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Spatial Manipulator Jacobian J5

e Denote EF pose by g.:(8) € SE(3), 0 = (61,62,..,0,). Its differential
relation between joint rate @ and EF velocities = Jacobian.

e First, write the spatial velocity of gs(6): using the chain rule,

V=05 0) = 3 (6) 3:20) = 3 (92 ©)

=1 =
where %-‘7@:_—‘ [ _(_15519 _(_13;;5;‘0 i 00 ] € R4*4 with ( gstl (0)) ‘
se(3) having the meaning of twist.
. 'l\
o We may then further write 1‘: = |
! B

Vi = J(60)0 € °
where J2,(0) € R6*™ is spatial manipulator Jacobian:
720 = [ (%320) o (P37 @) ]

which defines linear relation between § and V3. =
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Geometric Meaning of J5

e Recall o .
gst(0) = 10168202 pfnbn gs¢{0)

where &f is twist of joint 7 at reference configuration expressed in {S}.

The i-th column of J5,(6) is then given by

é-: _ 3.({;15 !7;1 _ 65101 ..... eé,-_lo;_l (é‘) eéieieéi+10i+1”"eénOngst(O)gs—tl

= 65191 _____ eé:’—loi—l (é\z) e—éi—lai—1"__e—£191
_ A\ -1
= L (O)1i(01,0-051) (51') T3 ()4 (61105 1)

e Thus, we can write spatial Jacobian J%,(0) s.t.

@=[& & .. & ]ex™"
5: = Ade€191 efi-10i—1 6: c R’

Here, ¢} = Ad

in {S} at the current configuration with #;-axis moved by 61, ..., 8;_1 from
the reference configuration (similar to the case of 2-DOF arm).
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s C
o1, (0,00, Al 97'o &, i.e, denotes joint i motion expressed

Body Manipulator Jacobian J°,;
e We also define body manipulator Jacobian J%, € R6%" s.t.
Vi = (0 (0)3n(0))” = T2(0)0 ¢
o0 ;

_ g\@\\
L] Then, from ‘ISI; = Adg +(0) t - Adg +(6) Jst(a)a

b - s {—
T5(6) = Ad_ ) T3 ‘9/]2 % /L)
Loy < (1o

thus, we can obtain: given &7,

m@=uls~~5ldw"
t_ JeRe
6 efz LITI 85"9"9 +(0) E < QR
with €] := = Al 6 =Adg ) Ad ey, ee, & :Adj ..... etntn g 5

. Here,f = Ad;t(a) & =Ad duiter Adg,, o Ad, 2 fl = g, o Ad,- il e,

i.e., f;-motion expressed in {S} mapped to {L (0)}, rotate to current
conﬁguratlon {L;i(6)}, then, mapped to {T'(§)} expressed in {T'(#)} (note:
Adg, 0, 0 & = Ad,,, O )§b Adg,,, 0 £? as they are the same motion
expressed in {S}. cf. Lecture 4, slide p. 11) 5
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Example 3.8: SCARA

e Recall & = [—w; X ¢;; w;] for revolute and & = [v;; 0] for prismatic.

e With & defined at reference configuration in {S}, we can then compute
J:t with E: = Ade€191 efi—10i—1 E‘f‘

e Or, we may compute J, at current configuration via observation:

0 —we X —wg X v
r=la & & &)= o Tunxa ]

w1 w2 w3

where

@1 = [0;0;0], g2 = [~l150,;01¢o,;0]
qs = [_l]. 801 _l2 Sol+62; ll c01 +l2 001+81 3 0]

with w; = wy = ws = [0;0; 1] and vy = [0;0; 1].

e We can also similarly compute J% via observation,

i.e., joint twist written in {T'} at current configuration.
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Further on J5; and J"s_t

Now, rigidly attach a point ¢ on EF. Then, §s = Gs:(0)G.

