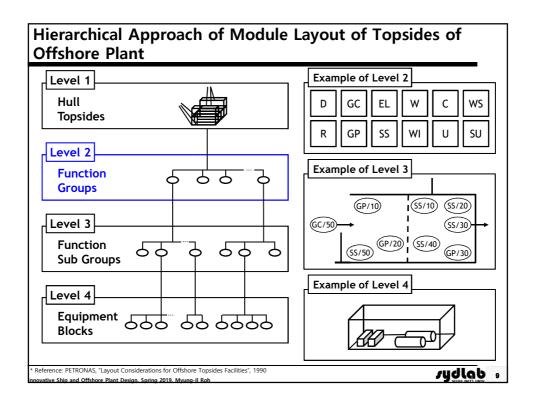
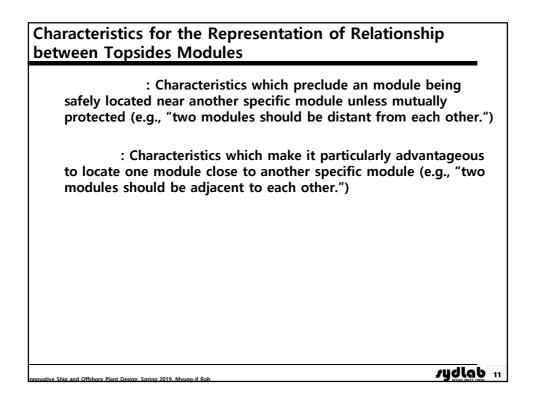
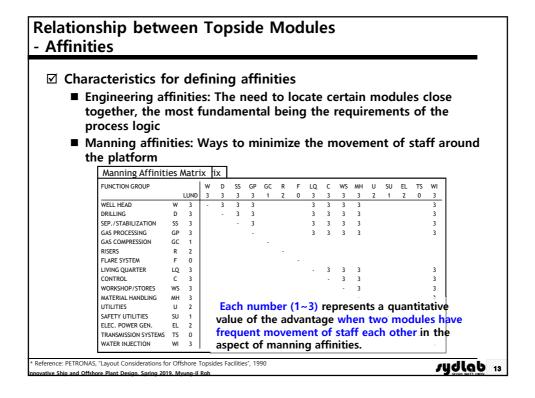
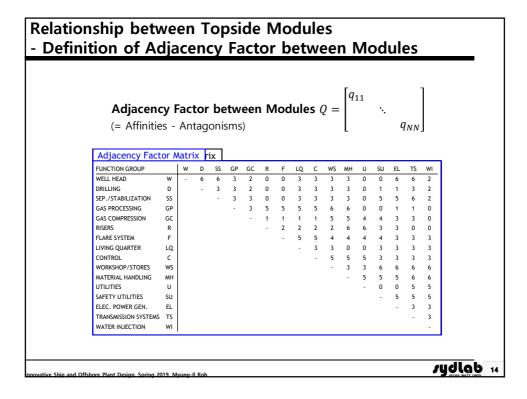

☑ Ch. 1 Introduction to Offshore Plant Design	
Image Ch. 2 Sizing and Configuration of Topside Systems	
Image: Ch. 3 Weight Estimation of Topside Systems	
Ch. 4 Layout Design of Topside Systems	
	udlob 2

