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Historical Overview

Griffith theory for brittle material (1920’s)

 “A crack in a component will propagate if the total energy of the 

system is lowered with crack propagation.” 

 “ if the change in elastic strain energy due to crack extension > the

energy required to create new crack surfaces, crack propagation will 

occur”

Irwin (1940’s) extended the theory for ductile materials.

 “ the energy due to plastic deformation must be added to the surface 

energy associated with creation of new crack surfaces”

 “ local stresses near the crack tip are of the general form” 
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Minimum total potential energy principle

 Fundamental concept used in physics, chemistry, biology, and engineering.

 It dictates that a structure or body shall deform or displace to a position

that (locally) minimizes the total potential energy, with the lost potential

energy being converted into kinetic energy (specifically heat).

 The potential energy of an elastic body, Π, is defined as follows:

𝜫 = 𝑼− 𝑭
Here, 𝑼 : strain energy stored in the body

𝑭 : the work done by external loads

 Examples 

 A rolling ball will end up stationary at the bottom of a hill, the point of 

minimum potential energy. It rolls downward under the influence of gravity, 

friction produced by its motion transfers energy in the form of heat of the 

surroundings with an attendant increase in entropy.

 Deformation of spring under gravity stretches and vibrates and finally stops 

due to the structural damping. 
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Minimum total potential energy principle

 This energy is at a stationary position when an infinitesimal variation from 

such position involves no change in energy.

𝛿𝛱 = 𝛿(𝑈 − 𝐹)

 The principle of minimum total potential energy may be derived as a special 

case of the virtual work principle for elastic systems subject to conservative 

forces.  

 The equality between external and internal virtual work (due to virtual 

displacements) is:

 𝑆𝑡
𝛿u𝑇 T𝑑𝑆 +  𝑆𝑡

𝛿u𝑇 f𝑑𝑉= 𝑉 𝛿𝜀𝑇 𝜎𝑑𝑉

𝑢 = vector of displacements

𝑇= vector of distributed forces acting on the part of the surface

𝑓= vector of body forces

 In the special case of elastic bodies

𝛿U =  𝑉 𝛿𝜀𝑇 𝜎𝑑𝑉,𝛿F =  𝑆𝑡
𝛿𝑢𝑇 𝑇𝑑𝑆 +  𝑉 𝛿𝑢𝑇 𝑓𝑑𝑉

∴ 𝛿𝑈 = 𝛿𝐹

 The basis for developing the finite element method.
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An atomic view of fracture 

Physical meaning of fracture 

 A material fractures when sufficient stress 

and work are applied at the atomic level to 

break the bonds that hold atoms together. 

 The bond strength is supplied by the 

attractive forces between atoms. 

 A tensile force is required to increase the 

separation distance from the equilibrium 

value, this force must exceed the cohesive 

force to sever the bond. 

 The bond energy is given by

 x0 :  the equilibrium spacing

 P : the applied force

5

1. An Atomic View of Fracture 
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 Idealizing the interatomic force-displacement relationship as a sine wave.

 For small displacements,

 Assume n atomics within unit area A(=1), 𝒏𝒌 → stiffness 

 Left side                           Right side

𝜹 =
𝑷𝑳

𝑬𝑨
→ 𝑷 =

𝑬𝑨

𝑳
𝜹, 𝒌 =

𝑬𝑨

𝑳
→ 𝑬 =

𝒌𝑳

𝑨

 When λ is assumed to be equal to the atomic spacing

Calculation of cohesive stress 6

1. An Atomic View of Fracture 
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Surface energy

 Surface energy 

 Cohesive stress in terms of surface energy
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1. An Atomic View of Fracture 

γs : the surface energy per unit area,

= one-half of the fracture energy

 because tension should be applied two atoms in opposite direction

and surface energy of 2γs is required to split the atoms.

force per unit area distance

, c o
c

o

xE

x E

 
 


 

2 o
s c

x

E
 



OPen INteractive Structural Lab

Stress concentration effect of flaws

Effect of flaws 

 The theoretical cohesive strength of a material is approximately c=E/π

 Experimental fracture strengths for brittle materials are typically three 

or four orders of magnitude below this value. 

