CHAPTER 4. SYSTEMS OF ODESs.
PHASE PLANE.
QUALITATIVE METHODS
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4.1 Systems of ODEs as Models in Engineering Applications

M EX. 1A mixing problem involving a single tank is modeled by a single

ODE. The model will be a system of two first-order ODEs.

Tank T, and T, contain initially 100 gal of water each.

= In T, the water is pure, whereas 150 |b of fertilizer (H| =) are

dissolved in T,.

: di.
d 2 gal/min
( ~e—
! 2 gal/min 3
( —
\_J <

System of tanks

= By circulating liquid at a rate of 2 gal/min and stirring the amounts of

fertilizer y,(t) in T, and y,(t) in T, change with time t.

= How long should we let the liquid circulate so that T, will contain at

least half as much fertilizer as there will be left in T, ? .
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4.1 Systems of ODEs as Models in Engineering Applications

2 )
——v. Ib /min
100 7?

: T
@ 2 gal/min [N
g . -— g .
y, : fertilizer in Tank 1 y, : fertilizer in Tank 2
2 gal/min I
— 100 gal
2 : y, |b
—y, Ib /min
100 "

Step 1 Setting up the model

y,'= Inflow/min - Outflow / min =i0y2—% Y, (Tank T,) = y,'=-0.02y,+0.02y,

, . : 2 2 ,
y,'= Inflow/min - Outflow / min =100 100 ¥ (Tank T,) = y,'=0.02y,-0.02y,

y'=Ay, Az{

-0.02 0.02
0.02 -0.02
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4.1 Systems of ODEs as Models in Engineering Applications

Step 2 General solution

Idea: We try an exponential function of ¢, y'=Ay = Axe”

y=xe" = |y'=ixe"=Ax¢" = Ax=Ix =

look for eigenvalues and eigenvectors of A

Characteristic equation:

-0.02-4  0.02
002 -0.02-4

1 1
Lo A=0, x<1>=H , A, =—0.04, xm{ J

det(A—/II):‘ ‘:(—o.oz—ﬂb)z—o.oz2 = 1(2+0.04)=0

Apply the superposition principle

1 1 .
y =cxPet +¢,xPe =, m +C, [ }e"'o‘“ (c, and c, are arbitrary constants)
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4.1 Systems of ODEs as Models in Engineering Applications

Step 3 Use of initial conditions

Initial conditions: y,(0)=0, y,(0)=150

1 1 C, +C, 0 1 1| oo
y(0)=c| . [+¢C, = = = ¢=75 ¢,=-715 = y=75 |-75 |e~
1| -1 |¢-c,| |150 1 -1

Step 4 Answer

T, contains half the fertilizer amount of T, if it contains 1/3 of the total amount,
that is, 50lb.

B 004t _ oom 1 _1In3 —
y,=75-75e""" =50 = e =3 = = Alo4—27.5(abouthalfan hour)

y(t)

150
100 \\y%(f)

| —
I5———-— B e T —e———=

| _,_/Jd_
50 |- X0
|
|
|
0 | |
0 27.5 50 100 ¢
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4.1 Systems of ODEs as Models in Engineering Applications

» Conversion of an nth-Order ODE to a System

(nAl D288 A9 17 AEYO|ZSEAH229 HEh

= Theorem 1 Conversion of an ODE

An nth-order ODE y" = F(t, VY y(”‘l)) can be converted to a system of
n first-order ODEs by setting Y, =V, ¥, =Y’ Yo=y" -y, =y"".

This system is of the form

Y1'ZYZ
yz'ZY3
yn—llzyn

Y, =F(tL Y0 Yo Ys)
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4.2 Basic Theory of Systems of ODEs. Wronskian

<+ First-order systems (14| ¢ & &0/ 284N
Yo' = (6 Y Y, % fl
y2':f2(t1y11"';yn) Y= |, f=| :

. yn fn

ey Y= (1Y)

an: fn (t,yl,...’yn)
For example, if n = 1,y," = fi(t, y) ory' = f(t, y) (First ODE)

+%» Solution on some intervala<t<b

: A set of n differentiable functions Y, =h(t), - vy,=h(t).

In vector form, y=h(t); where h=[h ---h.]" is “solution vector” (column vector)

*» Initial condition: yl(to)=K1, yz(t0)=K2, yn(to):Kn
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4.2 Basic Theory of Systems of ODEs. Wronskian

® Theorem 1 Existence and Uniqueness Theorem

Let f,, ---f, be continuous functions having continuous partial derivatives of,/0y,,
---, of /oy, , ---, of /oy, in some domain R of ty,Yy,Y, -space containing the point (t,,

Ky - Kp).

Then the first-order system has a solution on some interval t,—a <t<t,+a

satisfying the initial condition, and this solution is unique.

. . L Lj ona
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4.2 Basic Theory of Systems of ODEs. Wronskian

< Linear Systems (M HE 0| Z WA

= Linear System ‘aﬂ a ] 'yl' 'gl'
A= i i y=| | g=]
_anl ann_ _yn_ _92_

V' =2y (U) Yo+, (1), +0,(1)
- = y':Ay-I-g
Vo' =8 (t) Yy oy (1) Y, +9,(t)

= Homogeneous: Y =Ay
= Nonhomogeneous: y'=Ay+(, g=#0

. . L Lj ona
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4.2 Basic Theory of Systems of ODEs. Wronskian

A=| 1 o i ly=| i, 0= y'=Ay+g

anl ann yn gz

% Theorem 2 Existence and Uniqueness in the Linear Case
Let the a;’s and g;’s be continuous functions of t on an open interval a <t<p

containing the point t = t,.

Then the linear system has a solution y(t) on this interval satisfying initial

condition, and this solution is unique.