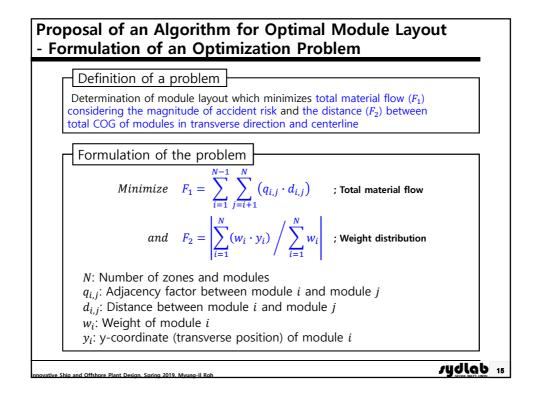


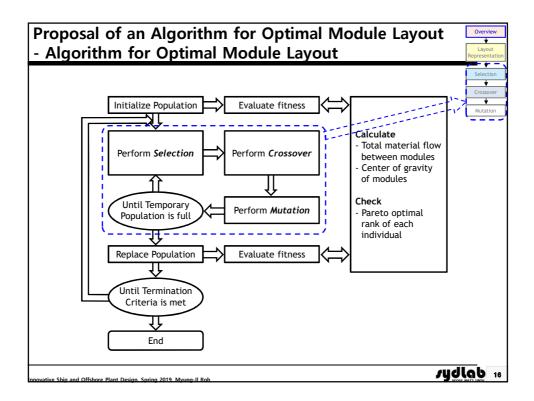


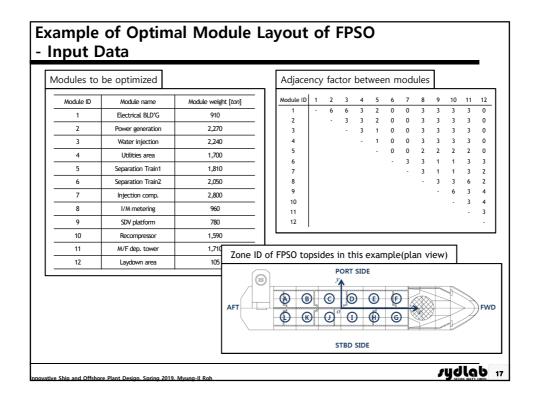


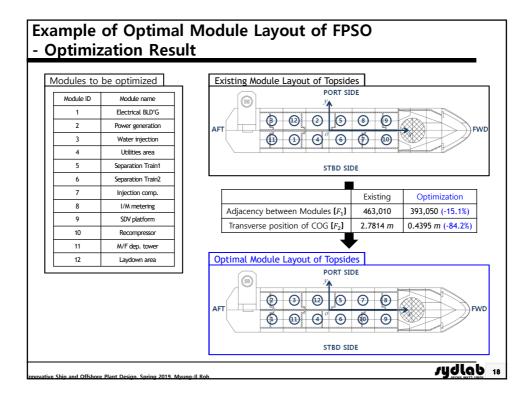


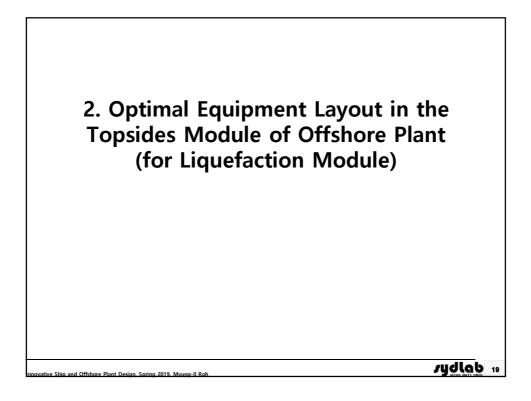


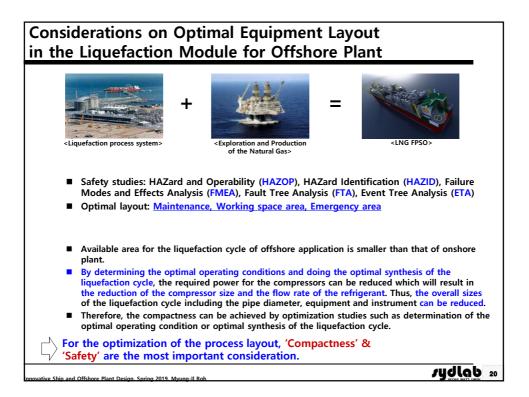

ıb Groups	/						
Wellhead	w	Gas Compressing	GC	Workshop/Stores	WS	Safety Utilities	SU
Xmas Trees	W/10	Compression Train	GC/10	Workshop - Mechanical	WS/10	Fire Water Pumps	SU/1
Manifold	W/20	Scrubber	GC/20	Workshop - Electrical	WS/20	Emergency Generator	SU/2
Well Control	W/30	Coolers	GC/30	Stores	WS/30	Emergency Switchgear	SU/3
Conductors	W/40	Lube Oil/Seal Oil	GC/40	Laboratory	WS/40	UPS	SU/4
		Gas Metering	GC/50	Storage - Standby Fuel	WS/50	Survival Craft	SU/5
Drilling	D			Storage - Jet Fuel	WS/60	Bridges	SU/6
BOP	D/10	Risers	R	Storage - Flamm./Comb. Liquids	WS/70		
Drilling Derrick	D/20	Risers/Manifolds	R/10	Storage - Process Consumables	WS/80	Electrical Power Generati	
Drilling Support	D/30	ESD Valves	R/20			Driver / Power Generator	EL/10
Mud Systems (Active)	D/40	Pigging Facilities	R/30			Switchgear	EL/20