Velocity of g expressed in {S} is then given by

e

The same velocity of q is expressed in {T} by ) %

. — — h /\ —
'_’lq) = g.;‘,lll_}; =G5 9st@ = V3@ = (J:t(g)a) g

If ¢ is origin of {T'} (i.e., ¢; = 0), with g5:(6) = (Rs:(9),q5(6)),

v,

~~ —
Vi Vi

* Note that v§ = Rv} # v, of the spatial velocity Vs = (v, ws,), although

b = v}, of the body velocity V& = (v?,, w?).

Uq

O
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. . . 1 - — - A _ )
Vg = ds = 9stqr = gstgsth.s = ‘/s‘;QS = (J:t(g)g) gds '@
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Force Kinematics

e Suppose we apply joint torque 7 € R™ to resist body wrench Fj acting
through the origin of {T'}.

e Then, with no friction, to maintain static equilibrium, the principle of
virtual work should hold:

oW =760+ Frogy =1760 + FLJ%.660 =0 Sam

Vi

implying that
T= _(J:t)TF b

e Also, using Fy = Adg;, Fy and J3, = Ady,, J%, 1

T=—(J)" Fs
where Fyp, F, are body and spatial wrenches applied at the orign of {T'}.

o If J,; is square/invertible (other cases later), this relation can be used for:

— Given EF wrench F', what joint torque 7 is required to resist this F'?

— Given joint torque 7, what EF wrench will be generated?
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Example 3.10: SCARA

e Force kinematics:
T=—( :t)TF s

where JZ, € R6*4 is tall = deficient manipulator
e Some wrench I’ resisted by mechanical structure.
e Basis vectors of null-space of (J,)7:

Frn1 = [0;0;0;1;0; 0]
Frnz =[0;0;0;0;1;0]

e Recall screw coordinates: F = (f;7) = (w; —w X ¢+ hw)@ or F = (0; w)0.

e F,, Fpo are pure-torques along z,y-axes of {S}, which do not have any
image on 7 = balanced by robot’s mechanical structure, not by joint
torque 7.

O
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Classical Jacobian: Angular Velocities

e Consider composition of rotations

R - ¥R}

where RY represents rotation of {1} relative to {0} and R} that of {2}

relative to {1}. Combined angular velocity w8’2 is given by:

R)=S(uQ,)R), S(w):=1

e Yet, we also have: using S(Rw) = RS(w)R7,

R} = RIR; + RIR; = S(wp 1) RIR; + R{S(wi ) R;
= S("Ug,l)Rg + R(l)s(w%,z)R?TR(l)Ral = S(w8,1)Rg + S(Rg’w%,z)Rg
= S("Ug,l + R?w%,z)Ro = S("Ug,l + ’w?,z)Rg
o Thus, w) o = wl ; +w),. Or, more generally, for RS = R)R}... R 1,
Wg,n = wg,l + ’w(1),2 + "'wo—l,m w?,i+1 =R} 'wg,i+1

i.e., angular velocities can be simply added if expressed in same frame. ,
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Angular Velocity Manipulator Jacobian
e Denote pose of EF frame {n} relative to base frame {0} by

Jon(q) = [ Ry(q) o)(a) ]

0 1
. . . 0 3 . {Lia} A R

where ¢ € R” joint variable, o7 (q) € R is of {n}. W N
e z;_1 is along ¢;-axis, while {L;} moves with link 7 by g;. {0}1 T
e Then, angular velocity of EF {n}-frame is given by

wgm = w8,1 + R?wiz + ...+ Rg,lwzjm

where, for g;, 'w:-':ii = %ZZ:% = ¢;k if revolute, or wf:ii = 0 if prismatic.

e Thus, we can define angular velocity Jacobian J,,(q) € R3*" s.t.,

wl , = 12001 + p2Rz1da + ... + $u RO _ 12714,
=[ 12 220 .. 20 1 |d=Jul(a)d

where ¢; = 1 if ¢; is revolute; ¢; = 0 if prismatic.
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Linear Velocity Manipulator Jacobian

o Linear velocity of origin of EF {n}-frame is given by
. 0 . a0 . 0% .
Vo = On(0) = Fo2d1 + Fe2da + - + 522 0n
_ oY 80?1 899‘ . .
= [ B B v Dae } q=Ju(q)d

where J,(q) € R3*" is linear velocity Jacobian.