 The discrepancy between the actual strengths of brittle materials and 

theoretical estimates was due to flaws.

 Fracture occurs when the stress at the atomic level > cohesive strength 

of material. 

 Flaws lower the global strength by magnifying the stress locally.

 The first quantitative evidence for the stress concentration effect of flaws 

was provided by Inglis

8

2. Stress Concentration Effect of Flaws
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Stress concentration effect of flaws

Stress concentration 

 The hole is not influenced by the plate B.C.

 i.e. plate width >> 2a,  plate height >>2b 

 Where the ratio σA/σ is defined as stress concentration factor kt. When 

a=b, the hole is circular and kt=3.0.

 As the major axis a↑, relative to b, the elliptical hole → a sharp crack.

9

2. Stress Concentration Effect of Flaws

Inglis ⇒

When a>>b, ⇒
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Calculation of global strength 

 Calculation of remote stress at failure (by Inglis)

 An infinite stress at the tip of an infinitely sharp crack, where ρ =0.

 Paradox: A material containing a sharp crack should theoretically fail
upon the application of an infinitesimal(극소의) load.

⇒ this paradox of a sharp crack motivated Griffith to develop a
fracture theory based on energy rather than local stress.

 Metals deform plastically, which causes an initially sharp crack to blunt. 

 In the absence of plastic deformation, the minimum radius a crack tip 

can have is on the order of atomic radius ⇒ ρ = x0

 Local stress concentration at the tip of an atomically sharp crack:

 Crack/fracture occurs when 
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2. Stress Concentration Effect of Flaws

= ⇒

Cohesive stress : Stress at A : 
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The Griffith energy balance

Griffith’s idea

 First law of thermodynamics : when a system goes from a non 

equilibrium state to equilibrium, there is a net decrease in energy. 

 The crack is formed by the sudden annihilation (소멸) of the tractions 

acting on its surface. 

 The new state is not under equilibrium, then by the theorem of 

minimum potential energy, the potential energy is reduced by the 

attainment of equilibrium.

 A crack can form only if the process causes the total energy to 

decrease or remain constant. 

 The critical conditions for fracture can be defined as the point where 

crack growth occurs under equilibrium conditions, with no net change 

in total energy. 

11

3. The Griffith Energy Balance

Traction
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The griffith energy balance

Griffith’s idea

12

3. The Griffith Energy Balance

Traction Crack occurs

Potential energy Π1 Potential energy Π2

 The reduced potential energy is used to create new crack 

surfaces. 

Then where the energy : ΔΠ=Π1 - Π2 (Π1 > Π2 )gone?
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The griffith energy balance

The Griffith energy balance for an incremental increase in the crack 

area dA,

13

3. The Griffith Energy Balance
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Comparison of two approaches

 Inglis’s approach

 Griffith’ approach

 When crack-tip radius is equaling to atomic space order, these two 

approaches are consistent with one another, at least in the sharp 

crack in an ideally brittle solid.  

 But, when the crack-tip radius (ρ)is significantly greater than the

atomic space, there is an apparent contradiction between two

approaches. However,

 Griffith model is insensitive to the notch radius as long as a>>b

 According to the Inglis stress analysis, in order for σc to be attained at

the tip of notch, σf must vary with (1/ρ)1/2.
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3. The Griffith Energy Balance
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Comparison of two approach

Inglis’s approach v.s. Griffith’ approach

15

3. The Griffith Energy Balance

Example:

Consider a crack with ρ = 5 × 10-6m. Such a crack would appear sharp

under a light microscope, but ρ would be four orders of magnitude larger

than the atomic spacing in a typical crystalline solid. Thus the local stress

approach would predict a global fracture strength 100 times larger than

the Griffith equation. The actual material behavior is somewhere between

these extremes; fracture stress does depend on notch root radius, but

not to the extent implied by the Inglis stress analysis.