Drilling Control	D/50	Subsea Sat. Facilities	R/40	Material Handling	мн	Transmission Systems	TS
Separation/Stabilization	SS	Flare System	F	Cranes	MH/10	Relief and Blowdown	TS/10
Separation	SS/10	Flare Knockout	F/10	Laydown Areas	MH/20	Drains - Open	TS/20
Stabilization	SS/20	Tower (incl. tip)	F/20			Drains - Closed	TS/30
Test Separation	SS/30			Utilities	U	Piping - Process	TS/40
Produced Water Treatment	SS/40	Living Quarter	LQ		-	Piping - Safety	TS/50
Oil Export Pumping	SS/50	Living Quarters	LQ/10	Seawater System	U/10	Piping - Utilities.	TS/60
Oil Metering	SS/60	Living Quarters Utilities	LQ/20	Instrument Air System	U/20	Cables - Instrumentation	TS/70
D /		Sheltered Area	LQ/30	Diesel System	U/30	Cables - Electrical	TS/80
Gas Processing	GP	Helideck	LQ/40	HVAC	U/40	Ducting - HVAC	TS/90
Gas Processing	GP/10			Potable Water	U/50		_
Condensate Processing	GP/20	Control	с	Sewage Systems	U/60	Water Injection	wi
Dehydration	GP/30	Central Control	C/10	Heating Systems	U/70	Injection	WI/1
Fuel Gas	GP/40	Local Control	C/20	Cooling Systems	U/80	Treatment	WI/2