0
Can obtain J,; = % by seeing v ,, with only ¢; and all other joints fixed.

Then, we have, if i-th joint is revolute, | {L}
. « NS n)

0 _ .0 0 0 N\
Vo, = Zi—1 X (0, — 0;_1)di 1
{La}
or if revolute ge

0 _ .0 . o.\,"r
Vo,n = Zi—14i e

{o}
Thus, linear velocity Jacobian can be obtained by /]—>

Tuilg) = {Z?_l x (08 —0?_,) if g; is revolute
vi\d) = ZO
i

1 if g; is prismatic

©Dongjun Lee

Manipulator Jacobian - Classical

e Combining this, we have classical manipulator Jacobian J(g) € R6%™:

¢= ()= | 28 | 4= =

0\\ oyl 7
Wo,n e
o '\-‘Z oo‘\
OY
Ju(@) =[ 128 ¢22) . 6n2l_; ] (0)1

where

0

Julq) = 1 X (@R —oly) if g s revolute
" Zi-1 if g; is prismatic

e Note ¢ differs from spatial velocity V35 = (v, ws,) with vy, # vg, al-
though 'wgm = wj,.

e This ¢ is the same as body velocity V5 = (v, w?,) expressed in {0} with
vgm = Rstvi?t and wgm = Rstwgt.

.
B
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Example: S4.8 SCARA

e Angular velocity Jacobian:

Jw1 = [O, 0; 1]7 Juw2 = [O' 0; 1]
Jws =1[0;0;0], Jwa =[0;0;—1]

e Linear velocity Jacobian:

Jo1 = [0;0;1] x 0f = [—a1 81 —ag 5125 a1 ¢1 +az c12;0]
Ju2 = [0;0; 1] x [ag 125 azs12; —d3 — dg] = [—azs12; a2 ¢12;0]
Jy3 = [0;0; —1],  Jys = [0;0;0]

_—— 2 it 3 (prismatic)
N i
[ = k1 {Lg} o 5 0
— O3 PR~ " -
M oo / > joint 4 (revolute) 6, ( )
Y bk 4 .
— s Yo
_ Base (link 0) T A
“ e T
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Singularity PN

e Jacobian relations: N

Vi = J5008, 7= (J5(0)7F, —

e We say configuration 0 is singular if its Jacobian J%,(0) drops rank.

— EF motion in certain direction not generatable (e.g., gimbal lock).
— Very large 0 necessary to generate EF motion (internal instability).
— EF force in certain direction resisted by mechanical structure.

e Recall g,+(0) is global parameterization of SE(3). Instead, if we use local
parameterization f(8) = (z,y,2,p,7,y) € RE, we have analytical Jaco-
bian J3:

. _ 8f 6x;
Jo(0) = 55 € RO
with
singularity(J;) = singularity(JZ;) U singularity(f)

i.e., encompassing manipulator Jacobian singularity (due to robot design)
and local parameterization singularity (due to map f).

R
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Manipulability
Manipulability measures how far a configuration is away from singularity
e For & = J()0,
11(0) = omin(J(8)) = 0
where
Omin(A) := min _|[|Ax]]2 = ||A||2

[Ix|l2=1
is minimum singular value. This ji; characterizes how “far” a configuration is
from singularity; or minimum possible magnitude of £ given unit g, i.e.,

orin(NA? < €76 = g™ ITJq < of, (I)llall?

omin(J(6)) 2
Omax(J(0))
This 2 not only characterizes the closeness to the singularity, but also
directionality as well. Ideally, we want pa(6) = 1.