< Theorem 3 Superposition Principle (& 2| & 2|) or Linearity Principle

If y and y®@ are solutions of the homogeneous linear system on some interval,

so is any linear combination y = c,y® + c,y®,
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4.2 Basic Theory of Systems of ODEs. Wronskian

< Basis (7|®X). General Solution. Wronskian

= Basis (7|*]) or Fundamental System (7| 24|) of solutions of the homogeneous

system on some interval J: = A linearly independent set of n solutions y(*) --. y(n

of the homogeneous system on J

= General Solution of the homogeneous system on J

: A corresponding linear combination

y=cy”+ —4c, y" (c, -, ¢, arbitrary constants)

[ 57
[0
'
[SPE'
[~ 9
-

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods niv.



4.2 Basic Theory of Systems of ODEs. Wronskian

% Wronskian of y(") --- y(M: The determinantof Y Y = [y(l), y(“)]

Indices for basis

@0
© @ (n)

W(ya), . y(n)): Yz; Yz: y2:
y Oy @ y ("

<+ Fundamental Matrix (7|22 3): An n % n matrix whose columns are

n solutions

(S
b iy
ISE3 4
=
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4.3 Constant-Coefficient Systems. Phase Plane Method

% y'"=Ay: Homogeneous linear system under discussion has constant coefficients

where n xn matrix A=|a, | has entries not depending on ¢

ldea: Try Yy = xe™

= y'= @ = Ay = Axe]' = AX =X (Eigenvalue Problem)

*» Theorem 1 General Solution

= |f the constant matrix A in the homogeneous linear system has a linearly

independent set of n eigenvectors,
= then the corresponding solutions y\b, --- y™ form a basis of solutions, and

= the corresponding general solution is Y = C1X(1)eﬂit +eeet CnX(n)ei”t.
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4.3 Constant-Coefficient Systems. Phase Plane Method

Proof
Let y(l) — X(l)eﬂit,“.’ y(n) — X(n)eﬂnt
» Wronskian of y(), ---, y: The determinantof Y Y =[y®, -, y™ ]

x Uity Dt x, et
2 n
W (y<1>, | y<”>) et x Pty Ve
Xn(l)eﬂit Xn(z)eﬂfzt e Xn(n)e/?“nt
O x® X,
2 n
TP LR AL
£0 : - :
x @ x@ x ()
# 0 since its columns are the n linearly independent eigenvectors
(D) _ @it (M) _ (M) at G | lution
yo=xVer, ...,y =x"e eneral solu i
=y =cxel +... 4 ¢ xVe

are the n linearly independent eigenvectors.
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4.3 Phase Plane Method (& H%). Pendulum Example

Ex Free Undamped Pendulum, Linearization

A pendulum consists of a body of mass m (the bob, 7]5*) and a rod of
length L. Assume that the mass of the rod and air resistance are negligible. —

Step 1 Setting up the mathematical model

0: the angular displacement
mg: the weight of the bob
A restoring force tangent to the curve of motion: mgsin®

= the force of acceleration: mL#” (LO": acceleration)

. mLO" +mgsind=0 —> 0" +ksind=0 (k:%j

Step 2 Linearization

) —pn -o|XZt r_
o +ksing=0 Yi=0 12TA Y1=Yo
> "
0" +k0 =0 ETvs V. =0 =—ko = —ky
Yo = 0" . ZII- = 2 !
Pendulum * Taylor series expansion for sin(x) ) * Original problem (Second ODE)
in(x) 3Ly i (-1) 2 o 5 |
sinfx) = x— —+'———=+ - = PSSR & + — SRS St/
Engineering Math, 4. Systems of ODEs. Phase Plane. 3! 5! ! n= 0(_” 1 ) yl yl LJ . 15




4.3 Phase Plane Method. Pendulum Example

Step 3 Solve (k=g/L=4 for simplicity)

Y=Y, Y, 0
y, =0"=—40=-4y, = {yj { 4 0

Characteristic equation:  det(A-Al)= ‘

Eigenvalues and eigenvectors:

AzZi:{ 2i 1

General solution:

1 2it 1 =2it
=c| e +c et =

/)
y1|: Yo, y2':_4y1

N

= Ay, =YL,

-4 1 )
=A1"+4=0
A

Ll el
oL a e

2it —2it
y, =ce” +c,e

y, = 2ice’" —2ic,e™"

y = xe”

O l y’ZZXGM
}{ } > Y =Ay= {4 O}Y = Axe™

\
Lo
II

II|

\

i

Trajectories (Center)

= 2y’ +% y,~ = const.
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4.3 Phase Plane Method. Pendulum Example

Step 4 Interpretation

7/

. i o i Lj Nationa
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4.3 Phase Plane Method. Pendulum Example
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4.3 Phase Plane Method. Pendulum Example

@
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4.3 Phase Plane Method. Mass on a Spring Example

Ex2 Free Motions of a Mass on a Spring

my” +cy’'+ky =0 — y” =—(k/m)y—(c/m)y’

Step 1 Matrix form
m [
y1:y:tﬂ‘cl)'| yZ:y’-f_-l\—E
Y{:yz
y, =y =—(k/m)y—(c/m)y’
=—(k/m)y, —(c/m)y,
! 1 —_
e ° 1 . k,e,m>0
y,| |=k/m —c/m]y, |
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4.3 Phase Plane Method. Mass on a Spring Example

Step 2 Solve - Undamped case: ¢c=0
yi] [ 0 1 Ty, ::){yi}{ 0 1}{%}:} y,:Ay{ 0 1}/
{y;}{—k/m —C/m}{yj Y| [—kim O]y, —k/m 0