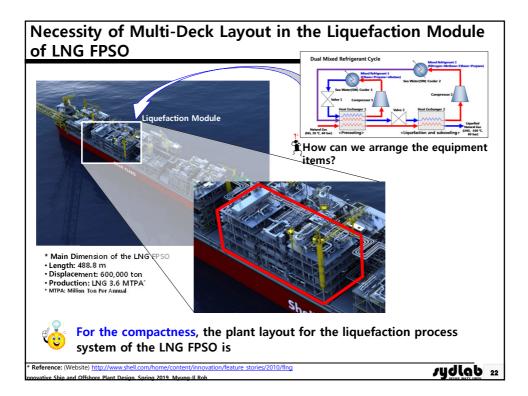


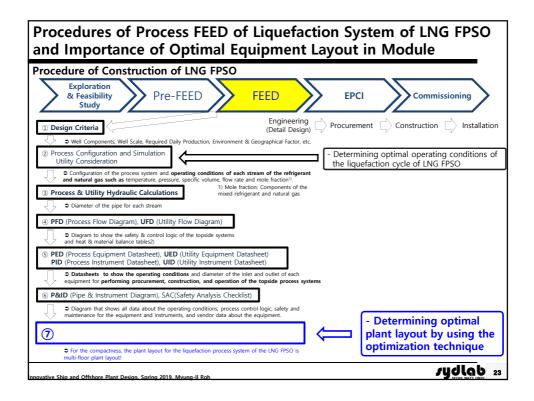

Characterist		tor	de	fir	nin	a	an	ta	an	nie	sm	s							
A - 4 ¹ / ₂ - 1						-								c _		1			
Active be			na	rae	cτe	ris	τις	5: F	rc	bba	DII	iτy	01	га	m	oa	uie	e ini	tiating
major inc	Ide	ents																	
Reactive	bel	navio	r cl	ha	rac	te	rist	ics	: F	Pro	pe	nsi	itv	fo	r a	m	od	lule	to escala
major inc											pe		· · y			•••		aic	to escala
	iue		ΠU	au	eu	en	Sev	VII	ere										
Antagonisms M	atrix	x																	
FUNCTION GROUP			w	D	SS	GP	GC	R	F	LQ	С	WS	MH	U	SU	EL	TS	WI	
		REACTIVE	3	3	3	3	2	3	3	3	3	2	2	2	3	3	3	2	
		ACTIVE																	
WELL HEAD	w	3	1							_								1	
DRILLING	D	3	3	-						Ea	ch	nu	mt	per	(1-	~3)	re	pres	ents a
SEP./STABILIZATION	SS	2	3	3	-					au	ant	ita	tive	- v	متناد	<u> </u>	f tl	ha ria	sk when t
GAS PROCESSING	GP	2	3	3	3	-													
GAS COMPRESSION	GC	3	3	3	3	3	-			mc	du	les	ar	e lo	эса	tec	i in	adja	acent zone
RISERS	R	3	3	3		3	3	-		clo	se.	Th	ie ł	nia	her	nu	ıml	ber. t	the more i
FLARE SYSTEM	F	2	3	3		3	3	3											
LIVING QUARTER	LQ	0	3	3	3	3	3	3	3	lay	ou	C.							
CONTROL	С	0	3	3	3	3	3	3	3	1	-							- i.	
WORKSHOP/STORES	WS	0	3	3	2	2	3	3	2	1	1	-							
MATERIAL HANDLING	MH	1	3	3	2	2	3	3	2	2	2	1	-						
UTILITIES	U	1	3	3	2	2	3	3	2	2	2	1	1	-					
SAFETY UTILITIES	SU	1	3	3		3		3	3	2	2	1	2	2	-				
ELEC. POWER GEN.	EL	3	3	3	-	3	3	3	3	3	3	2	2	2	3	-			
		3	3	3	3	3	3	3	3	3	3	2	2	2	3	3	-		
TRANSMISSION SYSTEMS	15	5	-																

