

Contents	
☑ Ch. 1 Introduction to Ship Design	
☑ Ch. 2 Design Equations	
☑ Ch. 3 Design Model	
☑ Ch. 4 Deadweight Carrier and Volume Carrier	
☑ Ch. 5 Freeboard Calculation	
☑ Ch. 6 Resistance Prediction	
☑ Ch. 7 Propeller and Main Engine Selection	
☑ Ch. 8 Hull Form Design	
☑ Ch. 9 General Arrangement (G/A) Design	
☑ Ch. 10 Structural Design	
☑ Ch. 11 Outfitting Design	
nnovative Ship and Offshore Plant Design, Spring 2016, Myung-II Roh	

Pro a \	ocedure of the Deter /olume Carrier	mination of Principal Dimensions for
1	• <u>At first</u> , the principal dimensions such as <i>L</i> , <i>B</i> , <i>D</i> are determined to provide the required cargo hold capacity according to the	Volume Equation (Economical Constraints) $V_{CH} = f(L, B, D)$ \checkmark Given: V_{CH} (owner's requirements) \checkmark Find: L, B, D
		V
2	• <u>Next</u> , the principal dimensions such as <i>T</i> , <i>C</i> _B are determined according to the $\frac{1}{2}$	Weight Equation (Physical Constraint) $\rho \cdot L \cdot B \cdot T \cdot C_B \cdot (1 + \alpha) = DWT + LWT$ \checkmark Given: L, B, DWT (owner's requirements) \checkmark Find: T, C _B
3	•Then, it should be checked lastly that whether the depth and draft satisfy the	Freeboard Calculation (Regulatory Constraints) $D \ge T + Fb(L, B, D, C_B)$ \checkmark Given: <i>L</i> , <i>B</i> , <i>D</i> , <i>T</i> , <i>C</i> _B
		✓ Check: Whether the chosen depth is equal or greater than the draft plus required freeboard or not.
Innovative	e Ship and Offshore Plant Design, Spring 2016. Myung-Il Roh	ydlab 14

Example Owner's	e of the Princi Requirement	pal Particulars of t s of the Design Sh	the Basis Ship of hip of 297,000 to	279,500 to n Deadweig	on Deadweight VLCC and ght VLCC
Desig	n Ship: 297,	000 Ton Deadwe	eight VLCC (Ver	y La <mark>rge</mark> C	rude oil Carrier) Basis Ship
		Basis Ship	Owner's Requirements	Remark	Dimensional Ratios
	Loa	abt. 330.30 m			L/B = 5.41
	Lbp	314.00 m			E = 5.41,
Principal	B,mld	58.00 m			$B/T_d = 2.77,$
Dimensions	Depth,mld	31.00 m	24 50 -		B/D = 1.87,
	I d(design)	20.90 m	21.50 m		L/D = 10.12
Deed	IS(SCAIL.)	22.20 11	22.04 III		
Deady	weight (scant)	301,000 ton	320,000 ton		• Hull Form Coefficient $C = 0.82$
Speed 90% MCR (v	(at design draft vith 15% Sea Margin)	15.0 knots	16.0 knots		• Lightweight (=41,000 ton)
	TYPE	B&W 7S80MC			- Structural weight
A/E	MCR	32,000 PS x 74.0 RPM			$\approx 36,400 \text{ ton } (88\%)$
~	NCR	28,800 PS x 71.4 RPM			- Outfit weight
U	SFOC	122.1 g/BHP·h			$\approx 2,700 \text{ ton } (6.6\%)$
6	DFOC	84.4 ton/day		Based on NCR	- Machinery weight
Cri	uising Range	26.000 N/M	26,500 N/M		$\approx 1,900 \text{ ton } (4.5\%)$
Shape of	f Midship Section	Double side / Double bottom	Double side / Double bottom		Cargo density = $\frac{\text{Deadweight}_{scant}}{\text{Cargo hold capacity}}$
	Cargo Hold	abt. 345,500 m ³	abt. 360,000 m ³		301.000
~	H.F.O.	abt. 7,350 m ³			$=\frac{1}{345,500}$
acit	D.O.	abt. 490 m ³			-0.87 [ton / m ³] > 0.77
Cap	Fresh Water	abt. 460 m ³			
Ŭ	Ballast	abt. 103,000 m ³		Including Peak Tanks	Deadweight Carrier
			-		