“The same as the free undamped pendulum problem” |

Equations of motion
’ 0 1 y, =6 3™zt /
y = y Ve

y :A =
Y, e'-ZIﬁE ||'{ /

—4 0

I|

|

1 ﬁ ] 1 1 2 1 2 \| \'.
Yi =Y Y, :_4y1 — 4y1y1 ==Y,Y, - ZY1 +§Y2 = const. \

\

. . s i LJ , ona,
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4.3 Phase Plane Method. Mass on a Spring Example

Chapter 2.2 Homogeneous Linear ODEs

M Ex. 5 Solve the initial value problem y"+0.4y'+9.04y=0, y(0)=0, y'(0)=3

Step 1 General solution

A2+041+9.04=0 (Characteristic equation) = 1 =-0.2+3i

Step 2 Particular solution

y'=-0.26"" (Acos3x +Bsin3x)+e ™" (-3Asin 3x + 3B os 3x)

= y(0)=A=0, y'(0)=-02A+3B=3 = A=0, B=l

-0.2x

= .~ y=e 7sin3x

Y
1.0

0.5 I-I I”I\\m
|

. [
0 ||||I 1]

_osH| ¥

1.0k

= .. y=e""(Acos3x+Bsin3x)

my” +cy’ +ky =0
m=1, ¢=0.4, k=9.04
c2 <4mk

— Underdamped case

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods




= xe™
4.3 Phase Plane Method. Mass on a Spring Example zr:ﬂxezt

Step 3 Solve - Damped case: m=1, c=0.4, k=9.04 Initial condition y(0)=0, y'(0)=3

' 0 1
Yi|_ 0 1 Y1 —> Y =Ay= { }y = Axe”
YA —k/m —c/m|y, -9.04 -04

-1 1
-9.04 -04-4

= 1=-0.2++0.04—-9.04 =-0.2+3i

Characteristic equation:  det(A—Al) = ‘ ‘ =12 +0.21+9.04=0,

Eigenvalues and eigenvectors:

. [0.2-3i 1| 0] o [X 1
A4 =-02+31= _ = =X = = .
-9.04 -0.2-3i| X, 0 X, -0.2+3i

. [0.2+3i 1 x| [o o | % 1
A, =-02-3i = A= = xe =] |2 |
-9.04 -0.2+31 | X, 0 X, -0.2-3i

General solution:

y—c { 1 }ew.mm o { 1 }e(o_zsm Use initial conditions
¥ . 2 .
—-0.2+3i —-0.2-3i y(O):O, yr(o):3

=C, _|+¢C, |=|_.|=>c, =-0.5I,c¢c,=0.5I,
y,(0) -0.2+3i —0.2-3i 3

. . L Lj ona
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4.3 Phase Plane Method. Mass on a Spring Example

Step 3 Solve - Damped case: m=1, c=0.4, k=9.04 Initial condition y(0)=0, y'(0)=3

y, =, 1 ¢ e = _0.5ie** (cos 3t +isin3t) + 0.5ie* (cos 3t —isin 3t)

=e>*sin3t

y, =y, =-0.2e %% sin3t + 3¢ cos 3t

o
y1(E9y)

—y2(EEY)

0 15 20

25

y ory
W ON A o AN W o

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods
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M
Another example
5 1? 15 20
——1
I
at t=0, y=8

1Y, (B9l y)
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4.3 Constant-Coefficient Systems. Phase Plane Method

<+ How to Graph Solutions in the Phase Plane (& & O)

: ‘= + t
The solution of y'= Ay (ln components, yll A aizyzj is y(t):{yl( )}
Yo =8, Y1 T85,Y; Y, (t)

= We can graph solutions as two curves over the t-axis, one for each components

of y(t). ¥

= We can also graph as a single curve in the y, y, -plane. f,f\\\
- This is a parametric representation with parameter t. U/ ] \{“ :"*.,

= Trajectory (or sometimes an Orbit or Path, H|%&): : I I : : I.l "
The single curve in the y, y, -plane | A—\» \\ //

= Phase Plane (&@H): y, y, -plane Trajectories |/

= Phase Portrait (&5 ): The phase plane filled with trajectories (A& 3 0fl A 2
A AR)

(587
[0
i
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4.3 Constant-Coefficient Systems. Phase Plane Method

M Ex. 1 Trajectories in the Phase Plane (Phase Portrait)
(SEHOXM HH (FFD))

In order to see what is going on, let us find and graph solutions of the system.

Y, =-3y; +Y, : |:—3 1 :|
: < Yy =Ay= y .
Y, = Y1 =3, 1 -3
. . 3-1 1|
Characteristic equation: det(A-A4l)= . sl A +64+8=0

Eigenvalues and eigenvectors: (A - Al)x=0

RPN -1 1] x]_[0 IR
1 -1 %, 0 X,

; :_4:_1 1% ]_{o @ xl_: 1]

? 1 1]x ]| |0 X, | |-1

General solution: Y= {

Y1

Y

1
} =cy”+c,y? =c, {J e +c, {

1 }em
-1
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4.3 Constant-Coefficient Systems. Phase Plane Method

M Ex. 1 Trajectories in the Phase Plane (Phase Portrait)

General solution: y= { yl} _ Cly(l) N Czy(z) —¢, {ﬂ o2ty c, { 11} ot

Y,

= The two straight trajectories correspond to ¢, = 0 and ¢, = 0.

B Y e e _
Whenc, =0=y = =Gy =C| L= Y2=W

Ya
ifc,>0 = vy, i+,y,:—

ifc,<0 = y,i—,y,:+

Wh =0 (N oeyog|® =
enc, =U=y = =Gy =( o = Y,=%
2
ifc, >0 = vy i+,y,:+
ifc,<0 = y,i—,y,:+

= The others to other choices of c,, c,.