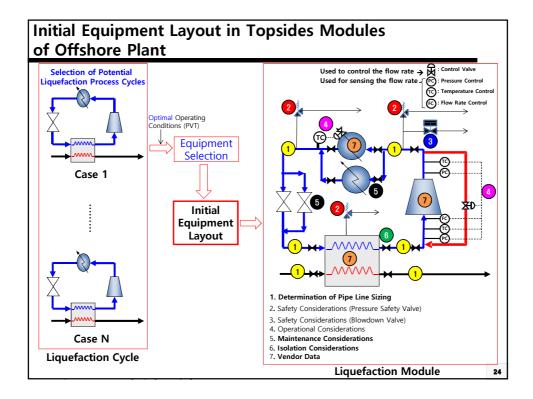


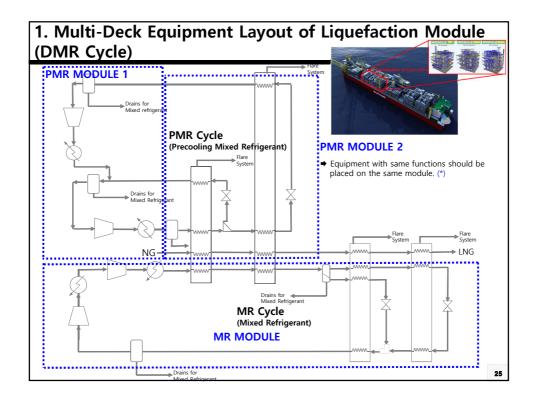


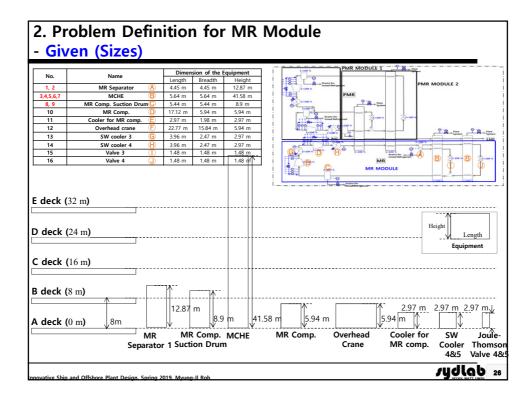


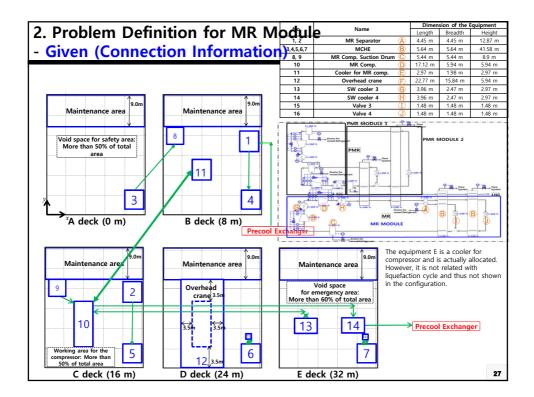


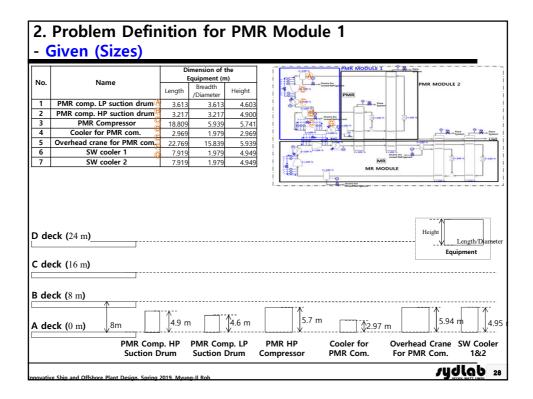


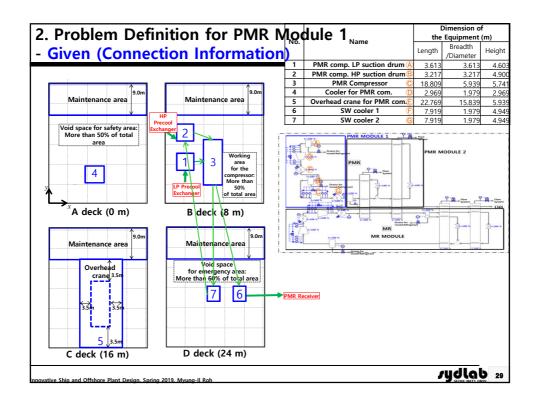


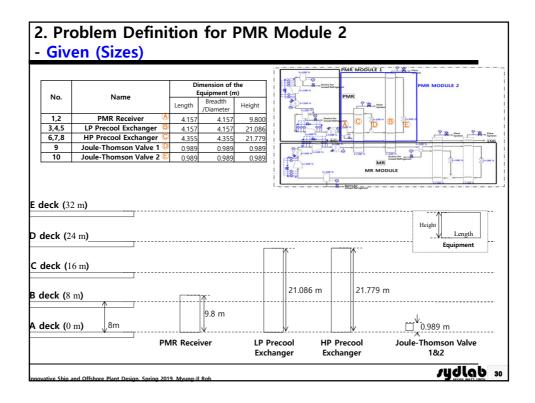


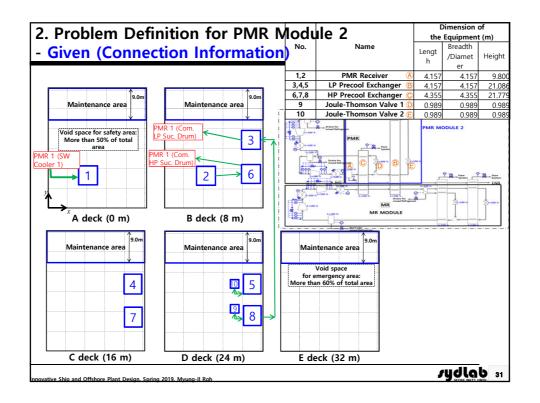

<section-header>Characteristics of Equipment Layout in Topsides Modules of Offshore Plant Imited Installation Area Imited Installation and Maintenance Imited Installation shall be performed on the module basis to easily install each modules on the hull area. Imited Installation and Maintenance Imited Installation and Imited Imi