0 < ,'.IQ(@) =

]
p3(f) = |det J(B)| = 0105...0,

which characterizes the volume of the velocity ellipsoid.
lepongjunLee & =

Non-Square Jacobian

e In general, dim(¢) # dim(g), i.e., EF motion DOF of interest is not the
same as joint variable DOF.

o If dim(¢) < dim(¢) = redundant manipulator.
e If dim(£) > dim(¢) = deficient manipulator.
e Even if dim(£) # dim(g), we still have

¢=J(gg, J(g) eR™"

i.e., all possible workspace velocity £ € R™ is the one generatable (or
permissible) by some joint motion ¢ € R™.

e Given ¢ = £ uniquely defined; given £ = ¢ may not be unique.
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Redundant Manipulator: Velocity Kinematics

e For redundant manipulator, we have

& =J(q)g, withm <n and “fat” J.

e We can then decompose ¢ € R" in its orthogonal components s.t.,

g= q.row(J) + q.null(J) = JTa + :B = :]T(JJT)_IJ(Z-FII - JT(JJT)_IJ]q;

€ row(J) € null(J)

— Grow(s) € row(J) is component of ¢ producing apparent velocity £.

— Goun(s) € null(J) =~ col(JT) have no image to ¢: internal motion.
e This also shows that we can generate desired £ by

G=JT(JIT) e+ 1= JTJITY LI

— b € R" can be any arbitrary vector. &
— JT(JJT)~1¢ is optimal solution of ¢ to produce ¢ (minimum ||g||).
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Redundant Manipulator: Force Statics

e To maintain static equilibrium, princple of virtual work should hold:

oW =1T86q+ FTéz =1T86q+ FTJ6g =0

for any 8¢ € R™ given F with & = £ = J(g)g, which then implies

r=-JY(q)F

e We can also similarity decompose joint torque 7 € R” s.t. H

T = Teow(s) + Tautt(sy = J* (JIT) 1T +[[ = JT(JIT) e
Ero‘\;(.]) Enu‘lrl(.])
=—JTF +[1 - J*(JJT) )b

which will not maintain static equilibrium if b # 0 with 6W # 0 Vég € R" =
not static problem any more, but dynamics/control problem.

e Lagrange-D’Alembert principle with generalized force:

T T T T
Tgenera[izedaq = Tjointé-q + F, extax = Tgeneralized = 7joint +J (q)F ext

o
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Example: Redundant Manipulator

Only Cartesian velocity and force are considered.

Jacobian relation given by
011
7= [ 110 ] st m

Apparent motion (e.g., £ = [1;0]); internal motion (i.e., ¢ = [1; —1;1]).

1 -1 2 1 1 -1 1
Gg==| 1 1 [e+=] -1 1 -11|»s
31 2 1 $1 1 1 1
Static balance torque (e.g., F = [1;0] w/ 7 = [0;1;1]); motion-inducing
torque in null(J) (e.g., 7 = [1; -1;1]):

. 1 1 -1 1
T=-J F+§ -1 1 -11]5%

1 -1 1

e Redundant manipulator force control = hybrid force/position control or
impedance/admittance control.

oy
U

Deficient Manipulator: Velocity Kinematics

For deficient manipulator, we have

£=J(g)g, withm>n and “tall” J.

¢ must be in col(J), i.e., £ should be permissible by some motion of ¢.
That means, in the orthogonal decomposition of ¢ s.t.

& = Leol() t &neol(r) = J(JTJ)_IJT§+LI - J(JTJ)_IJT]é

€col(J) €~col(J)=null(JT)

— &~coi(y): infeasible velocity (e.g. velocity normal to the plane of
planar robots), thus, should be zero.

— &col(a): feasible/permissible by some motion of 4.
By equating this with £ = Jg, we have
g=(JTNTITE.

i.e., ¢ to produce the desired £ € col(J).

oDongjun Lee
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Deficient Manipulator: Force Statics

e To maintain static equilibrium, from principle of virtual work: L - ‘

T=—J(q)F —
iy ‘[
e We can decompose workspace force F' € R™ s.t. . \l I Q .

F= Fcol(J) + FNCOI(J) = :I(JTJ)—IJTIZ+11 - J(JTJ)_IJT]F:

Ecol(J) En~col(J)

— Foy) needs to be sustained by 7 = —JTF = —JT Fq
— F..col(s) supported by mechanical structure of robot.
— &col(s) = 0 (infeasible velocity), although F..co(s) # 0 in general.
e If F can resist any 7 to maintain static posture of manipulator (i.e., § = ¢ = 0),
the joint torque 7 will generate external wrench

F=—JJtrn-lr

in the ”actuated” direction col(J); cannot generate workspace force in ”un-
actuated” direction ~ col(J) though.
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Example: Deficient Manipulator

e 2-DOF planar robot, yet, workspace of interest is 3D Cartesian motion.