Y5

( \\ V)

astincreases= y, &y, >0

Trajectories (Improper node)

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods
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4.3 Constant-Coefficient Systems. Phase Plane Method

< Critical Points (2 A|&) of the system

The point y =0 seems to be a common point of all trajectories.

y'=Ay =

y' =AYy

dy ,
dy, %dt Y,y tayy, <3

dy, d% YAy Y,

= dy,/dy,: A unique tangent direction of the trajectory passing through
P:(y,, ¥,) except for the P = P,:(0, 0) where the right side becomes 0/0.

= Critical point: The point at which of dy,/dy, becomes undetermined.

% Five Types of Critical Points
Depending on the geometric shape of the trajectories near them

Improper Node (H| 27 0rC|H), Proper Node (117 0HC[H),
Saddle Point (2t&H), Center (BA7H), Spiral Point(LH4d &)

%
[

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods o
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4.3 Constant-Coefficient Systems. Phase Plane Method

M Ex. 1 Improper Node (H| 11§ 0IC|7H)

: Acritical point at which all the trajectories, except for two of them, have the

same limiting direction of the tangent
= The two exceptional trajectories also have a limiting direction of the

= A limiting direction is different.

tangent.

y:

.

-3 1
1 -3

|y

P

1

Y

} = Cly(l) + Czy(z) =G 1

1
= The common limiting direction at 0 (y,=y,= 0) is x® = H (or x® =

because e* goes to zero faster than e?tas t increases.

= The two exceptional limiting tangent directions are

1

E

2 _

} and —x(z){ﬂ when ¢, = 0.
ifc,>0 = vy, i+,y,:—

ifc, <0 = vy, 1—,y,:+ Two exceptior

\al limiting

tangent directions s seou
o ations
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4.3 Constant-Coefficient Systems. Phase Plane Method

M Ex. 2 Proper Node (11 80lC|H)
. A critical point at which every trajectory has a definite limiting direction and

for any given direction d at P, there is a trajectory having d as its limiting direction.
1 0 =
y':{ }y, (thus yll ylj
0 1 Yo =Y,

Y2
Characteristic equation: \
_
1-4 0 . \

c,=C,= 1

o 1-4

Eigenvector: Any x£0, we can take [1 0]", [0 1]".

General solution: {1} t {O} t
y=c  [e+c| e

. . L ¥ LJ Hona,
Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods ==l Univ.



4.3 Constant-Coefficient Systems. Phase Plane Method

M Ex. 2 Proper Node - If we take different eignenvalues?
Eigenvector: Any x#0, we can take [1 0]T, [0 1]".
What happen if we take other eingenvector?

Ex) [12]T, [31]T

1 3 c,+3cC c
y=c| _[e'+¢c,| [e'=|" " Cle'=| e
2 1 2C, +C, C,

yl = Cl’et ' ' .
= . = CY,=CY, (The result is same.)
Y, =C,€

i i o i Lj ona
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4.3 Constant-Coefficient Systems. Phase Plane Method

¥ Ex. 3 Saddle Point (2t%E7H)

: A critical point at which there are two incoming trajectories, two outgoing
trajectories, and all the other trajectories in a neighborhood of P, bypass P,.

1 0 ‘=
y'{ }y, (thus y1| Y j
0 -1 Yo ==Y,

'$)
|
.) ‘\
Characteristic equation: [1-1 0 const / coqst>0
~ = AE=A=0, / | \\
C,

0 -1-21 - _
A=l 2,=-1 —F——

——

Eigenvector: [10]" for A,=1, [01]" for A,=1 ccﬁ%h /é <0

General solution: {1} t {0} B
y=C¢, 0 e' +c, . e

t
=ce
= yyl_ cle‘t = y,Yy, =const.
2 V2

= This is a family of hyperbolas (and the coordinate axes).

Trajectories (Saddle Point)

o . A National
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4.3 Constant-Coefficient Systems. Phase Plane Method

M Ex. 4 Center (54 H)

: A critical point that is enclosed by infinitely many closed trajectories.

O 1 ':
y'= y, | thus = s
-4 0 y, =-4y, 2
o : /Y '
Characteristic equation: det(A—M):_4 = Ha=0 \
[ 7N
e\
lll.f \i\l
|

Eigenvalues and eigenvectors:

ﬂlzi:{;i _1212}{8}:){@):Dj{zﬂ \\\///M’
R I RN e

A 2it ~2it
General solution: y ¢, 1_ e” 4, 1_ et o= NTES RS
2i ~2i y, = 2ice” - 2ic,e ™"

1 ﬁ ] 1 1 2 1 2
Yi'=VYa Yo =4y, = Ay =-Y,Y, = 2V, +§y2 = const.

i i o i Lj ona
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4.3 Constant-Coefficient Systems. Phase Plane Method

M Ex. 5 Spiral Point (Lt41H)

: A critical point about which the trajectories spiral, approaching P, as t—oo

(or tracing these spirals in the opposite sense, away from P).