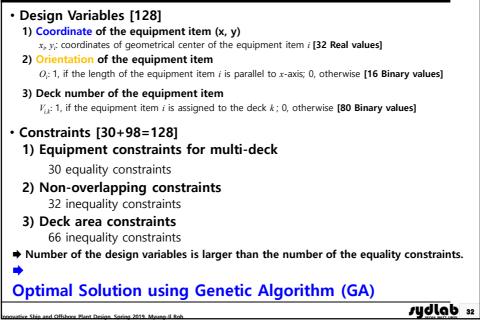


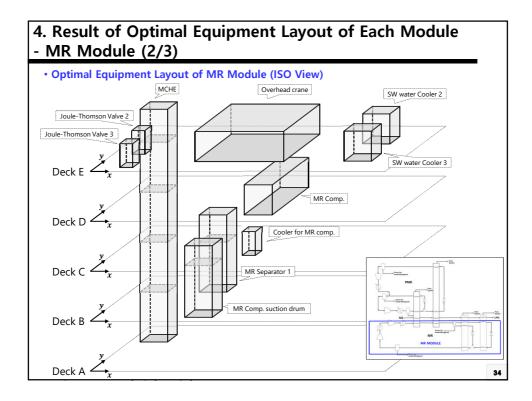


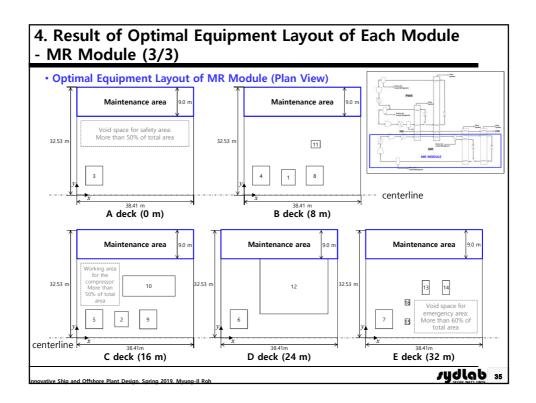






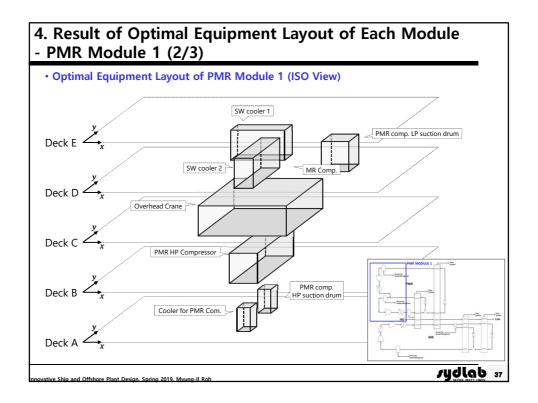


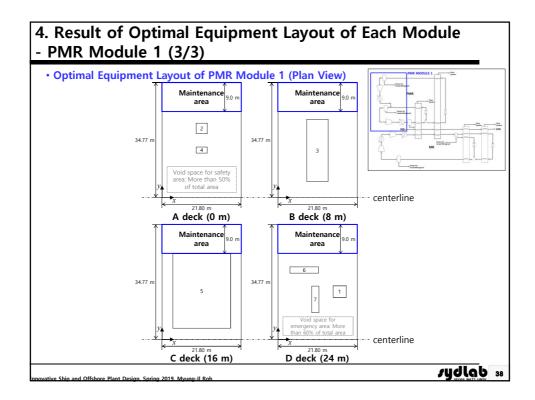



3. Mathematical Module for Multi-Deck Equipment Layout - Model for Optimal Equipment Layout of MR Module

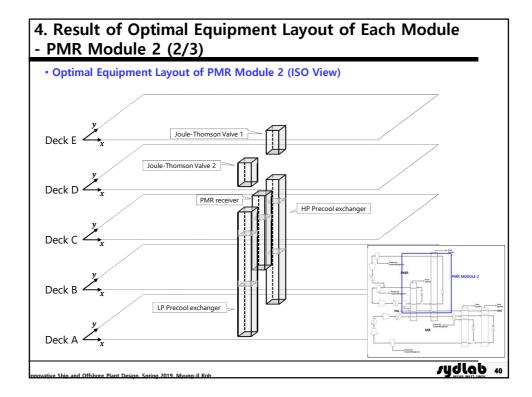
Opt	imal Values of Design Variab	es for	MR M	odule					
	Equipment	xi	y _i				$V_{i,k}$		
No.	Name	[<i>m</i>]	[<i>m</i>]	O_i	V _{i,1}	V _{i,2}	V _{i,3}	V _{i,4}	V _{i,5}
1	MR Separator 1 on lower deck	17	13	1	0	1	0	0	0
2	MR Separator 1 on upper deck	17	13	1	0	0	1	0	0
3	MCHE on A deck	16	4	1	1	0	0	0	0