⇒ ρ = x0 = ⇒
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Energy balance 16

3. The Griffith Energy Balance : Lecture Note of Eindhoven University of Technology

Plate with a line crack of length a.



sW

dU

kU

: total energy

: potential energy supplied by the internal strain 
energy and external forces 

: work required to create new free surfaces

: kinetic energy resulted from material velocity 

: dissipated energy due to friction and plastic 
deformation

E

 Energy types

Energy balance in terms of time 
derivative

Tran from time derivative to
state variable derivative

Energy balance in terms of derivative 
of state variable, a

s d kE W U U   

     
d da d d

a
dt dt da da

 

s d kdW dU dUdE d

da da da da da


   
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Griffith energy balance 17

3. The Griffith Energy Balance : Lecture Note of Eindhoven University of Technology

0

0

Assumption for Griffith energy balance ①

Assumption for Griffith energy balance ②

 Energy balance equation with all energy terms

s d kdW dU dUdE d

da da da da da


   

0 0

sdWdE d

da da da


 

0

 Griffith energy balance equation

sdWd

da da


 

Plate with a line crack of 
length a.



sW

dU

kU

: total energy

: potential energy supplied by the internal strain 
energy and external forces 

: work required to create new free surfaces

: kinetic energy resulted from material velocity 

: dissipated energy due to friction and plastic 
deformation

E

 Energy types
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Griffith energy balance 18

3. The Griffith Energy Balance : Lecture Note of Eindhoven University of Technology

Griffith energy balance equationsdWd

da da
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Left side : 
energy release rate

Right side : 
crack resistance force

Crack growth criterion by the relation of 𝑎 with
critical crack length 𝑎𝑐
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

a

energy

⇒ For a crack increase in size, sufficient potential energy 
must be available in the plate to overcome the surface 
energy

A plate loaded in tension and fixed at its edges

: no crack growth

: unstable crack growth

: critical crack length
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Modified Griffith equation

Original Griffith equation

 This equation is valid only for ideally brittle solids.

 A good agreement is obtained between the equation and the 

experimental fracture strength of glass.

 However, severely underestimates the fracture strength of metals. 

Modified Griffith equation

 Irwin and Orowan independently modified the Griffith equation to 

account for materials that are capable of plastic flow. 

19

3. The Griffith Energy Balance

 γp : plastic work per unit area of surface created.

 γs   : the total energy of broken bonds in a unit area 

(ideally brittle solid)

 γp >> γs
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Modified Griffith equation

A Generalized Griffith model 

 Account for any type of energy dissipation

 wf : Fracture energy which could include plastic, viscoelastic, 

viscoplastic effects, crack meandering and branching (which increase 

the surface area), etc. 

20

3. The Griffith Energy Balance

ideally brittle material

quasi-brittle elastic-plastic material 

brittle material with crack meandering (구불
구불한 길)and branching

wf = γp

wf = γp + γs 
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Modified Griffith equation

A Caution of applying Griffith equation

 The Griffith model only could apply to linear elastic material behavior. 

 The global behavior of structure must be elastic. 

 Nonlinear effects such as plasticity, must be confined to a small region 

near the crack tip 

 Wf is assumed as constant, however, in many ductile materials fracture 

energy increases with crack growth. 

21

3. The Griffith Energy Balance
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Modified Griffith equation

Energy release rate (by Irwin)

 a measure of the energy available for an increment of crack 

extension

 the rate of change in potential energy with the crack area (Not 

with time).

 crack extension force or the crack driving force

 The potential energy of an elastic body, Π, is defined as follows:

 U : strain energy stored in the body

 F : the work done by external loads

22

4. Energy Release Rate

U F  
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Cracked Plate at a fixed load P 23

4. Energy Release Rate
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Cracked Plate at a fixed displacement  24

4. Energy Release Rate
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Cracked Plate at a fixed load P

 The absolute values of these energies differ by the amount dPd/2

25

4. Energy Release Rate
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Comparison of two approaches

 introduce the compliance, which is the inverse of the plate stiffness

26

4. Energy Release Rate

Fixed Load Fixed Displacement

Energy Release rate

Strain Energy
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“에너지 해방률은 결국 하중의 제곱에 비례하고, Crack이 커지면서 유연성이 커지는 비율에 비례한다”
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Calculation of energy release rate from experiment 27

4. Energy Release Rate

 Calculation of energy release rate by Load-displacement curve obtained 
from a experiment

 Step 1 : Load – displacement curves are plotted with increasing crack 
length 𝑎 (1)

 Step 2 : Calculate compliance 𝑐 =
∆

𝑃
for different 𝑎. 

 Step 3 : Plot compliance 𝑐 versus crack length 𝑎. (2) 

 Step 4 : Calculate 
𝑑𝐶

𝑑𝑎
by differentiating compliance curve 𝑐 in terms of 𝑎 (3). 

 Step 5 : For specific load 𝑃 and crack length 𝑎, calculate energy release.

(1) (2) (3)

2

2

P dC
G

B da

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EX 2.2 : Beam with a central crack loaded in Mode I 28

4. Energy Release Rate

Determine the energy release rate for a double cantilever beam (DCB) 
specimen

3 3

,
2 3 12

Pa Bh
I

EI


 

3

3

8a
C

P EBh


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2
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24dC a
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

2 2 2 2 2

3 2 3

24 12

2 2

P dC P a P a

B da B EBh EB h
  G

 From Beam theory : 

 Compliance

 Energy Release Rate 
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Calculation of energy release rate from experiment

 Driving force curve  : G vs. crack size

 Resistance curve : R vs. crack size.

 Stable condition : G= R and 

 Unstable crack growth : 

 A flat R curve : the material resistance is constant with crack growth.

 Fracture occurs when the stress reaches 𝜎2. Unstable propagation.

 A rising R curve : for larger 𝜎4, the plate is unstable with further crack growth.

29

5. Instability and the R Curve

Flat R curve Rising R curve

d dR

da da


G

d dR

da da


G
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Reasons for the R Curve Shape

 The shape of the R curve depends on the 

material behavior and, to a lesser extent, on the 

configuration of the cracked structure.

 Ideally brittle material : flat R curve because the 

surface energy is an invariant material property.

 Nonlinear material behavior : R curve can take 

on a variety of shapes. 

 ex) ductile fracture in metals : rising R curve 

 a plastic zone at the tip of the crack 

increases in size as the crack grows. The 

driving force must increase to maintain the 

crack growth.

 If the cracked body is infinite (i.e., if the 

plastic zone is small compared to the body) 

the plastic zone size and R eventually reach 

steady-state values  flat with further 

growth. 

30

5. Instability and the R Curve

Rising R curve

Flat R curve
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Reasons for the R Curve Shape

 Ideally, the R curve, as well as other measures of fracture toughness, 

should be a property only of the material and not depend on the size or 

shape of the cracked body. 

 Much of fracture mechanics is predicated on the assumption that fracture 

toughness is a material property. 

 However, the size and geometry of the cracked structure can exert some 

influence on the shape of the R curve. 

 A crack in a thin sheet  a steeper R curve than a crack in a thick plate 

because of a low degree of stress triaxiality (3축) at the crack tip in the thin 

sheet, while the material near the tip of the crack in the thick plate may be in 

plane strain.

 The R curve can also be affected if the growing crack approaches a free 

boundary in the structure. A wide plate may exhibit a somewhat different 

crack growth resistance behavior than a narrow plate of the same material.

31

5. Instability and the R Curve
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Load control VS. Displacement Control

 The stability of crack growth depends on the rate of change in i.e., the 

second derivative of potential energy. Although the driving force G is the 

same for both load control and displacement control, the rate of change of 

the driving force curve depends on how the structure is loaded.

 Displacement control tends to be more stable than load control. The driving 

force actually decreases with crack growth in displacement control.

32

5. Instability and the R Curve

 Ex) A cracked structure subjected to a load 

P3 and a displacement Δ3. 

 Load controlled, it is at the point of 

instability where the driving force curve is 

tangent to the R curve. 

 Displacement control : the structure is 

stable because the driving force decreases 

with crack growth; the displacement must 

be increased for further crack growth.

Driving force/R curve diagram for 

load(P) and displacement control (Δ)
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Load control VS. Displacement Control

 Ex 2.3) Evaluate the relative stability of a DCB specimen in load control and 

displacement control.