-1 1 R
y.{ }y, ( tus T TV
Yo ===V,

-1 -1
Characteristic equation: det(A—/II) :‘

Eigenvalues and eigenvectors:

el e
ool T

General solution:

y=c, {1} e ™ 4, { 1} g
i i

-1-A
-1

‘=/12+21+2=0
A

Trajectories (Spiral point)

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods




4.3 Constant-Coefficient Systems. Phase Plane Method

= Transform this complex solution y=c 1) cain o 1 NER)
to a real general solution by a trick. i | i
—_y 4 | | P2=y2yy?
;/1'_ 3;/1 );/2 YiYi +Y2Y, :_(y12+y22) L %(I’z)'z—r2
2 — N1 )2 ﬁ (rz)rZer;
= 2y,y 42V, Y, = —2r
Yi(=Y1tY2) + Yo (= V1= o) WY, |
= _yl2 - y22 0 \
(ry =2rr’ , |
m— [ =T
r_ — _1’ g = —dt v_ 1
r r

= Nr=—1+C —p r=ce

o [\2 2 -t |

Trajectories (Spiral point)

o E';’ Seo:_l
: Nationa
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4.3 Constant-Coefficient Systems. Phase Plane Method

M Ex. 6 No Basis of Eigenvectors Available. Degenerate Node (E|2}0tC|H).
. 4 1
y = 1 9 y

4-4 1
Characteristic equation: det(A—M) =

‘=12—6/1+9=0

Eigenvalue and eigenvector: 43— { 1 1 }{ Xl} _ {0} —x® = {Xl} _ { 1 } y® :{ 1 :|e3t
—1 —1 X2 O X2 _1

) double root = y® =x®te™ +ue®, u=[u, u,]' xt-termalone would not be enough.

y&'=xVe + APt + due” = Ay? = Adte + Aue™ <o [y'= Ay

here AxY =1x® = 1xWte™ = AxPte™

xWe + Jue™ = Aue™ = xP+lu=Au =>Au-Au=x" = (A-ADu=x"

0 1 0
— U= |:1:| y(2) — |:_1:|'[83t +|:1:|e?>t

4 ona
Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods Lj\ iv.

A=3 x®=[1-1] = (A—3')U={_11 }J“{}J




4.3 Constant-Coefficient Systems. Phase Plane Method

M Ex. 6 No Basis of Eigenvectors Available. Degenerate Node.

General solution: 1] . 1 0] 4
y=¢ 1 e” +¢, 1 t+ 1 e

= ¢,y (D gives the heavy straight line, ¥,
v ¢, >0 the lower part
v’ ¢, <0 the upper part

= y @ gives the right part of the heavy curve from 0
second, first, and - finally - fourth quadrants.

= -y @ gives the other part of that curve.

. . L ¥ Lj _iona
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4.3 Constant-Coefficient Systems. Phase Plane Method

M Ex. Find a real general solution of the following systems.

|73
Y—37y

Q Solve.

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods




4.3 Summary

< Phase plane method

The solution of y'=Ay [in components,

y(®) = [y, y.(01"

Phase Plane: y, y, -p

lane

Y1

.:ally1+a12y2jis y(t){yl(t)}

Y, = d, Yy, +ayy,

Families of solution curves if we represent them parametrically as

Y, (t)

A trajectory of y(t): a curve of y(t) in the y, y, -plane (Phase Plane)

Phase Portrait: The phase plane filled with trajectories

% Critical point — Determine a general form of the phase portrait

y=xe's y's

g/ y =

A

dy ,
dy, %dt _ Y, Y tayy,

= AX=AX

y'=Ay =

dy, dyl/dt YAy ta,Y,

— becomes undetermined, 0/0

Engineering Math, 4. Systems of ODEs. Phase Plane. Qu

alitative Methods

[
S§¢

7
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4.4 Criteria for Critical Points. Stability

< Criteria for Types of Critical Points (2 A& 39| TtH7|=)

A, A, are eigenvalues of A= {aﬂ ai?}
Ay 8y
- . )
Characteristic equation: det(A-11)= C a,, /1‘ (2 +a,) s detA =0
Ay Ay —

E> A= pl+q=0 p=a,+a,, q=detA=a,a,—a,a,, A=p®-4q
1 1
h=2(p+V), 2= (p-vA),

(@) Node q>0 A>0 Real, same sign

(b) Saddle Point q<0 Real, opposite sign

(c) Center p=0 q>0 Pure imaginary

(d) Spiral Point p#0 A<O Complex, not pure imaginary

Eigenvalue Criteria for Critical Points

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods



4.4 Criteria for Critical Points. Stability — Node

Nod
Eﬁ)}q%)e q> A>0 Real, same sign
A=-2,—-4,q=8,A>0 A1=1,09=1,A=0
1 0 1 0|, = ¥ =Ce = CY,=C
y= cluem +Czuem a C{O ° +C2uet Y, =Ce .

Yz

N S\
S

Improper node Proper node

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods



4.4 Criteria for Critical Points. Stability — Saddle Point

fgiﬁiﬁj{’ e Point g< Real, opposite sign

A=1-1, q=-1

1 0 y, =Ce
y - Cl|:0:|et + C2|: :|e_t — 1_ 1e_t — y1y2 — ConSt

1

Ya

/

N\

N

Saddle

=

point

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods




4.4 Criteria for Critical Points. Stability — Center

gfjiﬂ‘)ter p= q> Pure imaginary

A=21, -2
! ! 1 1 2 l 2
{1} it |:0} il =Y Ve =4y, = 4yy,'=-V,y,! = 2y, +Ey2 — const,
y=¢ e"" +cC e

S

— (P4, =5 (p-VA)

oV Ifp=0, k= A

—
S

v Ifalsoq>0— A2=-q<0— A,=—), are pure imaginary

Center

" 2 —pi+q=0, p=A+i, q=Al, A=p*—4q=(}—1,)°

— periodic solutions, trajectories are closed curves around P,,.

