

Contents		
☑ Ch. 1 Introduction to Ship Design		
☑ Ch. 2 Design Equations		
☑ Ch. 3 Design Model		
Image: Ch. 4 Deadweight Carrier and Volume Carrier		
☑ Ch. 5 Freeboard Calculation		
☑ Ch. 6 Resistance Prediction		
☑ Ch. 7 Propeller and Main Engine Selection		
☑ Ch. 8 Hull Form Design		
Image: Ch. 9 General Arrangement (G/A) Design		
☑ Ch. 10 Structural Design		
☑ Ch. 11 Outfitting Design		
Innovative Ship and Offshore Plant Design. Spring 2019. Myung-Il Roh	rydlab	2

Dimensional Analysis (4/4)				
Dimensionless number derived	d by dimensional analysis to a ship			
$\frac{R}{1/2\rho SV^2} =$	$= f\left[\frac{VL}{V}, \frac{gL}{V^2}, \frac{p}{\rho V^2}\right]$			
* Dimensional Homogeneity	non-dimensional term			
Dimensional analysis rests on the basic physical relationship must be dimension	principle that every equation which expresses a nally homogeneous.			
Dimensionless Number:	Dimensionless Number:			
: A dimension forces to visco $R_n = \frac{VL}{V}$	ess number that gives a measure of the ratio of inertial us forces V: characteristic velocity of the ship L: length of the ship at the waterline level v: kinematic viscosity			
: A dimensionless	• A dimensionless number comparing inertial and gravitational forces			
$F_n = \frac{V}{\sqrt{gL}}$	V: characteristic velocity of the ship L: length of the ship at the waterline level g: acceleration due to gravity			
* Cavitation number: A dimensionless number used in f a local absolute pressure from the vapor pressure a potential of the flow to cavitate.	low calculations. It expresses the relationship between the difference of nd the kinetic energy per volume , and is used to characterize the			
* SNAME, Principles of Naval Architecture	/ydlab 14			

Decomposition of Resistance (1/3)				
	<u>Rn (Reynolds Number)</u> :	$R_n = \frac{VL}{v}$ Fn (Froude N	$\frac{ umber)}{r}: F_n = -\frac{1}{r}$	$\frac{V}{\sqrt{gL}}$
The concept of resistance decomposition helps in designing the hull form as the designer can focus on <u>how to influence</u> <u>individual resistance components</u> .				
Resistance decomposition	by Froude			
Total resistance (R _T) =				
Resistance decomposition by Hughes				
Total resistance (R _T) =				
nnovative Ship and Offshore Plant Design. Spring 2019. Myung-II Roh			rydlab	15

Resistance Preo Example) 3,700	diction by Holtro) TEU Container (p and Mennen's Carrier	Method
Item Main Dimension LoA Lep Unt Bmid Dmid Td /T5 (design / scantling) Deadweight (design / scantling) Displacement Volume at Td LCB Midship section coefficient (C _w) Capacity Container on deck / in hold Ballast water Heavy fuel oil Main Engine & Speed M / E type MCR (BHP x rpm) Service speed at NCR (Td, 15% SM) DFOC at NCR Cruising range Others Complement (Crew)	Value 257.4 m 245.24 m 239.26 m 32.2 m 19.3 m 10.1 / 12.5 m 34,400 / 50,200 MT(metric ton) 49,652.7 m ³ -0.531% aft of 1/2L _{BP} 0.9761 0.7734 2,174 TEU / 1,565 TEU 13,800 m ³ 6,200 m ³ Sulzer 7RTA84C 38,570 x 102 34,710 x 98.5 22.5 knots (at 11.5 m) at 30,185 BHP 103.2 MT 20,000 N.M	Item Transverse bulb area Center of bulb area above keel line Transom area Wetted area appendages Stern shape parameter Propeller diameter Number of propeller blades Clearance propeller with keel line	Value 15.2 m ² 5.5 m ² 0 m ² 317.74 m ² V-shaped 7.7 m 5 0.3 m
novative Ship and Offshore Plant Design. Sp	ring 2019, Myung-II Roh	1	ydlab 2