4	MCHE on B deck	16	4	1	0	1	0	0	0
5	MCHE on C deck	16	4	1	0	0	1	0	0
6	MCHE on D deck	16	4	1	0	0	0	1	0
7	MCHE on E deck	16	4	1	0	0	0	0	1
8	MR Comp. suction drum on lower deck	4	20	1	0	1	0	0	0
9	MR Comp. suction drum on upper deck	4	20	1	0	0	1	0	0
10	MR Comp.	8	10	0	0	0	0	1	0
11	Cooler for MR comp.	8	10	0	0	0	1	0	0
12	Overhead crane	8	10	0	0	0	0	0	1
13	SW water Cooler 2	8	8	1	0	0	0	0	1
14	SW water Cooler 3	8	14	1	0	0	0	0	1
15	Joule-Thomson Valve 2	17	9	1	0	0	0	0	1
16	Joule-Thomson Valve 3	17	9	1	0	0	0	0	1

ا. . ا 14 • . . . 4 1 C =

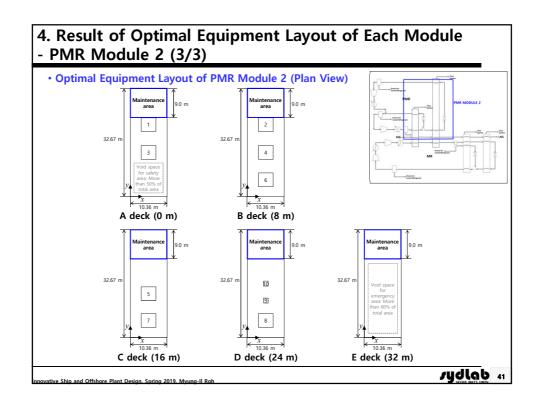




- P	Result of Optimal E MR Module 1 (1/3)			Each	Mod	ule
	Equipment	x _i	y _i	0	. 1		