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods




4.4 Criteria for Critical Points. Stability — Spiral Point

(d) Spiral Point
(LHd )

p#0 A<O Complex, not pure imaginary

/1:_1:',_1_" A<10 P —pAl+q=0, p=A4+4, q=44, A=p*-4q=(4—-4,)°
y:cl{_}e(—1+i)t+cz{ _:|e(—1—i)t ﬂi:%(p+\/g), ,12=%(p—\/z),

. 2 2 — ; .
Sy + Ya) = c\:e\f\ v If A <0, the eigenvalues are complex conjugates,
i B — A =a+if and A, =o—if
LA }/ /v Ifalso p=A, +A,=2a<0 — a spiral point: stable and attractive
‘\ \.\ \74//"
\\ N \‘4_'/’//
L v' Ifalso p=\, +A, =20>0 — a spiral point: unstable
Spiral point

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods



4.4 Criteria for Critical Points. Stability

= Critical points may also be classified in terms of their stability.
= Stability (2H8/d): A small change (a small disturbance) of a physical system at
some instant changes the behavior of the system only slightly at all future times t.

*» Definitions Stable, Unstable, Stable and Attractive

L)

= Acritical point P,is called stable if, roughly, all trajectories that at some instant
are close to P, remain close to P, at all future times.

= A critical point is called unstable if the critical point is not stable.

= P,is call stable and attractive if P, is stable and every trajectory that has a point
approaches P, as t—oo.

%

Stable critical point
The trajectory initiating at P, stays in the disk of radius . Stable and attractive critical point

b EJ r"" Seoul

] ] o L J * Nationa 45
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4.4 Criteria for Critical Points. Stability

< Stability Criteria for Critical Points

(a) Stable and attractive p<O0 g>0
(b) Stable p<0 q>0
(c) Unstable p>0 or q<o0

(a) Stable and attractive » o

—_— —_— — —_— — —_— _p— _—
W
=

//p
A
=
=
M

S
[
W
=

o Spiral || Spiral v
point point
(b) Stable ”me\/nm (c) Unstable

p
Saddle point

Stability chart of the system

E]"? Seoul |
] National 4 6
=~ Univ. ‘

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods



4.4 Criteria for Critical Points. Stability — Stable

(a) Stable and attractive

(b) Stable p<0 q>0

~pA+q=0, p=A4+4, =4k, A=p°-4q=(4~4,)’
If p=A, +A, <0 and g=A,A,>0
— A, A, are both are negative or have a negative real part.

A=-2,—4,p=-6,=8 [A=-1+i,-1-i, p=-2,9=2 A=2i,-2i, p=0,q=4

1 0 1 1 j _ |1 0] -
el ] bk
\\ @ | ‘ \, K \\ :—j/'//

N NS
e
Improper node point Spiral point Center
- Stable and attractive - Stable and attractive - Stable
L P
Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods . Univ. |




4.4 Criteria for Critical Points. Stability — Unstable

(c) Unstable p>0 or q<0

K =pA+d=0, p=A+4, =~k A=p°-4q=(4-4)"
If p=A, +1,>0 or =12, <0 — A, A, are both positive or opposite.

A=1p=2,qg=1 A=3,p=6,9=9 A=1-1 p=0,q<-1

B U
N I
7 N7

Proper node Degenerate node Saddle point

N

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods




4.5 Qualitative Methods for Nonlinear Systems

< Qualitative Method (*8‘dH)

= Method of obtaining qualitative information on solutions without actually

solving a system.

= These method is particularly valuable for systems whose solution by

analytic methods is difficult or impossible.

Nonlinear systems

Y1l: fl(yl’yZ)
yzlz fz(yliyz)

Linearizatik y'=Ay+h(y), thus Y1I:a11Y1+aiz3’2+f‘ll(y1,Y2)

Y, =a, Y, +a,Y, +h, (Yp Y2)

y' =f(y), thus

eou/

4 E Saiona 4
| 9

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods ~ Univ. |
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4.5 Qualitative Methods for Nonlinear Systems

+» Several Critical Method

= |f a critical point P, is not at the origin (0, 0)
— we shall move this point to the origin before analyzing the point.

= P,is a critical point with (a, b) not at the origin (0, 0), then we
apply the translation.

— y,=Y,— 8, ,=Y,— b, which moves P, to (0, 0).

= We can assume P, to be the origin (0, 0) and we continue to write

Y1, ¥, (instead of y, , 7,).

(2ad]
L
=

I
B
i
s=2y
333
[£)]
o
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4.5 Qualitative Methods for Nonlinear Systems

< Theorem 1 Linearization (M&83})

If f, and f, are continuous and have continuous partial derivatives in a

neighborhood of the critical point (0, 0),

and if det A+ 0, then the kind and stability of the critical point of nonlinear

systems are the same as those of the linearized system

Yi '= a, Y, +a,Y,
Y, = Ay Y, +a5Y,-

Exceptions occur if A has equal or pure imaginary eigenvalues; then the nonlinear

y'=Ay, thus

system may have the same kind of critical points as linearized system or a spiral

point.

lation. ‘
Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods . Univ. |



4.5 Qualitative Methods for Nonlinear Systems

Ex. 1 Free Undamped Pendulum, Linearization

Figure (a) shows a pendulum consisting of a body of mass m (the bob) and a
rod of length L. Determine the locations and types of the critical points.
Assume that the mass of the rod and air resistance are negligible. °

Step 1 Setting up the mathematical model

0: the angular displacement

mg: the weight of the bob

= the force of acceleration: mL#” (LO": acceleration)

mg sin 6

Pendulum

A restoring force tangent to the curve of motion: mgsin®

. mLO" +mgsind=0 — 0" +ksind=0 (k:%j

. . L Lj ona
Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods == Univ.




4.5 Qualitative Methods for Nonlinear Systems

A=(.3.)? | Comments on .