Determination of the Principal Dimensions of 29 Step 1: Weight - Step 2: Volume Equation (2/2)	Step 3: Freeboard Calculation				
V _{CH} = f(L, B Given: L=318.85[m], B=58.90[m], Find: D	(D) $V_{CH} = 360,000[m^3]$				
Assume that the <u>cargo hold capacity</u> is proportional to <u>L·B·D</u> .]			
$f(L, B, D) = C_{CH} \cdot L \cdot B \cdot D$					
$V_{CH} = C_{CH} \cdot L \cdot B \cdot D$					
The coefficient C_{CH} can be obtained from the basis ship.					
$C_{CH} = \frac{V_{CH}}{L \cdot B \cdot D} \bigg _{Basis} = \frac{345,500}{314 \cdot 58 \cdot 31} = 0.612$					
We use the same coefficient C_{CH} for the determination of depth.					
$V_{CH} = C_{CH} \cdot L \cdot B \cdot D$					
$360,000 = 0.612 \times 318.85 \times 58.90 \times D$					
$\therefore D = 31.32[m]$					
nnovative Ship and Offshore Plant Design. Spring 2016. Myung-Il Roh	rydlab	24			

Step 1: Weight Equation - Method 4 for the Lightweig in Components (5/7)	ght Estimation				
	000) 007 000 · 0.0414 / (6 · D · D · 0.1402 / D				
$L \cdot B \cdot 21.5 \cdot C_{B,d} \cdot 1.025 \cdot (1+0)$	$(.002) = 297,000 + 0.0414 \cdot L^{\infty} \cdot (B+D) + 0.1483 \cdot L \cdot B$				
	$+0.0514 \cdot (0.0022 \cdot (L \cdot B \cdot 21.5 \cdot C_{B,d} \cdot 1.025 \cdot (1+0.002))^{2/3} \cdot 16^3)$				
$L \cdot B \cdot C_{Bd} \cdot 22.08 = 297,00$	$00 + 0.0414 \cdot L^{1.6} \cdot (B+D) + 0.1483 \cdot L \cdot B$				
LO 000	$12 (I P C 22 0.8)^{2/3} 16^3 (5.4)$				
+0.000	$+0.00012 \cdot (L \cdot B \cdot C_{B,d} \cdot 22.08) \cdot 10 \cdots (5.4)$				
There are 4 unknown variables (<i>L</i> , <i>B</i> , <i>D</i> , <i>C</i> _{<i>B,d</i>}) with one equation. → Nonlinear indeterminate equation!					
Therefore, we <u>have to</u> indeterminate equatio	<u>assume</u> three variables to solve this n.				
The values of the dim	tensional ratios L/B , B/D , and $C_{B,d}$ can be				
$L / B = L_{Basis} / B_{Basis}$	$B / D = B_{Basis} / D_{Basis}$ $C_{B,d} = C_{B,d,Basis} = 0.8213$				
= 314 / 58	= 58/31				
= 5.413	=1.871				
nnovative Ship and Offshore Plant Design, Spring 2016, N					

Design	Ship: 160	0,000 m³ LNG C	arrier		
		Basis Ship	Owner's Requirements	Remark	Basis Ship • Dimensional Ratios
_	L _{DA}	277.0 m			L/B = 6.31,
	L _{BP}	266.0 m			$B/T_d = 3.81,$
Principal	B _{mld}	43.4 m			B/D = 1.67,
Dimensions	D _{mld}	26.0 m			L/D = 10.23
	T _d (design)	11.4 m	11.4 m		• Hull Form Coefficient $C_{p,l} = 0.742$
	T _s (scant)	12.1 m	12.1 m	12.1 m	• Lightweight (=31.000 to
Cargo Hol	d Capacity	138,000 m ³	160,000 m ³		- Structural weight
Service	e Speed	19.5 knots	19.5 knots		$\approx 21,600 \text{ ton } (\approx 70\%)$ - Outfit weight $\approx 6,200 \text{ ton } (\approx 20\%)$ - Machinery weight $\approx 3,200 \text{ ton } (\approx 10\%)$
	Туре	Steam Turbine	2 Stroke Diesel Engine (×2)		
Main Engine	DMCR	36,000 PS × 88 RPM		With Engine Margin 10%	
	NCR	32,400 PS \times 85 RPM		With Sea Margin 21%	Cargo density = Deadweight
SF	OC .	180.64 g/BHP·h			Cargo hold capa
Deadweig	ht (design)	69,000 ton	80,000 ton		$=\frac{69,000}{128,000}$
DF	OC .	154.75 ton/day			138,000 = 0.5 [ton / m ³] < 0
Cruisin	g Range	13,000 N/M	11,400 N/M		