-1 0
J = 1 1
U {s}

e Apparent motion (e.g., £ = [1;1;0]) and infeasible motion (e.g., £ =

[0;0;1])
i=[ 7 10

e Static balance torque (e.g., F = [1;1;0] w/ 7 = [0;—1]); structurally-
balanced force (e.g., F = [0;0;1]); and force generation in col(J) (e.g.,
T=[1;1] w/ F =[0;1;0]):

{1}

e Jacobian relation given by

1
6 0

O
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11



Redundant Robots

e Consider a n-DOF robot with ¢ € Q. Suppose we can define a task by
r = f(q) € R™, where

f . Qn SWwm
e Robot is kinematically redundant if n > m.

e Redundancy can be utilized to:
- Avoid collision with obstacle and self.
- Avoid singularity and maintain manipulability.
- Respect angle, velocity, acceleration limits.

- Minimize energy consumption with minimum motion.

[Eongjun Lee @ ENGINEERING

Velocity Level Redundancy Resolution

e Consider a n-DOF robot with ¢ € Q. Supposc we can define a task by
r = f(q) € R™, where

frQrswr

e Typically, aim to achieve the main task r(¢) — r4(t), while optimizing
cerain other requirements via internal motion (e.g., manipulability u(q),
collision distance (q), ctc.).

¢ Redundancy resolution in configuration kinematics level: given r4(¢ :
t+T) and H(q,q), find g4(t : t +T) s.t.

rq(T) = f(qa(r)) with H(qa,4q) > H, V7 € [t,t +T]

e Redundancy resolution in velocity kinematics level: for Jacobian rela-

tion,
._Of . . mxn
P=ggl=I e J@eR
find ¢y s.t.,
ra(t) = J(q(t))da(t) with H(t)>0 if H(t)=H
[SDongiun Lee @ ENGINEERING
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Pseudo-Inverse Optimal Control

e Jacobian relation:

._ﬂ._ . mXn
= 8qqu(q)q, J(g) eR

e Inverse Jacobian relation: for “fat” J(q),
Gg=JT(JIJT) Yo+ 1 - JT(JJT) La)b
where b € R™ can be arbitrary.

e The optimal solution is then
g=Jtr, Jt=JrgJ5)1
where J*(q) € R"*™ is Moore-Penrose pseudo-inverse s.t.,
JItT=Jg, Jtggt=J%, (JaHT =JgJ*t, (JTNT=JtJ
e Given any J € R™*™, there always exists unique pseudo-inverse.
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Linear-Quadratic Optimization

e Linear-quadratic optimization formulation:

1
. . 2_=_-T-
[nin, lldll* := 54" ¢
subj. F—Jg=0

— Define Lagrangian L(g,A) := 2¢7¢ + AT(# — J§), where A € R" is
Lagrangian multiplier.

— Necessary condition: g—‘llf =¢T —XTJ=0and & = (7 — J§)T =0.
— We can then obtain A = (JJT)~1Jg¢ and the optimal solution:
doptimal = JT(JJT)_IT; = J+'f'
e When J drops rank, ¢ will be unbounded. To maintain boundedness of §
while crossing singularity,
doptimal = JT(JIT + a(t)]) 17 = It
i.e., damped least square method with variable damping a(t) > 0, to

ensure boundedness while compromising task (not exact inverse).

oDongjun Lee
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Weighted Pseudo-Inverse Optimal Control

e Linear-quadratic optimization with positive-definite weight W € R™*":

1
. .12 “Trr7r -
mi == W
qeselfl' 1% o7 W4
subj. rF—Jg=0

— Define Lagrangian Lw (g, A) := 247 Wg + AT (# — Jg).
— Necessary condition: g—fi =¢™W—-ATJ=0and & = (—J§)T =0.
— Weighted optimal solution

doptimal = W LJT(JWLJT) " = Jhr

with A = (JW-1JT)~1Jg

— J{,"V is a generalized inverse satisfying only some properties of the
Moore-Penrose pseudo-inverse J+.