② Form Factor of the Bare Hull (3/3)			
$R_T = R_F (1 + k_1) + R_{APP} + R_{APP}$	$R_W + R_B +$	$R_{TR} + R_A$	
$(1+k_1=0.93+0.487118\cdot C_{14}(B/L)^{1.06806}(T/L)^{0.46106}(L/L_R)^{0.121563})$	3,700 TEU	Container Carrier	
$C_{14}=0.89$	Item	Value	
$(L / V) (I - C_p)$	L	239.26 m	
	B	32.2 m	
	T T	10.1 m	
I : Longth of run	C,	0.6794	
	L _{CB}	-0.531 % (aft)	
At early design stage, if L₂ is unknown, it can be obtained by following formula:			
$L/L = 1$ $C \rightarrow 0.00$ $L/(AC = 1)$			
$L_R / L = 1 - C_P + 0.06C_P \cdot L_{CB} / (4C_P - 1)$			
$L_{\scriptscriptstyle CB}$: The longitudinal position of the centre of buoyancy forward of 0.5L as a percentage (%) of	FL.		
forward : (+), aft : (-)			
Example 3.700 TEU CTN Carrier)			
$L_{p} = L(1 - C_{p} + 0.06C_{p} \cdot L_{Cp} / (4C_{p} - 1))$			
$= 239.26(1 - 0.6794 + 0.06 \times 0.6794 \times (-0.531) / (4 \times 0.6394 - 1))$			
= 73.692[m]			
$\therefore 1 + k_1 = 0.93 + 0.487118 \cdot C_{14}(B/L)^{1.06806} (T/L)^{0.46106} (L/L_R)^{0.121563} \times (L^3/\nabla)^{0.36486} \cdot (1 - C_P)^{-0.60247}$			
$= 0.93 + 0.487118 \times 0.89(32.2/239.26)^{1.06806} (10.1/239.26)^{0.46106} (239.26/73.692)^{0.121563} \times (239.26^{3}/49778)^{0.36486} \cdot (1 - 0.6394)^{-0.60247} = 1.14$			
	/yc	lab 30	

(A) Wave Resistance (Low Sneed Range) (1/5)			
$R_T = R_F (1+k_1) + R_{APP}$	$+ \frac{R_W}{R_W} + R_B$	$R_{R} + R_{TR} + R_{A}$	
- Low speed range: $F_n \le 0.4$	48 3 700 3	TELL Container Corrier	
	3,700	Value	
		239.26 m	
$ R_w = \rho g \nabla C_1 C_2 C_5 \exp\{m_1 F_w^a + m_4 \cos(\lambda F_w^{-2})\} $	В	32.2 m	
W VO 1 2 5 1 C 1 n 4 C n V	т	10.1 m	
	C _{WP}	0.6761	
	Cp	0.6794	
$C_1 = 2223105C_7^{-3.78013}(T/B)^{1.07961}(90-i_E)^{-1.37565}$	L _{CB}	-0.531 % (aft)	
	v	49,887 m ³	
$C_{7} = B/L \qquad : \text{ when } 0.11 \le B/L \le 0.25$ $C_{7} = 0.5 - 0.0625B/L \qquad : \text{ when } 0.25 \le B/L \qquad i_{E} = 1 + 89e^{\left\{-(L/B)^{0.30856}(1-C_{BF})^{$	$\sum_{P} -0.0225 L_{CB} \)^{0.6}$ $^{4574} (100 \nabla / L^3)^{0.16}$	3367 3302	
B/L = 0.135			
$C_{r} = B/L = 32.2/239.26 = 0.135$			
$i_c = 1 + 89e^{\{-(L/B)^{0.30856}(1-C_{WP})^{0.30844}(1-C_P-0.0225L_{CB})^{0.6367} \times (L_R/B)^{0.34574}(100\nabla/L^3)^{0.16362}}$			
$= 1 + 89e^{\{-(L/B)^{0.30856}(1-0.6761)^{0.30484}(1-0.6794-0.0225\times(-0.531))^{0.6367}(73.69/32.2)^{0.34574}(100\times49887/239.26^3)^{0.16302}}$			
		/	
=13[deg]			
$\therefore C_1 = 2223105C_7^{3.78613} (T/B)^{1.07961} (90 - i_E)^{-1.37565}$			
$= 2223105 \times 0.135^{3.78613} (10.1/32.2)^{1.07961} (90-13)^{-1.37565}$			
= 0.812			
neurophic Chie and Officien Dante Design 2010 Margare II Date	74	1019 34	

() Waya Pasistanca (Low Speed Pango) (3/5)			
$rac{1}{4}$ wave resistance (LOW Spect range) ($R_r = R_F(1+k_1) + R_{APP}$	$+\frac{R_W}{R_W}+R_B$	$+R_{TR}+R_A$	
- Low speed range: $F_n \le 0.4$			
$\left[R_{W} = \rho g \nabla C \left[\frac{C_{2}C_{5}}{C_{2}C_{5}} \exp\left\{m_{1}F_{n}^{d} + m_{4}\cos\left(\lambda F_{n}^{-2}\right)\right\}\right]$	3,700 T	EU Container Carrier	
	Item	Value	
	В	32.2 m	
C_2 : A parameter which accounts for the reduction of the wave resistance due to the action of	T	10.1 m	
	T _F	10.1 m	
$C = \rho^{-1.89\sqrt{C_3}}$ If there is not bulb, C_2 is 1.	A _{BT}	15.2 m ²	
$C_2 - C$	h _B	5.5 m	
$C_{2} = 0.56 A_{pr}^{1.5} / \{B \cdot T(0.31 \sqrt{A_{pr}} + T_{p} - h_{p})\} A_{BT}$; Transverse bulb area	A _T	0 m ²	
$h_{3} = h_{B1} = h_$	C _M	0.9761	
n_B : The position of the centre of the transverse are A	A_{BT} above the	keel line	
$T_{\scriptscriptstyle F}$: The forward draft of the ship			
C : A parameter which accounts for the reduction of the wave resistance due to the action of a tra	nsom stern		
c_{5} , reparameter which decounts for the reduction of the hard residuate data to the decisit of the transverse	a area of the	transom	
$C_5 = 1 - 0.8 A_T / (B \cdot T \cdot C_M)$ $A_T : \text{ Ine immersed part of the transverse area of the transom at zero speed}$			
$C_{2} = 0.56A_{pT}^{-1.5} / \{B \cdot T(0.31\sqrt{A_{pT}} + T_{r} - h_{p})\}$ $C_{2} = 1 - 0.8A_{T} / (B \cdot T \cdot C_{M})$			
$= 0.56 \times (15.2)^{13} / \{32.2 \times 10.1 (0.31 \sqrt{15.2} + 10.1 - 5.5)\}$			
= 0.018			
G = 189. [G			
$C_2 = e^{-i\omega \sqrt{c_3}}$			
$=e^{(-1.89\sqrt{0.02})}$			
-0.78			
- 0.70			
nnovative Ship and Offshore Plant Design, Spring 2019, Myung-II Roh	<i>/</i> y	JIGB 36	