Sol) 

 Load Control : the slope of the driving force is given by  (Ex.2.2)

 Displacement control : 

express G in terms of Δ  and a.  
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5. Instability and the R Curve

Double cantilever beam (DCB) 
specimen.
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Structures with Finite Compliance

 Most real structures are subject to conditions between load control 

and pure displacement control.

 Pure displacement control : infinite spring, Cm = 0.

 Load control : an infinitely soft spring, Cm =.

 At the moment of instability.

G= R

34

5. Instability and the R Curve

A cracked structure with finite 

compliance, represented 

schematically by a spring in

series.
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Introduction

 For certain cracked configurations subjected to external forces, it is possible 

to derive closed-form expressions for the stresses in the body, assuming 

isotropic linear elastic material behavior

 the stress field in any linear elastic cracked body is given by

where 

𝜎ij : stress tensor

K : constant

fij : dimensionless function of θ

Am : amplitude 

gij
(m)  : dimensionless function of θ for the mth term

 Stress near the crack tip varies with 1/ 𝑟

 Stress singularity  

35

6. Stress Analysis of Cracks 

Definition of the coordinate axis

ahead of a crack tip. The z 

direction is normal to the page.

leading term
high order term
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The Stress Intensity Factor

 Stress intensity factor : KI, KII, KIII

36

6. Stress Analysis of Cracks 

The stress fields ahead of a crack tip i(n 
an isotropic linear elastic material are 

Stress Fields Ahead of a Crack Tip(Linear Elastic, Isotropic Material)
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The Stress Intensity Factor

 In a mixed-mode problem (i.e., when more than one loading mode is 

present), the individual contributions to a given stress component 

are additive from the principle of linear superposition.
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6. Stress Analysis of Cracks 

Crack-Tip Displacement Fields (Linear Elastic, Isotropic Material)
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The Stress Intensity Factor

 Consider the Mode I singular field on the crack plane, where θ = 0.

 The shear stress is zero, which means that the crack plane is a principal 

plane for pure Mode I loading.

 Near the crack tip, where the singularity dominates the stress field.

 Stresses far from the crack tip are governed by the remote boundary 

conditions. 
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6. Stress Analysis of Cracks 

Stress normal to the crack plane in Mode I

 K is known, it is possible to solve for all 

components of stress, strain, and 

displacement as a function of r and θ.

 This single-parameter description of 

crack tip conditions turns out to be one 

of the most important concepts in 

fracture mechanics
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 The edge crack 

 The edge crack opens more because it 

is less restrained than the through 

crack.

Relationship between K and Global Behavior

 The crack-tip stresses must be proportional to the remote stress  KI∝ σ .

 Stress intensity has units of stress 𝑙𝑒𝑛𝑔𝑡ℎ. 



 This means, the amplitude of the crack-tip singularity for this configuration is 

proportional to the remote stress and the square root of the crack size.

 Through Crack 

39

6. Stress Analysis of Cracks 

Through crack of elliptical shape.

Edge crack of V shape.
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Relationship between K and Global Behavior 40

6. Stress Analysis of Cracks 

 A through crack in an infinite plate where the normal to the crack plane is 

oriented at an angle β with the stress axis. 

 Redefine the coordinate axis to coincide with the crack orientation, the 

applied stress can be resolved into normal and shear components. 

Through crack in an infinite plate for the general case 

where the principal stress is not perpendicular to the 

crack plane.

21 cos 2
cos

2

sin 2 2sin cos




  






By using Mohr’s  circle and 

formulas of trigonometric 

function
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Relationship between K and Global Behavior 41

6. Stress Analysis of Cracks 

 The penny-shaped crack in an infinite medium

A penny-shaped crack Elliptical cracks Semielliptical cracks
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Effect of Finite Size

 The crack dimensions are small compared to the size of the plate; 

the crack-tip conditions are not influenced by external boundaries. 