(c) Center (5d%H) p=0 q>0 Pure imaginary

Step 2 Critical Points (0, 0), (£ 2=, 0), (£4n, 0), .... Linearization

V=0 218 V'=Y,
y, =6 A g Y, =—ksiny,

y,=0, siny,=0 — infinitely many critical points : (nz , 0), n=0, 1, +2,

Type of Stability

v

" +ksind=0

v" Consider (0, 0) (b) Stable pP<0 q>0
1a,
Maclaurin series SINY; =Y, — 5 ~Y o mY
* A Maclaurin series is a Taylor series expansion of a function about 0.
0 1 y,'=Y,
e A :Ay:{ }y, thus .
-k 0 Y, = _kyl

p=a,+a,, =0, qzdetAzkz%, A= p®—4q=-4k +

— (0, 0) is a center, which is always stable. -

* Taylor series expan5|on for sm(x)

3 +1

o0
: _ . X
5111(x)—.x—31 3__l . Z 2”_1

Engineering Math, 4. Systems of ODEs. Phase Plane.



[Reference| Maclaurin Series

Taylor series expansion

e (n)
Ti(z) = Zf { ) (z — a)" = fla) + f'(a)(x — a) 4 %f‘"{a}{z a)® 4 %f”’{g}{z a)® + .-

n=Il)

Maclaurin series is a Taylor series expansion of a function about 0, that is, a =0

fn'.' |:|:|'::I g fl."l] I:U'::l ; N N f:.-'r:' |:|:|.::|

+ x o+,
21 31 n!

fFR=FO+f 0x+

i i o i Lj ona
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4.5 Qualitative Methods for Nonlinear Systems

Step 3 Critical Points (£ =, 0), (£3mx, 0), (£5m, 0), ... Linearization

A=(-Jo)* | Comments on

(b) Saddle Point (2H& %) q<0 Real, opposite sign
v" Consider (m, 0)
set y,=0-7, y,=(0-71)'=0" 0 1
0" +ksing=0 1 2= )1 > y':Ay:[k O}y
Siﬂ@zsin(ylﬂr):—siny1:—y1+6y13—+...z_y1

p=0, q=-k(<0), A=p°-4g=4k = Critical points are all saddle points.

VM Saddle Point — Unstable

. A critical point at which there are two incoming
trajectories, two outgoing trajectories,

and all the other trajectories in a
neighborhood of P, bypass P,

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods



4.5 Qualitative Methods for Nonlinear Systems

Pendulum

Solution curves in the phase plane

x‘ C
= L
. = e — pa— * — “f" & e
: _— ——1 =
T | - Y e Vi =
S Q ;
N Z_H ¢

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods
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4.5 Qualitative Methods for Nonlinear Systems

% Transformation to a First-Order Equation in the Phase Plane

Lo sety=y, Y=Y,
F(y.y.y")=0 ——— —  ~ . F[yl,yz,%yjzo

d 2
_dy, _dy, dy, _dy, h
dt dy, dt dy,

y =Y,

Y

e

(e

b Sy
>4
(4]
N

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods



4.5 Qualitative Methods for Nonlinear Systems

M Ex. 8 An ODE for the Free Undamped Pendulum

. mLO" +mgsind=0 —> 6" +ksind=0 (k:%j

V=0 : 2182 V' =Y,
g" +ksind=0 > , :
y, =0 Z4HE |V, =—ksiny,
,_dy, dy,dy, _dy dy -
Q'=—22 -2 1 _"J2\ — 2y —_ksin
dt dy, dt dy,’2  dy, h

mLg’

Pendulum

y,dy, =-ksin y,dy,
%yzz =kcosy, +C

v" Multiplying by mL?adding mgL to both sides
%m(Lyz)2 —mL?k cos y, + mgL = mL*C + mgL

%m(Lé”)2 +mgL —mgL cos @ = mgL + mL*C

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods




4.5 Qualitative Methods for Nonlinear Systems

M Ex. 8 An ODE for the Free Undamped Pendulum Lo'=0
%m(LQ')2 +mgL(l—cos@) =mL(g + LC) ?
Kinematic  Potential Total
energy energy energy
v IfC=k(=g/L) o
~ (L&)’ +mgL(1-cosd) =mL(g + L%) — 2mgL
v IfC>k
1 , LO'#0
> m(L&")* + mgL(1—cos@) =mL(g + LC) > 2mgL
o ]
V=0 AEE | CoRns i
e e
o VLA R Bl s A °
Pz OS2 E
~ : — VN =0
Pendulum e L | et e, sasee e o)X 7|
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4.5 Qualitative Methods for Nonlinear Systems

Ex. 2 Linearization of the Damped Pendulum Equation

We add damping term c&' (proportional to the angular velocity). .
y, =0 2|84

Y1 =Y,
y,=6 &5k y, =—Kksiny, —cy,

0" +cl +ksind=0

v

v" Consider (0, 0) and siny; =y, "p=a,+a, =<0
, 0 1 =q=detA=k>0
y =Ay={ }y D
-k —c = A = p2-4q = c2—4k

v if c2> 4k — Node

/ if < 4k — Spiral point

(a) Node q>0 A=>0 V2
(b) Saddle Point q<0 L

S T

(c) Center p=0 q>0 ;__ \\\ — \/
— N
d) Spiral Point 0 A<O0 W” W/ L™
Dep b7 z/—\\\}_‘_%f K\\\}‘ o ’%/Gﬂ__ "

_—-""{:- -

— N

— e
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4.5 Qualitative Methods for Nonlinear Systems

Ex. 2 Linearization of the Damped Pendulum Equation

v" Consider (r, 0) and y, = 0-m, y, = 0’ 0" +cl +ksind=0

— sin@ = sin(y, + ) = -siny, = -y, ¥1=Y

y, =—ksingd—-cé' =ky, —cy,

0 1

y’=Ay{k _C}y o

R

"p=a;tay =-c<0
mg=detA =-k<0
" A=p%-4q =c*+4k >0

¥z

(a) Node q>0
(b) Saddle Point q<0
(c) Center p=0 q>0

(d) Spiral Point p#0 A<0

Y1

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods




4.6 Nonhomogeneous Linear Systems of ODEs

< Nonhomogeneous of Linear Systems: y’=Ay + g, g #0

Assume g(t) and the entries of the nx n matrix A(t) to be continuous on some
interval J of the t-axis.

