	3,227	122,22
CLOV	305	61	32	24	1.80	0.160	650.00	0.380	240	350,000	36,300	63,490	2,900	102,69
Agbami	320	58.4	32	24	2.15	0.250	450.00	0.450	130	337,859	34,000	68,410	2,590	105,00
Dalia	300	60	32	23	2.00	0.240	440.00	0.405	160	416,000	30,000	52,500	2,500	85,00
skarv-Idun	269	50.6	29	19	0.88	0.085	670.00	0.020	100	129,193	16,100	40,600	1,930*	56,70

arameters for terminal set o generate an estimation model	Define function set used in genetic programming
Terminal Set	['times', 'minus', 'plus', 'sqroot', 'sin', 'cos', 'exp'] If you use 'times' insert '1' else '0' : 1 If you use 'minus' insert '1' else '0' : 1
L, B, D, T, H_LWT, DWT, S_C, O_P, G_P, W_P, Crew	If you use 'plus' insert '1' else '0' : 1 If you use 'divide' insert '1' else '0' If you use 'saroot' insert '1' else '0' If you use 'cos' insert '1' else '0' If you use 'cos' insert '1' else '0' (dependent variable)
	If you use 'exp' insert '1' else '0': 1 A B C D E F G H J K L 1 310 61 31 23 7050 303.66 2 0.185 530 0.42 200 3 2 310 Information on training data 500 0.42 100 2
Parameters for function set o generate an estimation model	4 285 (independent variables) 400 0.42 100 2 5 310 (independent variables) 380 0.4 120 2 6 325 61 32 25 82000 346.089 1.9 0.2 150 0.38 240 340 7 305 61 32 24 6340 350 1.8 0.16 60 0.38 240 340
Function Set	8 320 58.4 32 24 68410 33.7859 2.15 0.25 450 0.45 130 3 9 300 60 32 23 52500 416 2 0.24 440 0.405 160 31 10 269 50.6 29 19.193 0.88 0.085 670 0.07 100 11 11 300
+, -, ×, ÷, sin, cos, exp, \checkmark	Define (independent variables)
	Enter number of first row of data