 As the crack size increases, or as the plate dimensions decrease, 

the outer boundaries begin to exert an influence on the crack tip.
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6. Stress Analysis of Cracks 

=

Collinear cracks in an infinite plate
Stress concentration effects infinite plate 
and finite plate

As  / 0, (Infinite plate)

As  / 1,

I

I

a W K a

a W K

  

 
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Effect of Finite Size

 More accurate solutions for a through crack in a finite plate from 

finite-element analysis and fit to a polynomial expression. 
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6. Stress Analysis of Cracks 

(2.45)

(2.46)
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Effect of Finite Size

 KI Solutions for Common Test Specimens

44

6. Stress Analysis of Cracks 
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Effect of Finite Size

 Plot of stress intensity solutions

45

6. Stress Analysis of Cracks 
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Effect of Finite Size

 K can always be related to the through crack with an appropriate correction 

factor.

 EX. 2.4) Show that the KI solution for the single edge notched tensile panel 

reduces to 𝐾𝐼 = 1.12𝜎 𝜋𝑎 when a << W.
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6. Stress Analysis of Cracks 
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Principle of Superposition

 For linear elastic materials, individual components of stress, strain, and 

displacement are additive.

 Stress intensity factors are additive as long as the mode of loading is 

consistent.

 Ex) An edge-cracked panel subject to combined membrane (axial) loading 

Pm, and three-point bending Pb.
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6. Stress Analysis of Cracks 
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Principle of Superposition

 Ex. 2.5) Determine the stress intensity factor for a semielliptical 

surface crack subjected to an internal pressure p.
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6. Stress Analysis of Cracks 

KI = 0 because the crack faces 

close, and the plate behaves 

as if the crack were not 

presentKI for a semielliptical surface crack under 

internal pressure p by means of the principle 

of superposition.
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Principle of Superposition

 Stresses acting on the boundary (i.e., tractions) can 

be replaced with tractions that act on the crack face. 

 Mode I is assumed and no shear stresses act on 

Plane A-B.
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6. Stress Analysis of Cracks 

KI = 0 because the crack faces 

close, and the plate behaves 

as if the crack were not 

present

Uncracked body subject to 
an arbitrary boundary 
traction P(x), which results 
in a normal stress 
distribution p(x) acting on 
Plane A-B.
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Relationship between K and G

 G : the energy release rate, the net change in potential energy that 

accompanies an increment of crack extension.

 K : quantity characterizes the stresses, strains, and displacements 

near the crack tip. 

 For a through crack 

 For plane strain conditions, E must be replaced by                    .

50

7. Relationship between K and G
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Relationship between K and G

 Is it general relationship that applies to all configurations?

 The work required to close the crack at the tip is related to the energy 

release rate.
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7. Relationship between K and G

Application of closure stresses 

which shorten a crack by a

 ΔU is the work of crack closure, which is equal to the 

sum of contributions to work from x = 0 to x = Δa.

 The factor of 2 on the work is required because both 

crack faces are displaced an absolute distance uy(x).
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Relationship between K and G

 The normal stress required to close the crack is related to KI for the 

shortened crack.

 Energy release rate, like energy, is a scalar quantity.
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7. Relationship between K and G
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Relationship between K and G

 Linear elastic stress analysis of sharp cracks predicts 

infinite stresses at the crack tip. 

 In real materials, however, stresses at the crack tip are finite 

because the crack-tip radius must be finite. 

 The elastic stress analysis becomes increasingly inaccurate 

as the inelastic region at the crack tip grows. 

 Simple corrections to linear elastic fracture mechanics 

(LEFM) are available when moderate crack-tip yielding 

occurs.

 The size of the crack-tip-yielding zone can be estimated by 

two methods: 

 the Irwin approach, where the elastic stress analysis is 

used to estimate the elastic-plastic boundary, 

 the strip-yield model.

53

7. Crack-Tip Plasticity
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The Irwin Approach

 On the crack plane (θ = 0), the normal stress σyy in a linear elastic material 

is given by

 the boundary between elastic and plastic behavior is assumed to occur 

when the stresses satisfy a yield criterion, σyy =σYS.

54

7. Crack-Tip Plasticity

First-order and second-order 

estimates of plastic zone size 
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The Irwin Approach

 The simple analysis in the preceding paragraph is 

not strictly correct because it was based on an 

elastic crack-tip solution. When yielding occurs, 

stresses must redistribute in order to satisfy 

equilibrium.

