Manipulator Jacobians #### Dongjun Lee (이동준) Department of Mechanical & Aerospace Engineering Seoul National University Dongjun Lee # Spatial Manipulator Jacobian Jsst - Denote EF pose by $g_{st}(\theta) \in SE(3)$, $\theta = (\theta_1, \theta_2, ..., \theta_n)$. Its differential relation between joint rate $\dot{\theta}$ and EF velocities \Rightarrow **Jacobian**. - First, write the spatial velocity of $g_{st}(\theta)$: using the chain rule, $$\hat{V}^s_{st} = \dot{\bar{g}}_{st}(\theta)\bar{g}_{st}^{-1}(\theta) = \sum_{i=1}^n \left(\frac{\partial \bar{g}_{st}}{\partial \theta_i} \dot{\theta}_i \right) \bar{g}_{st}^{-1}(\theta) = \sum_{i=1}^n \left(\frac{\partial \bar{g}_{st}}{\partial \theta_i} \bar{g}_{st}^{-1}(\theta) \right) \dot{\theta}_i$$ where $\frac{\partial \bar{g}_{st}}{\partial \theta_i} = \begin{bmatrix} \frac{\partial R_{st}(\theta)}{\partial \theta_i} & \frac{\partial p_{st}(\theta)}{\partial \theta_i}; & 0 & 0 \end{bmatrix} \in \Re^{4\times4}$ with $\left(\frac{\partial \bar{g}_{st}}{\partial \theta_i} \bar{g}_{st}^{-1}(\theta)\right) \in$ se(3) having the meaning of twist. • We may then further write $$rac{\partial V_{st}^s = J_{st}^s(heta)\dot{ heta} \in \Re^6}{V_{st}^s = J_{st}^s(heta)\dot{ heta} \in \Re^6}$$ where $J_{st}^s(\theta) \in \Re^{6 \times n}$ is spatial manipulator Jacobian: $$J^s_{st}(heta) \coloneqq \left[\; \left(rac{\partial ar{g}_{st}}{\partial heta_1} ar{g}_{st}^{-1}(heta) ight)^ee,, \left(rac{\partial ar{g}_{st}}{\partial heta_n} ar{g}_{st}^{-1}(heta) ight)^ee \; ight]$$ which defines linear relation between $\dot{\theta}$ and V_{st}^s . # Geometric Meaning of Js Recall $$g_{st}(\theta) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_n \theta_n} g_{st}(0)$$ where ξ_i^s is twist of joint *i* at **reference** configuration expressed in $\{S\}$. • The *i*-th column of $J_{st}^s(\theta)$ is then given by $$\begin{split} \hat{\xi}_{i}' &= \frac{\partial \bar{g}_{st}}{\partial \theta_{i}} \bar{g}_{st}^{-1} = e^{\hat{\xi}_{1}\theta_{1}}.....e^{\hat{\xi}_{i-1}\theta_{i-1}} \left(\hat{\xi}_{i}\right) e^{\hat{\xi}_{i}\theta_{i}} e^{\hat{\xi}_{i+1}\theta_{i+1}}....e^{\hat{\xi}_{n}\theta_{n}} \bar{g}_{st}(0) \bar{g}_{st}^{-1} \\ &= e^{\hat{\xi}_{1}\theta_{1}}.....e^{\hat{\xi}_{i-1}\theta_{i-1}} \left(\hat{\xi}_{i}\right) e^{-\hat{\xi}_{i-1}\theta_{i-1}}....e^{-\hat{\xi}_{1}\theta_{1}} \\ &= \bar{g}_{l_{i}(0)l_{i}(\theta_{1},...,\theta_{i-1})}^{s} \left(\hat{\xi}_{i}\right) \bar{g}_{l_{i}(0)l_{i}(\theta_{1},...,\theta_{i-1})}^{s-1} \end{split}$$ • Thus, we can write spatial Jacobian $J^s_{st}(\theta)$ s.t. $$\begin{split} J^s_{st}(\theta) &= \left[\begin{array}{ccc} \xi_1 & \xi_2' & \dots & \xi_n' \end{array}\right] \in \Re^{6 \times n} \\ \xi_i' &= \operatorname{Ad}_{e^{\xi_1}\theta_1 \dots \dots e^{\xi_{i-1}\theta_{i-1}}} \xi_i^s \in \Re^6 \end{split}$$ $\bullet \ \ \text{Here, } \xi_i' = \operatorname{Ad}_{g_{sl_i(\theta_1,...,\theta_{i-1})}} \operatorname{Ad}_{g_{sl_i(0)}^{-1}} \xi_i^s, \text{ i.e, denotes joint } i \text{ motion expressed}$ in $\{S\}$ at the **current** configuration with θ_i -axis moved by $\theta_1,...,\theta_{i-1}$ from the reference configuration (similar to the case of 2-DOF arm). # Body Manipulator Jacobian J_{st}^b • We also define body manipulator Jacobian $J_{st}^b \in \Re^{6 \times n}$ s.t. $$V^b_{st} = \left(ar{g}_{st}^{-1}(heta)\dot{ar{g}}_{st}(heta) ight)^{ee} = J^b_{st}(heta)\dot{ heta}$$ $\bullet \ \ \text{Then, from} \ V^b_{st} = \operatorname{Ad}_{g_{st}(\theta)}^{-1} \, V^s_{st} = \operatorname{Ad}_{g_{st}(\theta)}^{-1} \, J^s_{st}(\theta) \dot{\theta},$ $$J^b_{st}(\theta) = \operatorname{Ad}_{g_{st}(\theta)}^{-1} J^s_{st}$$ thus, we can obtain: given ξ_i^s , $$egin{aligned} J^b_{st}(heta) &= \left[egin{array}{ccc} \xi^\dagger_1 & \xi^\dagger_2 & & \xi^\dagger_n \end{array} ight] \in \Re^{6 imes n} \ \xi^\dagger_i &= \operatorname{Ad}^{-1}_{e^{\hat{\xi}_i heta_i}....e^{\hat{\xi}_n heta_n} ar{g}_{st}(0)} \xi^s_i \in \Re^6 \end{aligned}$$ $$\text{with } \xi_i^\dagger := \operatorname{Ad}_{g_{\mathfrak{s}t}(\theta)}^{-1} \xi_i' = \operatorname{Ad}_{g_{\mathfrak{s}t}(\theta)}^{-1} \operatorname{Ad}_{e^{\hat{\xi}_1\theta_1}.....e^{\hat{\xi}_{i-1}\theta_{i-1}}}^{-1} \xi_i^s = \operatorname{Ad}_{e^{\hat{\xi}_i\theta_i}.....e^{\hat{\xi}_n\theta_n}g_{\mathfrak{s}t}(0)}^{-1} \xi_i$$ • Here, $\xi_i^{\dagger} = \operatorname{Ad}_{g_{st}(\theta)}^{-1} \xi_i' = \operatorname{Ad}_{g_{st(\theta)}^{-1}} \operatorname{Ad}_{g_{sl_i(\theta)}} \operatorname{Ad}_{g_{sl_i(\theta)}^{-1}} \xi_i^s = \operatorname{Ad}_{g_{l_i(\theta)t(\theta)}^{-1}} \operatorname{Ad}_{g_{sl_i(0)}^{-1}} \xi_i^s$ i.e., θ_i -motion expressed in $\{S\}$, mapped to $\{L_i(0)\}$, rotate to current configuration $\{L_i(\theta)\}$, then, mapped to $\{T(\theta)\}$ expressed in $\{T(\theta)\}$ (note: $\mathrm{Ad}_{g_{sl_i(\theta_{1:i-1})}} \xi_i^b = \mathrm{Ad}_{g_{sl_i(\theta_{1:i})}} \xi_i^b = \mathrm{Ad}_{g_{sl_i(\theta_{1:i})}} \xi_i^b$ as they are the same motion expressed in $\{S\}$. cf. Lecture 4, slide p. 11) #### Example 3.8: SCARA - Recall $\xi_i^s = [-w_i \times q_i; w_i]$ for revolute and $\xi_i^s = [v_i; 0]$ for prismatic. - With ξ_i^s defined at **reference** configuration in $\{S\}$, we can then compute J_{st}^s with $\xi_i' = \operatorname{Ad}_{e^{\hat{\xi}_1\theta_1}....e^{\hat{\xi}_{i-1}\theta_{i-1}}} \xi_i^s$. - Or, we may compute J_{st}^s at current configuration via observation: $$J_{st}^s = \left[egin{array}{cccc} \xi_1 & \xi_2' & \xi_3' & \xi_4' \end{array} ight] = \left[egin{array}{cccc} 0 & -w_2 imes q_2 & -w_3 imes q_3 & v_4 \ w_1 & w_2 & w_3 & 0 \end{array} ight]$$ where $$\begin{split} q_1 &= [0;0;0], \quad q_2 = [-l_1 \, \mathbf{s}_{\theta_1}; l_1 \, \mathbf{c}_{\theta_1}; 0] \\ q_3 &= [-l_1 \, \mathbf{s}_{\theta_1} - l_2 \, \mathbf{s}_{\theta_1 + \theta_2}; l_1 \, \mathbf{c}_{\theta_1} + l_2 \, \mathbf{c}_{\theta_1 + \theta_1}; 0] \end{split}$$ with $w_1 = w_2 = w_3 = [0; 0; 1]$ and $v_4 = [0; 0; 1]$. PP ENGL # Further on Js and Jb st - Now, rigidly attach a point q on EF. Then, $\bar{q}_s = \bar{g}_{st}(\theta)\bar{q}_t$. - Velocity of q expressed in $\{S\}$ is then given by $$\bar{v}_{q}^{s} := \dot{\bar{q}}_{s} = \dot{\bar{g}}_{st}\bar{q}_{t} = \dot{\bar{g}}_{st}\bar{g}_{st}^{-1}\bar{q}_{s} = \hat{V}_{st}^{s}\bar{q}_{s} = \left(J_{st}^{s}(\theta)\dot{\theta}\right)^{\wedge}\bar{q}_{s}$$ - \bullet The same velocity of q is expressed in $\{T\}$ by - $\bar{v}_{q}^{b} := \bar{g}_{st}^{-1} \bar{v}_{q}^{s} = \bar{g}_{st}^{-1} \dot{\bar{g}}_{st} \bar{q}_{t} = \hat{V}_{st}^{b} \bar{q}_{t} = \left(J_{st}^{b}(\theta) \dot{\theta} \right)^{\wedge} \bar{q}_{t}$ - If q is origin of $\{T\}$ (i.e., $q_t = 0$), with $g_{st}(\theta) = (R_{st}(\theta), q_s(\theta))$, $$\bar{v}_q^s = \begin{pmatrix} \dot{q}_s \\ 0 \end{pmatrix} = \underbrace{\left[\begin{array}{cc} \hat{w}_s & -\hat{w}_s q_s + \dot{q}_s \\ 0 & 0 \end{array} \right]}_{\hat{V}_{st}^s} \begin{pmatrix} q_s \\ 1 \end{pmatrix} = \begin{pmatrix} R v_q^b \\ 0 \end{pmatrix} = \begin{bmatrix} R & 0 \\ 0 & 0 \end{bmatrix} \underbrace{\left[\begin{array}{cc} \hat{w}_b & R^T \dot{q}_s \\ 0 & 0 \end{array} \right]}_{\hat{V}_{st}^b} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$ • Note