	Name	[<i>m</i>]	[<i>m</i>]	O_i	$V_{i,I}$	$V_{i,2}$	$V_{i,3}$	V _{i,4}	
1	PMR comp. LP suction drum	10.9	7.1	0	0	0	0	1	
2	PMR comp. HP suction drum	10.9	14.35	0	1	0	0	0	
3	PMR HP Compressor	10.9	14.35	0	0	1	0	0	
4	Cooler for PMR Com.	10.9	14.35	0	1	0	0	0	
5	Overhead Crane	10.9	14.35	0	0	0	1	0	
6	SW cooler 1	17.45	14.35	0	0	0	0	1	
7	SW cooler 2	4.35	14.35	0	0	0	0	1	

18



	Equipment	x_i	y_i	<i>O</i> _i			$V_{i,k}$		
No.	Name	[<i>m</i>]	[<i>m</i>]	U _i	V _{i,1}	V _{i,2}	$V_{i,3}$	V _{i,4}	V _{i,5}
1	PMR receiver on lower deck	7	8	1	0	1	0	0	0
2	PMR receiver on upper deck	7	8	1	0	0	1	0	0
3	LP Precool exchanger on B deck	15	17	1	1	0	0	0	0
4	LP Precool exchanger on C deck	15	17	1	0	1	0	0	0
5	LP Precool exchanger on D deck	15	17	1	0	0	1	0	0
6	HP Precool exchanger on B deck	15	8	1	1	0	0	0	0
7	HP Precool exchanger on C deck	15	8	1	0	1	0	0	0
8	HP Precool exchanger on D deck	15	8	1	0	0	1	0	0
9	Joule-Thomson Valve 1	11	11	1	0	0	0	1	0
10	Joule-Thomson Valve 2	11	17	1	0	0	0	1	0

5. Installation Area by Optimal Equipment Layout of
Liquefaction Module

Deck Area	Results	Area (m ²)	Deck Area
	38.41 m * 32.53 m	1,249.48	A Deck
Γ	38.41 m * 32.53 m	1,249.48	B Deck
MR Module	38.41 m * 32.53 m	1,249.48	C Deck
	38.41 m * 32.53 m	1,249.48	D Deck
	38.41 m * 32.53 m	1,249.48	E Deck
	21.80 m * 34.77 m	757.99	A Deck
PMR Module 1	21.80 m * 34.77 m	757.99	B Deck
	21.80 m * 34.77 m	757.99	C Deck
	21.80 m * 34.77 m	757.99	D Deck
	10.36 m * 32.67 m	338.46	A Deck
	10.36 m * 32.67 m	338.46	B Deck
PMR Module 2	10.36 m * 32.67 m	338.46	C Deck
	10.36 m * 32.67 m	338.46	D Deck
	10.36 m * 32.67 m	338.46	D Deck
Te	otal Area	141,800.10	

Optimal DMR	SF	IELL DMR	C3MR	N2 Dual Expande		
MODULE 1 PMR MODULE 2 MR MODULE 2		MODULE	PMR MODULE 1 PMR MODULE 2 MR MODULE 2	REFRIGERANT MODULE 1 REFRIGERANT MODULE 2		
Cases	5	Area (m ²)	Result (Con	straints)		
Optimal I	DMR	141,800.10	Satisfi	ed		
SHELL D	MR	165,225.50	Satisfi	ed		
	C3MR		Satisfi	ed		
C3MF	λ	159,599.00	Jacisti	eu		