= General solution : y =y + y®

= y(: A general solution of the homogeneous system of y’=Ay onJ

= y(): A particular solution (containing no arbitrary constants) of y’=Ay+g on J
“* Methods for obtaining particular solutions

= Method of Undetermined Coefficients (0| & A

=)

H S} 1)

—

A HH
T =5
A
-— =

A
= Method of the Variation of Parameter (O 7} &

i
sy
33

N
N

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods £



4.6 Nonhomogeneous Linear Systems of ODEs

< Method of Undetermined Coefficients (0|73 2| %= 1)
If components of g: (1) constants (2) positive integer powers of t
(3) exponential functions (4) cosines and sines.

— y() js assumed in a form similar to g.
Ex. 1 Method of Undetermined Coefficients. Modification Rule

, , , 3 1 6] _,
Find a general solutions of y'=Ay+g= L 3lYt L [ .

yP = ue™|—2ute |- 2ve™ =|Aute ™|+ Ave~

1
Equating the te=% terms on both sides: -2u=Au = u= am (with any a #0)

— U: eigenvector of A corresponding to A= -2

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods



[Reference] Nonhomogeneous Linear ODEs

< Method of Undetermined Coefficients (0|73 A=)

y(n) n pn_l(x) y(n—l) oot pl(x)y'+ po(x)y: r(x), r(X);tO

«* Choice Rules for the Method of Undetermined Coefficients

b. Modification Rule. If a term in your choice for y, is a solution of the
homogeneous ODE corresponding to y ™ +a, ,y ™D+ -+ a;y '+ agy = r(x)
then multiply this term by x¥, where k is the smallest positive integer such that
this term times x¥ is not a solution of the homogeneous ODE.

Table 2.1 Method of Undetermined Coefficients

Term in r(x) Choice for yp(x)
ke™™ Ce"™
kx"(n=0,1,-") K" +Kp_1x" '+ -+ Kwx + Ko
k cos wx

. K cos wx + M sin wx
k sin wx

ke™ cos wx .
o e“*(K cos wx + M sin wx)
ke™ sin wx

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods

8 EJ & Seoul

J * Nationa

==~ Univ.




4.6 Nonhomogeneous Linear Systems of ODEs

< Method of Undetermined Coefficients (0|73 2| %= 1)
If components of g: (1) constants (2) positive integer powers of t
(3) exponential functions (4) cosines and sines.

— y() js assumed in a form similar to g.

Ex. 1 Method of Undetermined Coefficients. Modification Rule

, , , 3 1 6] _,
Find a general solutions of y'=Ay+g= L 3lYt L [ .

A general solution of the homogeneous system: " _¢ F} e +c{ L }e‘“
-1

Apply the Modification Rule by setting y(p) —ute™ +ve ™

y'P =ye™? —2ute™ —2ve™ = Aute ™ + Ave ' +g

Q ? If v is not included?

y"? =ue® -2ute® =Aute™ +g = —2u=Au &ue?* =g = Inconsistent!

[

eoul |
ational 69
Iniv. ‘

Ej‘,

=

2

I,
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4.6 Nonhomogeneous Linear Systems of ODEs

Ex. 1 Method of Undetermined Coefficients. Modification Rule

yP =ue™® —2ute™ —2ve ™ = Aute ™ + Ave ' +¢

Equating the other terms:

-6 al |2v, -3v,+V, | |—6
u—2v=Av+ = |- = +
2 al |2v, v, —3V, 2

v, —V, =-a—6 0=-2a-4=a=-2

-V, +V, =—a+2 V, =V, +4, =V, =Kk, v, =k+4
If we simply choose k= -2, General solution:

1 1 1 —2
y=c|, [e*+c,| e =2| |+ _|e™
1 -1 1 2

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods £
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4.6 Nonhomogeneous Linear Systems of ODEs

< Method of the Variation of Parameter (0§ 74 tHEHH)

. It yields a particular solution y® on some open interval J on the t-axis if a
general solution of the homogeneous system on J is known.

= Explain the method
General solution of the homogeneous system:
y"=cy? ey =Y(t)e (- Y'=AY)

Particular solution: y'® = Y (t)u(t)

(y(p)) '=Y'u+Yu' = Y'u+Yu'=AYu+g

Engineering Math, 4. Systems of ODEs. Phase Plane. Qualitative Methods ‘E—;j\ iv.



. u'=Y'g = u=jY‘1(f)g(f)df
4.6 Nonhomogeneous Linear Systems of ODEs g

M Ex. 2 Solution by the Method of Variation of Parameters

T R P e?
= = L ]
Solve Yy =Ay+0=| ., I¥V*,

(5) et e™ -2t 2te -2 422 | [-2t-2] Ll [ 2] L
y = YU = -2t —4t 2t = -2t -2t —4t = € + €
e —e -2e“ +2 —2te™ +2e ° -2e —2t+2 -2

\V4
Ly=¢ m e+, { lJ e Zm te 2 + {_ﬂ e absorbed

b E )-f Seoul
Nationa
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4.6 Nonhomogeneous Linear Systems of ODEs

M Example
o avag] 31
y'=Ay+g=

|y

Q ? How to assume y®

__6}“ o
2 y = T

|
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