that $v_q^s = Rv_q^b \neq v_{st}^s$ of the spatial velocity $V_{st}^s = (v_{st}^s, w_{st}^s)$, although $v_q^b = v_{st}^b$ of the body velocity $V_{st}^b = (v_{st}^b, w_{st}^b)$. #### **Force Kinematics** - Suppose we apply joint torque $\tau \in \Re^n$ to resist body wrench F_b acting through the origin of $\{T\}$. - Then, with no friction, to maintain static equilibrium, the principle of virtual work should hold: $$\delta W = \tau^T \delta \theta + F_b^T \delta g_b = \tau^T \delta \theta + F_b^T J_{st}^b \delta \theta = 0$$ implying that $$au = -(J^b_{st})^T F_b$$ • Also, using $F_b = \operatorname{Ad}_{g_{st}}^T F_s$ and $J_{st}^s = \operatorname{Ad}_{g_{st}} J_{st}^b$ $$\tau = -(J_{st}^s)^T F_s$$ where F_b, F_s are body and spatial wrenches applied at the orign of $\{T\}$. - $\bullet\,$ If J_{st} is square/invertible (other cases later), this relation can be used for: - Given EF wrench F, what joint torque τ is required to resist this F? - Given joint torque τ , what EF wrench will be generated? Dongjun Le #### Example 3.10: SCARA • Force kinematics: $$au = -(J^s_{st})^T F_s$$ where $J^s_{st} \in \Re^{6 \times 4}$ is tall \Rightarrow **deficient** manipulator - ullet Some wrench F resisted by mechanical structure. - Basis vectors of null-space of $(J_{st}^s)^T$: $$F_{n1} = [0;0;0;1;0;0]$$ $$F_{n2} = [0;0;0;0;1;0] \\$$ - Recall screw coordinates: $F=(f;\tau)=(w;-w\times q+hw)\theta$ or $F=(0;w)\theta$. - F_{n1}, F_{n2} are pure-torques along x, y-axes of $\{S\}$, which do not have any image on $\tau \Rightarrow$ balanced by robot's mechanical structure, not by joint torque τ . #### Classical Jacobian: Angular Velocities • Consider composition of rotations $$R_2^0 = R_1^0 R_2^1$$ where R_1^0 represents rotation of $\{1\}$ relative to $\{0\}$ and R_2^1 that of $\{2\}$ relative to $\{1\}$. Combined angular velocity $w_{0,2}^0$ is given by: $$\dot{R}^0_2 = S(w^0_{0,2}) R^0_2, ~~ S(w) := \hat{w}$$ • Yet, we also have: using $S(Rw) = RS(w)R^T$, $$\begin{split} \dot{R}_{2}^{0} &= \dot{R}_{1}^{0}R_{2}^{1} + R_{1}^{0}\dot{R}_{2}^{1} = S(w_{0,1}^{0})R_{1}^{0}R_{2}^{1} + R_{1}^{0}S(w_{1,2}^{1})R_{2}^{1} \\ &= S(w_{0,1}^{0})R_{2}^{0} + R_{1}^{0}S(w_{1,2}^{1})R_{1}^{0T}R_{1}^{0}R_{2}^{1} = S(w_{0,1}^{0})R_{2}^{0} + S(R_{1}^{0}w_{1,2}^{1})R_{2}^{0} \\ &= S(w_{0,1}^{0} + R_{1}^{0}w_{1,2}^{1})R_{2}^{0} = S(w_{0,1}^{0} + w_{1,2}^{0})R_{2}^{0} \end{split}$$ • Thus, $w_{0,2}^0 = w_{0,1}^0 + w_{1,2}^0$. Or, more generally, for $R_n^0 = R_1^0 R_2^1 ... R_n^{n-1}$ $$w_{0,n}^0 = w_{0,1}^0 + w_{1,2}^0 + ... w_{n-1,n}^0, \quad w_{i,i+1}^0 = R_i^0 w_{i,i+1}^i$$ i.e., angular velocities can be simply added if expressed in same frame. $\frac{1}{|x|^2}$ ENDER #### **Angular Velocity Manipulator Jacobian** • Denote pose of EF frame $\{n\}$ relative to base frame $\{0\}$ by $$\bar{g}_{0,n}(q) = \left[\begin{array}{cc} R_n^0(q) & o_n^0(q) \\ 0 & 1 \end{array} \right]$$ $$w_{0,n}^0 = w_{0,1}^0 + R_1^0 w_{1,2}^1 + \ldots + R_{n-1}^0 w_{n-1,n}^{n-1}$$ where, for q_i , $w_{i-1,i}^{i-1} = \dot{q}_i z_{i-1}^{i-1} = \dot{q}_i k$ if revolute, or $w_{i-1,i}^{i-1} = 0$ if prismatic. • Thus, we can define angular velocity Jacobian $J_w(q) \in \Re^{3 \times n}$ s.t., $$\begin{aligned} w_{0,n}^0 &= \phi_1 z_0^0 \dot{q}_1 + \phi_2 R_1^0 z_1^1 \dot{q}_2 + \dots + \phi_n R_{n-1}^0 z_{n-1}^{n-1} \dot{q}_n \\ &= \left[\begin{array}{ccc} \phi_1 z_0^0 & \phi_2 z_1^0 & \dots & \phi_n z_{n-1}^0 \end{array} \right] \dot{q} = J_w(q) \dot{q} \end{aligned}$$ where $\phi_i = 1$ if q_i is revolute; $\phi_i = 0$ if prismatic. ENGIN #### **Linear Velocity Manipulator Jacobian** • Linear velocity