D -	etermination of the Principal Dimensions (Step 1: Volume Step 1: Volume Equation (2/4) (Step 2: N Step 3: Volume Equation (2/4) (Step 1: Volume Equation (2/4))				
	$V_{CH} = \frac{f(L, B, D)}{[f(L, B, D)]}$ Given: $V_{CH} = 160,000[m^2]$ Find: L, B, D				
	Assume that the <u>cargo hold capacity</u> is proportional to <u><i>L</i>·<i>B</i>·<i>D</i></u> . $f(L, B, D) = C_{CH} \cdot L \cdot B \cdot D$				
	$V_{CH} = C_{CH} \cdot L \cdot B \cdot D$				
	Coefficient C_{CH} can be obtained from the basis ship. $C_{crr} = \frac{V_{CH}}{V_{CH}} = \frac{138,000}{0.460} = 0.460$				
	$L \cdot B \cdot D _{Basis} = 266 \cdot 43.4 \cdot 26$ $V_{CH} = C_{CH} \cdot L \cdot B \cdot D$				
	$160,000 = 0.460 \cdot L \cdot B \cdot D \cdots (6.1)$				
	There are 3 unknown variables (<i>L</i> , <i>B</i> , <i>D</i>) with one equation.				
	Nonlinear indeterminate equation!				
nnov	ative Ship and Offshore Plant Design. Spring 2016. Myung-II Roh	0			

20

Determination of the Principal Dimensions of 160,000 m³ LNG Carrier - Step 1: Volume Equation (4/4) L = 279.4 [m]We can obtain *B* and *D* from the ratios *L/B* and *B/D* of the basis ship. $B = L/(L/B) \qquad D = L/(L/B)/(B/D) = 279.4/6.129 \qquad = 279.4/6.129/1.669 = 27.3 [m]$ $\therefore L = 279.4[m], \quad B = 45.6[m], \quad D = 27.3[m]$ $\therefore L = 279.4[m], \quad B = 45.6[m], \quad D = 27.3[m]$

D -	etermination of the Principal Dimensions Step 3: Freeboard Calculation (2/2)	Step 1:)0 Step 2: N Step 3: Volume Equation Equation Calculation			
	At the early design stage, there are few data available for estimation of required freeboard. Thus, the required freeboard can be estimated from the basis ship.	$\begin{array}{l} D_{Fb} \geq T_s + Fb(L,B,D_{mid},C_{B,d}) \\ \text{Given: } L = 279.4[m], B = 45.6[m], D(=D_{mid}) = 27.3[m], \\ T_s = 12.1[m], C_{B,d} = 0.773, t_{stringer} = 0.02[m] \\ \text{Check: Freeboard of the ship should be larger than the in accordance with the freeboard regulation.} \end{array}$	hat		
	Assume that the <u>freeboard</u> is proportional to	the depth.			
	$Fb(L, B, D_{mld}, C_{B,d}) = C_{Fb} \cdot D_{mld}$				
	$D_{Fb} \ge T_s + C_{Fb} \cdot D_{mld}$				
	The coefficient C_{Fb} can be obtained from the basis ship.				
	$C_{Fb} = \frac{Fb}{D_{mld}}\Big _{Basis} = \frac{6.68}{26} = 0.257$				
	Check: Freeboard of the design ship				
	$D_{Fb} \ge T_s + C_{Fb} \cdot D_{mld}$				
	$D_{mld} + t_{stringer} \ge T_s + C_{Fb} \cdot D_{mld}$				
	$27.3 + 0.02 \ge 12.1 + 0.257 \cdot 27.3$				
	27.32 ≥ 19.11 : Satisfied				
It	is satisfied. However, this method is used for a roug	gh estimation. So, <u>after</u> the main			
di	mensions are determined more accurately, <u>freeboard</u>	needs to be calculated more	50		
ac	curately through the treeboard requiation.		50		

Design Ship: 4,100 T	EU Container Carr	ier	Paula Chin
	Basis Ship	Owner's requirements	Dimensional Ratios
Principal Dimensions LOA LBP	257.4 m 245.24 m	less than 260.0 m	L / B = 7.62 $B / T_d = 3.19$
Bmld	32.2 m	less than 32.25 m	B/D = 1.67
Dmld Td /Ts (design / scant)	19.3 m 10.1 / 12.5 m	abt. 11.0 / 12.6 m	L/D = 12.71
Deadweight (design / scant)	34,400 / 50,200 ton	40,050 / 49,000 ~ 51,000 ton	• Hull Form Coefficient $C_{n-1} = 0.62$
Capacity			$B_{B_{a}}$
Container on Deck / in Hold	2,174 TEU / 1,565 TEU	abt. 4,100 TEU	• Lightweight (= 18,000 to
Ballast Water	13,800 m ³	abt. 11,500 m ³	$\sim 11000top(\sim 68\%)$
Heavy Fuel Oil	6,200 m ³		≈ 11,000 ton (≈68%) - Outfit weight
Main Engine & Speed			$\approx 3,200 \text{ ton} (\approx 20\%)$
M/E Type	Sulzer 7RTA84C		- Machinery weight
MCR (BHP × rpm)	38,570 BHP × 102 RPM		$\approx 1,800 \text{ ton} (\approx 12\%)$
NCR (BHP × rpm)	34,710 BHP × 8.5 RPM		Cargo density - Deadweight _{scant}
Service Speed at NCR (Td, 15% SM)	22.5 knots (at 11.5 m) at 30,185 BHP	24.5 knots (at 11.0 m)	Cargo hold capac Deadweight
DFOC at NCR	103.2 ton		$=\frac{U_{\text{scalar}}}{V_{\text{container}} \times N_{\text{container}}}$
Cruising Range	20,000 N/M	abt. 20,000 N/M	$=\frac{50,200}{10000000000000000000000000000000000$
Complement (Crew)	30 Person	30 Person	46.9·3,739