④ Wave Resistance (Middle Speed Range)			
- Middle speed range: $0.4 \le F_x \le 0.55$ $R_T = R_F (1+k_1) + R_{APP} + \frac{R_W}{R_F} + R_B + R_{TR} + R_{TR}$			
$R_{W} = (R_{W})_{atF_{n}=0.4} + (10F_{n}-4) \cdot \{(R_{W})_{atF_{n}=0.55} - (R_{W})_{atF_{n}=0.4}\} / 1.5$ $\frac{1000}{(R_{v})_{ar_{e}=0.4}} - \frac{1000}{(R_{v})_{ar_{e}=0.4}} - \frac{1000}{(R_{v})_{ar_{$			
$(R_W)_{at F_n=0.4}$: The wave resistance prediction for $F_n = 0.4$ according to the formula in low speed range			
$(R_W)_{at F_n=0.55}$: The wave resistance prediction for $F_n = 0.55$ according to the formula in high speed range			

Resistance Estimation by Holtrop and Mennen's Method				
- Approximat	ion Formula of the Propeller Eff	iciency (3/4)		
$\eta_D = \eta_O^{(1)} \cdot \frac{\eta_R^{(2)}}{\eta_H} \cdot \frac{\eta_R^{(3)}}{\eta_R}$	$\eta_{H} = \frac{1 - t}{1 - w}, \qquad t = \frac{T - R_{T}}{T} = 1 - \frac{R_{T}}{T} \Longrightarrow T = \frac{R_{T}}{1 - t}$	MCR: Maximum Continuous Rating NCR: Normal Continuous Rating) BHP: Brake Horse Power DHP: Delivered Horse Power		
$t = 0.001979L / (B - 0.00524 - 0.14)$ $= 0.001979 \times 239.2$ $- 0.00524 - 0.14$ $= 0.141$	$BC_{p_1} + 1.0585c_{10}$ $18D^2 / (BT) + 0.0015C_{stern}$ $6 / (32.2 - (32.2 \times 0.682)) + 1.0585 \times 0.13$ $18 \times 7.936^2 / (32.2 \times 10.1) + 0.0015 \times (-10)$	EHP: Effective Horse Power R;: Total Resistance η_{T} : Transmission Efficiency η_{0} : Propulsive Efficiency η_{0} : Propeller Efficiency η_{H} : Hull Efficiency η_{H} : Hull Efficiency η_{R} : Relative Rotative Efficiency t: Thrust Deduction Fraction w: Wake Fraction		
= 0.141				
$\hat{v} \eta_H = \frac{1-t}{1-w}$	③ If number of shaft = 1 $\eta_{\rm R} = 0.9922 - 0.05908 A_{\rm E} \ / \ A_{\rm O} + 0.07424 (C_{\rm P} - 0.05908) A_{\rm E} \ / \ A_{\rm O} = 0.0000000000000000000000000000000000$.0225 <i>LCB</i>)		
$=\frac{1-0.141}{1-0.211}$	$=\frac{1-0.141}{1-0.211} = 0.9922 - 0.05908 \times 0.731 + 0.07424(0.6794 - 0.0225 \times (-0.531))$			
=1.09	= 1.00 If number of shaft = 2 $\eta_R = 0.9737 + 0.111(C_P - 0.0225LCB) - 0.063$	$25P_i/D_p$		
$c_{10} = B / L$	when L/B > 5.2			
$c_{10} = 0.25 - 0.003328402 / (B / L - 0.134615385)$ when L/B < 5.2				
$C_{10} = 0.15$ (: $L/B = 7.43$)				
* Thrust deduction fraction or coefficient (t): Additional resistance on the hull due to the rotation of the propeller				
noustive Ship and Offehere Blant Derign Spring 2019, Muung II Poh				