of origin of EF $\{n\}$ -frame is given by $$\begin{split} v^0_{0,n} &:= \dot{o}^0_n(q) = \frac{\partial o^0_n}{\partial q_1} \dot{q}_1 + \frac{\partial o^0_n}{\partial q_2} \dot{q}_2 + \ldots + \frac{\partial o^0_n}{\partial q_n} \dot{q}_n \\ &= \left[\begin{array}{cc} \frac{\partial o^0_n}{\partial q_1} & \frac{\partial o^0_n}{\partial q_2} & \ldots & \frac{\partial o^0_n}{\partial q_n} \end{array} \right] \dot{q} = J_v(q) \dot{q} \end{split}$$ where $J_v(q) \in \Re^{3 \times n}$ is linear velocity Jacobian. - Can obtain $J_{vi} = \frac{\partial o_n^0}{\partial q_i}$ by seeing $v_{0,n}^0$ with only \dot{q}_i and all other joints fixed. - \bullet Then, we have, if *i*-th joint is revolute, $$v_{0,n}^0 = z_{i-1}^0 \times (o_n^0 - o_{i-1}^0)\dot{q}_i$$ or if revolute $$v_{0,n}^0 = z_{i-1}^0 \dot{q}_i$$ $$J_{vi}(q) = egin{cases} z_{i-1}^0 imes (o_n^0 - o_{i-1}^0) & ext{if } q_i ext{ is revolute} \ z_{i-1}^0 & ext{if } q_i ext{ is prismatic} \end{cases}$$ Dongjun Le #### Manipulator Jacobian - Classical • Combining this, we have classical manipulator Jacobian $J(q) \in \Re^{6 \times n}$: $$\xi = \begin{pmatrix} v_{0,n}^0 \\ w_{0,n}^0 \end{pmatrix} = \begin{bmatrix} J_v(q) \\ J_w(q) \end{bmatrix} \dot{q} =: J(q)\dot{q}$$ where $$J_{w}(q)=\left[egin{array}{cccc} \phi_{1}z_{0}^{0} & \phi_{2}z_{1}^{0} & ... & \phi_{n}z_{n-1}^{0} \end{array} ight]$$ and $$J_{vi}(q) = egin{cases} z_{i-1}^0 imes (o_n^0 - o_{i-1}^0) & ext{if } q_i ext{ is revolute} \ z_{i-1}^0 & ext{if } q_i ext{ is prismatic} \end{cases}$$ - Note ξ differs from spatial velocity $V^s_{st}=(v^s_{st},w^s_{st})$ with $v^0_{0,n}\neq v^s_{st}$ although $w^0_{0,n}=w^s_{st}$. - This ξ is the same as body velocity $V^b_{st}=(v^b_{st},w^b_{st})$ expressed in $\{0\}$ with $v^0_{0,n}=R_{st}v^b_{st}$ and $w^0_{0,n}=R_{st}w^b_{st}$. ### Example: S4.8 SCARA • Angular velocity Jacobian: $$J_{w1} = [0; 0; 1], \quad J_{w2} = [0; 0; 1]$$ $J_{w3} = [0; 0; 0], \quad J_{w4} = [0; 0; -1]$ • Linear velocity Jacobian: $$J_{v1} = [0;0;1] \times o_4^0 = [-a_1 s_1 - a_2 s_{12}; a_1 c_1 + a_2 c_{12}; 0]$$ $$J_{v2} = [0;0;1] \times [a_2 c_{12}; a_2 s_{12}; -d_3 - d_4] = [-a_2 s_{12}; a_2 c_{12}; 0]$$ $$J_{v3} = [0;0;-1], \quad J_{v4} = [0;0;0]$$ #### **Singularity** • Jacobian relations: $$V_{st}^s = J_{st}^s(\theta)\dot{\theta}, \quad \tau = (J_{st}^s(\theta))^T F_s$$ - We say configuration θ is **singular** if its Jacobian $J_{st}^s(\theta)$ drops rank. - EF motion in certain direction not generatable (e.g., gimbal lock). - Very large $\dot{\theta}$ necessary to generate EF motion (internal instability). - EF force in certain direction resisted by mechanical structure. - Recall $g_{st}(\theta)$ is global parameterization of SE(3). Instead, if we use local parameterization $f(\theta) = (x, y, z, p, r, y) \in \Re^6$, we have analytical Jacobian J_a^s : $$J_a^s(\theta) = \frac{\partial f}{\partial \theta} \in \Re^{6 \times n}$$ with $$\operatorname{singularity}(J_a^s) = \operatorname{singularity}(J_{st}^s) \ \bigcup \ \operatorname{singularity}(f)$$ i.e., encompassing manipulator Jacobian singularity (due to robot design) and local parameterization singularity (due to map f). Dongjun Le ENGINEERIN COLLIGI OF INFINITE MICOLANDI ON LENGTH #### Manipulability Manipulability measures how far a configuration is away from singularity • For $\xi = J(\theta)\dot{\theta}$, $$\mu_1(\theta) = \sigma_{\min}(J(\theta)) \ge 0$$ where $$\sigma_{\min}(A) := \min_{||x||_2 = 1} ||Ax||_2 =: ||A||_2$$ is minimum singular value. This μ_1 characterizes how "far" a configuration is from singularity; or minimum possible magnitude of ξ given unit \dot{q} , i.e., $$\sigma_{\min}^2(J)||\dot{q}||^2 \le \xi^T \xi = \dot{q}^T J^T J \dot{q} \le \sigma_{\max}^2(J)||\dot{q}||^2$$ $0 \le \mu_2(\theta) = \frac{\sigma_{\min}(J(\theta))}{\sigma_{\max}(J(\theta))} \le 1$ This μ_2 not only characterizes the closeness to the singularity, but also directionality as well. Ideally, we want $\mu_2(\theta) = 1$. $$\mu_3(\theta) = |\det J(\theta)| = \sigma_1 \sigma_2 ... \sigma_n$$ which characterizes the volume of the velocity ellipsoid. ongjun Lee ENGINEER #### Non-Square Jacobian - In general, $\dim(\xi) \neq \dim(\dot{q})$, i.e., EF motion DOF of interest is not the same as joint variable DOF. - If $\dim(\xi) < \dim(\dot{q}) \Rightarrow$ redundant manipulator. - If $\dim(\xi) > \dim(\dot{q}) \Rightarrow$ deficient manipulator. - Even if $\dim(\xi) \neq \dim(\dot{q})$, we still have $$\xi = J(q)\dot{q}, \quad J(q) \in \Re^{m \times n}$$ i.e., all possible workspace velocity $\xi \in \Re^m$ is the one generatable (or permissible) by some joint motion $\dot{q} \in \Re^n$. • Given $\dot{q} \Rightarrow \xi$ uniquely defined; given $\xi \Rightarrow \dot{q}$ may not be unique. ENGINEERING #### Redundant Manipulator: Velocity Kinematics • For redundant manipulator, we have $$\xi = J(q)\dot{q}$$, with $m < n$ and "fat" J . • We can then decompose $\dot{q} \in \Re^n$ in its orthogonal components s.t., $$\dot{q} = \dot{q}_{\text{row}(J)} + \dot{q}_{\text{null}(J)} = J^T \alpha + \beta = \underbrace{J^T (JJ^T)^{-1} J \dot{q}}_{\in \text{ row}(J)} + \underbrace{[I - J^T (JJ^T)^{-1} J] \dot{q}}_{\in \text{ null}(J)}$$ - $-\dot{q}_{\text{row}(J)} \in \text{row}(J)$ is component of \dot{q} producing **apparent velocity** ξ . - $-\dot{q}_{\mathrm{null}(J)} \in \mathrm{null}(J) = \sim \mathrm{col}(J^T)$ have no image to ξ : internal motion. - This also shows that we can generate desired ξ by $$\dot{q} = J^T (JJ^T)^{-1} \xi + [I - J^T (JJ^T)^{-1} J] b$$ - $-b \in \Re^n$ can be any arbitrary vector. - $-J^T(JJ^T)^{-1}\xi$ is **optimal** solution of \dot{q} to produce ξ (minimum $||\dot{q}||$). #### **Redundant Manipulator: Force Statics** • To maintain static equilibrium, princple of virtual work should hold: $$\delta W = \tau^T \delta q + F^T \delta x = \tau^T \delta q + F^T J \delta q = 0$$ for any $\delta q \in \Re^n$ given F with $\dot{x} = \xi = J(q)\dot{q}$, which then implies $$au = -J^T(q)F$$ • We can also similarity decompose joint torque $\tau \in \Re^n$ s.t. $$\begin{split} \tau &= \tau_{\text{row}(J)} + \tau_{\text{null}(J)} = \underbrace{J^T(JJ^T)^{-1}J\tau}_{\in \text{row}(J)} + \underbrace{[I - J^T(JJ^T)^{-1}J]\tau}_{\in \text{null}(J)} \\ &= -J^TF + [I - J^T(JJ^T)^{-1}J]b \end{split}$$ which will not maintain static equilibrium if $b \neq 0$ with $\delta W \neq 0 \ \forall \delta q \in \Re^n \Rightarrow$ not static problem any more, but dynamics/control problem. • Lagrange-D'Alembert principle with generalized force: $$au_{ ext{generalized}}^T \delta q = au_{ ext{joint}}^T \delta q + F_{ ext{ext}}^T \delta x \quad \Rightarrow \quad au_{ ext{generalized}} = au_{ ext{joint}} + J^T(q) F_{ ext{ext}}$$ #### Example: Redundant Manipulator - Only Cartesian velocity and force are considered. - Jacobian relation given by $$J = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 1 & 0 \end{array} \right]$$ • Apparent motion (e.g., $\xi = [1; 0]$); internal motion (i.e., $\dot{q} = [1; -1; 1]$). $$\dot{q} = \frac{1}{3} \left[\begin{array}{ccc} -1 & 2 \\ 1 & 1 \\ 2 & -1 \end{array} \right] \xi + \frac{1}{3} \left[\begin{array}{cccc} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{array} \right] b$$ • Static balance torque (e.g., F = [1;0] w/ $\tau = [0;1;1]$); motion-inducing torque in null(J) (e.g., $\tau = [1;-1;1]$): $$\tau = -J^T F + \frac{1}{3} \left[\begin{array}{ccc} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{array} \right] b$$ Redundant manipulator force control ⇒ hybrid force/position control or impedance/admittance control. Dongjun Lee MIN ENGINEERIN #### **Deficient Manipulator: Velocity Kinematics** • For deficient manipulator, we have $$\xi = J(q)\dot{q}, \quad \text{ with } m > n \text{ and "tall" } J.