e Choose gain w; of W large along undesirable motion direction so that ¢;
will be small (e.g., small motion desired to avoid singularity /obstacle).
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Projected Gradient Control

e Inverse Jacobian relation of redundant manipulator:

G = Jt¢ +[I — J*J]go = 7 + Pgo

where P := I — JT(JJT)~1J € " is null-space projection operator,
and ¢, defines internal motion.

e Projected gradient method: given cost function H(q),

. [eH]" n .
Go := B =: Vg H(q) e R" st.,, ¢=J"7+ PV H(q)
- Note that the gradient action V,H(q) to avoid H(q) < H is projected
into the null-space of J.

- Suppose 7 = 0. Then, o

d_ . OH,  O8H . %
aH(Q) =91 B_q[J 7+ PV, H(q)] 5, @

=VIH[I - JTJIT)VH>0 @

R
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Simulation Example

pseudoinverse q=1Jt reduced gradient
1.5 Start
1.5 Start
1 t f
o5 f 0.5
SN
s Goal 0.5 fixed X ' Coel
obstacle
-1 -
1.8 -1.5

e In this example, vertial motion and collision avoidance are compatible
with each other, thus, can attain both of them at the same time.

e If collision is critical, yet, vertical motion not attainable while avoiding
collision (i.e., not compatible), we want to put higher priority on collision
while tolerating error in vertical motion = task priority control

WITH

= WITHOUT -
\ \J task priority \\ task priority

task 1: follow —

= \

task 2: vertical
third link
* exerpted from
the lecture by Prof.

= / A. De Luca, Spienza
tracking/vertical-holding — Universita Di Roma

oDongjun Lee not compatible &

Task Priority Control
o Consider two tasks 7 = f1(q) and ro = f2(g), with task r; having higher
priority than task rg.

e Want to guarantee task r1 (e.g., collision) while trying to attain task ro
(e-g., tracking) if permissible under task r;.

o Highest priority task 1: for #¢ = Jy4, the optimal solution ¢, is
a = Ji, Jit=Jf(nhJi)™t

e In the next level, we want to achieve task 2 under task 1 constraint, i.e.,
the solution ¢ should have the form of

G2=q+Pv = Jii_’l"i‘ + Pivi, wherev, €R", Pi=[I— J1+J1]
erow(J;) €null(f)
e Then, from ¢ = Jo(g1+P,v1), we have (optimal) solution v; = (JoPp)¥[Fg—
Jagi] = (JoP1)H[7€ — J2J; 7], thus, the combined (optimal) solution upto
this level is

do = G1 + (J2P1) TG — Joda] = J 75 + (Lo P1)T[Pg — JoJi

€ row(Jo) within P, = null(f;)
where we use P1(J2P1 += (J2P1)+. ! ' !

O
oDongjun Lee &)

15



Task Priority Control
e Highest priority task 1: ¢; = J;'#1, which can be also written by

¢1 = argmingeq gl Sy = {argmingeg _gpn |I7¢ — J14l1*}
with S) = {41 + Piwy,v; € R*~™}, where P; ~ null(J;).
o Next level task 2: g2 = g1 + (JoPy) [ — Jagu], which can be written as
o = argmingeg, ||4][%>, Sz =: {argmin,cg, |If2 — J2dl[*}
with Sy = {2 + Pajova,va € R* ™™}, where Pp s = P — (o P1)* o Py

is the subtraction of component of row(J2) from P; = null(J).

JoPr J3Ppp

| f Py
S Pyss

IR ENGINEERINI
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Task Priority Control

e We can then obtain recursive formula with
s = argmingeg, [ldlf*, Sk = {argmingeg, , |Iix — Jedll”}
with Sk—1 = {dk—1 + Pak—1vk—1,Vk—1 € R"} and the nested structure:
SpCSp-1C...C85 CS=R"

Pajk = Pajg—1— (JuPe-1)" JuPak—1, Pa1 = P = null(J;)

-

L

\ J \ J
|

s . In )
\ ) Y

! S Py
Ss3 Py
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