sydlab 67

Determination of the Principal Dimensions of 4,100 TEU Container Carrier - Step 1: Volume Equation (11/11)

5. Principal dimensions (*L*, *B*, *D*) determined by the arrangement of containers in cargo hold (N_L , N_D , N_B):

Ship and Offshore Plant Design, Spring 2016, Myung-II Roh

$L = 7.14 \cdot N_L + 54.52 B = 2.523 \cdot N_B + 4.447 D = 2.604 \cdot N_B$	$V_D + 1.072$
$= 7.14 \cdot 27 + 54.52 \qquad = 2.523 \cdot 11 + 4.447 \qquad = 2.604 \cdot 7$	+1.072
= 247.76[m] = 32.2[m] = 19.3[m]	
L = 247.76[m] $B = 32.2[m]$ $D = 19$	3[<i>m</i>]

	$\rho \cdot L \cdot B \cdot T_d \cdot C_{B,d} \cdot (1+\alpha) = DWT_d + LWT$
$W_{s} = C_{s} \cdot L^{1.6} \cdot (B + D) \qquad C_{s} = 0.032$ $W_{o} = C_{o} \cdot L \cdot B \qquad C_{o} = 0.405$ $W_{m} = C_{m} \cdot NMCR \qquad C_{m} = 0.047$ $NMCR = 0.0025 \cdot \Delta^{2/3} \cdot V_{s}^{3}$ $L \cdot B \cdot T_{s} \cdot C_{m} \cdot O \cdot (1 + \alpha) = DWT_{s} + W + W$	$\frac{DW_{I_{d}}}{DW_{I_{d}}} = 0.050[(on], V = 24.5[(anos)]$ Find: $C_{g,d}$ Method 4: $LWT = W_s + W_o + W_m$
$L \cdot B \cdot T_d \cdot C_{B,d} \cdot \rho \cdot (1+\alpha) = DWT_d + C_s \cdot L^{1.6} \cdot (B - L \cdot B \cdot T_d \cdot C_{B,d} \cdot \rho \cdot (1+\alpha) = DWT_d + C_s \cdot L^{1.6} \cdot (B - C_m \cdot (0.0025 \cdot \Delta^{2/3} \cdot V_s^3))$ $L \cdot B \cdot T_d \cdot C_{B,d} \cdot \rho \cdot (1+\alpha) = DWT_d + C_s \cdot L^{1.6} \cdot (B - C_m \cdot (0.0025 \cdot (L \cdot B \cdot T_d))))$	$(+D) + C_{o} \cdot L \cdot B + C_{m} \cdot NMCR$ $(+D) + C_{o} \cdot L \cdot B$ $(+D) + C_{o} \cdot L \cdot B$ $(+D) + C_{o} \cdot L \cdot B$ $(+C_{B,d} \cdot \rho \cdot (1+\alpha))^{2/3} \cdot V_{s}^{3}$
$247.76 \cdot 32.2 \cdot 11.0 \cdot C_{B,d} \cdot 1.025 \cdot (1 + 0.0039) = 40,050 + 0.032 \cdot 247.76$ $+ 0.047 \cdot (0.0025 \cdot (247.76) + 0.047 \cdot (0.047 \cdot $	$(5^{1.6} \cdot (32.2 + 19.3) + 0.405 \cdot 247.76 \cdot 32.2)$ $(6 \cdot 32.2 \cdot 11.0 \cdot C_{B,d} \cdot 1.025 \cdot (1 + 0.0039))^{2/3} \cdot 24.5^3)$
$+0.047 \cdot (0.0025 \cdot (90, 306 \cdot C_{B,d})^{2/3}$	*•24.5 ³)