$$ - ξ must be in col(J), i.e., ξ should be **permissible** by some motion of \dot{q} . - That means, in the orthogonal decomposition of ξ s.t. $$\xi = \xi_{\operatorname{col}(J)} + \xi_{\sim \operatorname{col}(J)} = \underbrace{J(J^TJ)^{-1}J^T\xi}_{\in \operatorname{col}(J)} + \underbrace{[I - J(J^TJ)^{-1}J^T]\xi}_{\in \sim \operatorname{col}(J) = \operatorname{null}(J^T)}$$ - $-\xi_{\sim \text{col}(J)}$: infeasible velocity (e.g. velocity normal to the plane of planar robots), thus, should be zero. - $\xi_{\operatorname{col}(J)}$: feasible/permissible by some motion of \dot{q} . - By equating this with $\xi = J\dot{q}$, we have $$\dot{q} = (J^T J)^{-1} J^T \xi.$$ i.e., \dot{q} to produce the desired $\xi \in \operatorname{col}(J)$. #### **Deficient Manipulator: Force Statics** • To maintain static equilibrium, from principle of virtual work: $$au = -J^T(q)F$$ • We can decompose workspace force $F \in \mathbb{R}^m$ s.t. $$F = F_{\operatorname{col}(J)} + F_{\operatorname{\sim col}(J)} = \underbrace{J(J^T J)^{-1} J^T F}_{\in \operatorname{col}(J)} + \underbrace{[I - J(J^T J)^{-1} J^T] F}_{\in \operatorname{\sim col}(J)}$$ - $F_{\text{col}(J)}$ needs to be sustained by $\tau = -J^T F = -J^T F_{\text{col}(J)}$ - $-F_{\sim \operatorname{col}(J)}$ supported by mechanical structure of robot. - $-\xi_{\sim \text{col}(J)} = 0$ (infeasible velocity), although $F_{\sim \text{col}(J)} \neq 0$ in general. - If F can resist any τ to maintain static posture of manipulator (i.e., $\ddot{q} = \dot{q} = 0$), the joint torque τ will generate external wrench $$F = -J(J^TJ)^{-1} au$$ in the "actuated" direction col(J); cannot generate workspace force in "unactuated" direction $\sim \operatorname{col}(J)$ though. #### **Example: Deficient Manipulator** - 2-DOF planar robot, yet, workspace of interest is 3D Cartesian motion. - Jacobian relation given by Apparent motion (e.g., $\xi = [1;1;0]$) and infeasible motion (e.g., $\xi =$ [0;0;1] $J=\left[egin{array}{ccc} -1 & 0 \ 1 & 1 \ 0 & 0 \end{array} ight]$ $$\dot{q} = \left[\begin{array}{ccc} -1 & 0 & 0 \\ 1 & 1 & 0 \end{array} \right] \xi$$ • Static balance torque (e.g., F = [1;1;0] w/ $\tau = [0;-1]$); structurallybalanced force (e.g., F = [0; 0; 1]); and force generation in col(J) (e.g., $\tau = [1; 1] \text{ w}/F = [0; 1; 0]$: $$au=-J^TF,\quad F=-\left[egin{array}{ccc} -1 & 1 \ 0 & 1 \ 0 & 0 \end{array} ight] au$$ ENGIN #### **Redundant Robots** • Consider a *n*-DOF robot with $q \in \mathcal{Q}$. Suppose we can define a task by $r = f(q) \in \mathbb{R}^m$, where $f: \mathcal{Q}^n \to \mathcal{W}^m$ - Robot is kinematically redundant if n > m. - Redundancy can be utilized to: - Avoid collision with obstacle and self. - Avoid singularity and maintain manipulability. - Respect angle, velocity, acceleration limits. - Minimize energy consumption with minimum motion. Dongjun Lee ENGINEERIN #### **Velocity Level Redundancy Resolution** • Consider a *n*-DOF robot with $q \in \mathcal{Q}$. Suppose we can define a task by $r = f(q) \in \mathbb{R}^m$, where $f: \mathcal{Q}^n \to \mathcal{W}^m$ - Typically, aim to achieve the main task $r(t) \to r_d(t)$, while optimizing cerain other requirements via internal motion (e.g., manipulability $\mu(q)$, collision distance $\varphi(q)$, etc.). - Redundancy resolution in **configuration kinematics** level: given $r_d(t:t+T)$ and $H(q,\dot{q})$, find $q_d(t:t+T)$ s.t. $r_d(\tau) = f(q_d(\tau))$ with $H(q_d, \dot{q}_d) \ge \underline{H}$, $\forall \tau \in [t, t+T]$ • Redundancy resolution in **velocity kinematics** level: for Jacobian relation, $$\dot{r} = \frac{\partial f}{\partial q} \dot{q} = J(q) \dot{q}, \quad J(q) \in \Re^{m \times n}$$ find \dot{q}_d s.t., $$\dot{r}_d(t) = J(q(t))\dot{q}_d(t)$$ with $\dot{H}(t) \ge 0$ if $H(t^-) = \underline{H}$ Dongjun Lee ENGINEERING #### **Pseudo-Inverse Optimal Control** • Jacobian relation: $$\dot{r} = rac{\partial f}{\partial q}\dot{q} = J(q)\dot{q}, \quad J(q) \in \Re^{m imes n}$$ • Inverse Jacobian relation: for "fat" J(q), $$\dot{q} = J^T (JJ^T)^{-1} \dot{r} + [I - J^T (JJ^T)^{-1} J] b$$ where $b \in \Re^n$ can be arbitrary. • The optimal solution is then $$\dot{q} = J^+ \dot{r}, \quad J^+ := J^T (JJ^T)^{-1}$$ where $J^+(q) \in \Re^{n \times m}$ is Moore-Penrose pseudo-inverse s.t., $$JJ^{+}J = J, \quad J^{+}JJ^{+} = J^{+}, \quad (JJ^{+})^{T} = JJ^{+}, \quad (J^{+}J)^{T} = J^{+}J^{T}$$ • Given any $J \in \Re^{m \times n}$, there always exists unique pseudo-inverse. ENGIN #### **Linear-Quadratic Optimization** • Linear-quadratic optimization formulation: $||\dot{q}||^2 \coloneqq rac{1}{2}\dot{q}^T\dot{q}$ subj. $\dot{r} - J\dot{q} = 0$ - Define Lagrangian $L(\dot{q},\lambda):=\frac{1}{2}\dot{q}^T\dot{q}+\lambda^T(\dot{r}-J\dot{q}),$ where $\lambda\in\Re^n$ is Lagrangian multiplier. - Necessary condition: $\frac{\partial L}{\partial \dot{q}} = \dot{q}^T \lambda^T J = 0$ and $\frac{\partial L}{\partial \lambda} = (\dot{r} J\dot{q})^T = 0$. - We can then obtain $\lambda = (JJ^T)^{-1}J\dot{q}$ and the optimal solution: $$\dot{q}_{ ext{optimal}} = J^T (JJ^T)^{-1} \dot{r} = J^+ \dot{r}$$ • When J drops rank, \dot{q} will be unbounded. To maintain boundedness of \dot{q} while crossing singularity, $$\dot{q}_{ ext{optimal}} = J^T (JJ^T + lpha(t)I)^{-1}\dot{r} = J^+\dot{r}$$ i.e., damped least square method with variable damping $\alpha(t) > 0$, to ensure boundedness while compromising task (not exact inverse). #### **Weighted Pseudo-Inverse Optimal Control** • Linear-quadratic optimization with positive-definite weight $W \in \Re^{n \times n}$: $$\min_{\dot{q}\in\Re^n} \qquad \qquad ||\dot{q}||_W^2 := rac{1}{2}\dot{q}^TW\dot{q}$$ subj. $\dot{r}-J\dot{q}=0$ - Define Lagrangian $L_W(\dot{q},\lambda) := \frac{1}{2} \dot{q}^T W \dot{q} + \lambda^T (\dot{r} J \dot{q}).$ - Necessary condition: $\frac{\partial L}{\partial \dot{q}} = \dot{q}^T W \lambda^T J = 0$ and $\frac{\partial L}{\partial \lambda} = (\dot{r} J\dot{q})^T = 0$. - Weighted optimal solution $$\dot{q}_{ ext{optimal}} = W^{-1}J^T(JW^{-1}J^T)^{-1}\dot{r} = J_W^+\dot{r}$$ with $$\lambda = (JW^{-1}J^T)^{-1}J\dot{q}$$ - J_W^+ is a **generalized inverse** satisfying only some properties of the Moore-Penrose pseudo-inverse J^+ . - Choose gain w_i of W large along undesirable motion direction so that \dot{q}_i will be small (e.g., small motion desired to avoid singularity/obstacle). Dongjun Lee MAN ENGINEER #### **Projected Gradient Control** • Inverse Jacobian relation of redundant manipulator: $$\dot{q} = J^{+}\dot{r} + [I - J^{+}J]\dot{q}_{o} = J^{+}\dot{r} + P\dot{q}_{o}$$ where $P := I - J^T (JJ^T)^{-1} J \in \Re^{n \times n}$ is null-space projection operator, and \dot{q}_0 defines internal motion. • Projected gradient method: given cost function H(q), $$\dot{q}_o := \left[rac{\partial H}{\partial q} ight]^T =: abla_q H(q) \in \Re^n \quad ext{s.t.}, \quad \dot{q} = J^+ \dot{r} + P abla_q H(q)$$ - Note that the gradient action $\nabla_q H(q)$ to avoid $H(q) < \underline{H}$ is **projected** into the null-space of J. - Suppose $\dot{r} = 0$. Then, $$\begin{split} \frac{d}{dt}H(q) &= \frac{\partial H}{\partial q}\dot{q} = \frac{\partial H}{\partial q}[J^+\dot{r} + P\nabla_q H(q)] \\ &= \nabla_q^T H[I - J^T (JJ^T)^{-1} J]\nabla_q H \geq 0 \end{split}$$ #### **Simulation Example** - In this example, vertial motion and collision avoidance are compatible with each other, thus, can attain both of them at the same time. - If collision is critical, yet, vertical motion not attainable while avoiding collision (i.e., not compatible), we want to put higher priority on collision while tolerating error in vertical motion \Rightarrow task priority control * exerpted from the lecture by Prof. A. De Luca, Spienza Universita Di Roma ENGINEER #### **Task Priority Control** - Consider two tasks $r_1 = f_1(q)$ and $r_2 = f_2(q)$, with task r_1 having higher priority than task r_2 . - Want to guarantee task r_1 (e.g., collision) while trying to attain task r_2 (e.g., tracking) if permissible under task r_1 . - Highest priority task 1: for $\dot{r}_1^d = J_1 \dot{q}$, the optimal solution \dot{q}_1 is $$\dot{q}_1 = J_1^+ \dot{r}_1^d, \ \ J_1^+ = J_1^T (J_1 J_1^T)^{-1}$$ \bullet In the next level, we want to achieve task 2 under task 1 constraint, i.e., the solution \dot{q} should have the form of $$\dot{q}_2 = \dot{q}_1 + P_1 v_1 = J_1^+ \dot{r}_1^d + P_1 v_1, \quad ext{where } v_1 \in \Re^n, \;\; P_1 = [I - J_1^+ J_1]$$ • Then, from $\dot{r}_2^d = J_2(\dot{q}_1 + P_1 v_1)$, we have (optimal) solution $v_1 = (J_2 P_1)^+ [\dot{r}_2^d - J_2 \dot{q}_1] = (J_2 P_1)^+ [\dot{r}_2^d - J_2 J_1^+ \dot{r}_1^d]$, thus, the combined (optimal) solution upto this level is $$\dot{q}_2 = \dot{q}_1 + (J_2 P_1)^+ [\dot{r}_2^d - J_2 \dot{q}_1] = J_1^+ \dot{r}_1^d + (J_2 P_1)^+ [\dot{r}_2^d - J_2 J_1^+ \dot{r}_1^d]$$ where we use $P_1(J_2P_1)^+ = (J_2P_1)^+$. $\in \operatorname{row}(J_2)$ within $P_1 = \operatorname{null}(J_1)$ ENGIN #### **Task Priority Control** • Highest priority task 1: $\dot{q}_1 = J_1^+ \dot{r}_1$, which can be also written by $$\dot{q}_1 = \operatorname{argmin}_{\dot{q} \in S_1} ||\dot{q}||^2, \quad S_1 =: \{ \operatorname{argmin}_{\dot{q} \in S_o = \Re^n} ||\dot{r}_1^d - J_1 \dot{q}||^2 \}$$ with $$S_1 = \{\dot{q}_1 + P_1v_1, v_1 \in \Re^{n-n_1}\}$$, where $P_1 \approx \text{null}(J_1)$. • Next level task 2: $\dot{q}_2 = \dot{q}_1 + (J_2 P_1)^+ [\dot{r}_2^d - J_2 \dot{q}_1]$, which can be written as $$\dot{q}_2 = \operatorname{argmin}_{\dot{q} \in S_2} ||\dot{q}||^2, \quad S_2 =: \{ \operatorname{argmin}_{\dot{q} \in S_1} ||\dot{r}_2 - J_2 \dot{q}||^2 \}$$ with $S_2 = \{\dot{q}_2 + \dot{P}_{A,2}v_2, v_2 \in \Re^{n-n_1-n_2}\}$, where $P_{A,2} = P_1 - (J_2P_1)^+ J_2P_1$ is the subtraction of component of $\text{row}(J_2)$ from $P_1 = \text{null}(J_1)$. ENGINEERI # **Task Priority Control** • We can then obtain recursive formula with $$\dot{q}_k = \operatorname{argmin}_{\dot{q} \in S_k} ||\dot{q}||^2, \quad S_k =: \{\operatorname{argmin}_{\dot{q} \in S_{k-1}} ||\dot{r}_k - J_k \dot{q}||^2\}$$ with $S_{k-1} = \{\dot{q}_{k-1} + P_{A,k-1}v_{k-1}, v_{k-1} \in \Re^n\}$ and the nested structure: $$S_p \subset S_{p-1} \subset \ldots \subset S_1 \subset S_o = \Re^n$$ $$P_{A,k} = P_{A,k-1} - (J_k P_{k-1})^+ J_k P_{A,k-1}, P_{A,1} = P_1 = \text{null}(J_1)$$