 The cross-hatched region represents forces that 

would be present in an elastic material but cannot 

be carried in the elastic-plastic material because the 

stress cannot exceed the yield.

 The plastic zone must increase in size in order to 

accommodate these forces. A simple force balance leads 

to a second-order estimate of the plastic zone size rp : 
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7. Crack-Tip Plasticity

First-order and second-order 

estimates of plastic zone size 
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The Irwin Approach

 effective crack length that is slightly longer than the actual crack size

 For plane stress                              For plane strain

 The effective stress intensity

 Since the effective crack size is taken into account in the geometry 

correction factor Y, an iterative solution is usually required to solve 

for Keff.
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7. Crack-Tip Plasticity

Keff
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The Irwin Approach

 In certain cases, this iterative procedure is unnecessary because a closed-form 

solution is possible. For example, the effective Mode I stress intensity factor for a 

through crack in an infinite plate in plane stress is given by

 Elliptical and semielliptical flaws also have an approximate closed-form plastic zone 

correction, provided the flaw is small compared to the plate dimensions. 

 In the case of the embedded elliptical flaw, Keff is given by 

 Effective compliance
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8 Crack-Tip Plasticity

Elliptical cracks
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The Irwin Approach

 It should be noted that the author does not recommend using the 

Irwin plastic zone adjustment for practical applications. 

 It was presented here primarily to provide a historical context to the 

development of both linear and nonlinear fracture mechanics.
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8 Crack-Tip Plasticity

Definition of the effective compliance to 

account for crack-tip plasticity
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The Strip-Yield Model, Dugdale [24] and Barenblatt [25]

 A long, slender plastic zone at the crack tip is assumed in a nonhardening material in 

plane stress.

 The strip-yield plastic zone is modeled by assuming a crack of length 2a + 2ρ, where 

ρ is the length of the plastic zone, with a closure stress equal to σYS applied at each 

crack tip.

 This model approximates elastic-plastic behavior by superimposing two elastic 

solutions: a through crack under remote tension and a through crack with closure 

stresses at the tip.

 Since the stresses are finite in the strip-yield zone, there cannot be a stress 

singularity at the crack tip. 

 The plastic zone length ρ must be chosen such that the stress intensity factors from 

the remote tension and closure stress cancel one another.
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8 Crack-Tip Plasticity

0

The strip-yield model. 
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The Strip-Yield Model, Dugdale [24] and Barenblatt [25]

 The stress intensity due to the closure stress can be estimated by considering a 

normal force P applied to the crack at a distance x from the centerline of the crack. 

 The stress intensities for the two crack tips are given by assuming the plate is of unit 

thickness. 

 The closure force at a point within the strip-yield zone is equal to

 The total stress intensity at each crack tip resulting from the closure stresses is 

obtained by replacing a with a + ρ in Equation
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8 Crack-Tip Plasticity

Crack-opening force applied at a 

distance x from the center-line.
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The Strip-Yield Model, Dugdale [24] and Barenblatt [25]

 The stress intensity from the remote tensile stress                                         

must balance with Kclosure.

 ρ approaches infinity as σ σYS. Let us explore the strip-yield model further 

by performing a Taylor series expansion.

 Neglecting all but the first two terms and solving for the plastic zone size 

gives. the Irwin and strip-yield approaches predict similar plastic zone sizes.
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8 Crack-Tip Plasticity

Irwin approach
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 One way to estimate the effective stress intensity with the strip-yield model is to set 

equal to a + ρ.  

 It tends to overestimate Keff; the actual aeff is somewhat less than a + ρ because the 

strip-yield zone is loaded to σYS.

 Burdekin and Stone [26] obtained a more realistic estimate of Keff for the strip-yield 

model.

The Strip-Yield Model, Dugdale [24] and Barenblatt [25]
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8 Crack-Tip Plasticity
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Comparison of Plastic Zone Corrections

 A pure LEFM 

 The Irwin correction for plane stress 

 The strip-yield correction on stress intensity

 Both the Irwin and strip-yield corrections 

deviate from the LEFM theory at stresses 

greater than 0.5σYS.

 The two plasticity corrections agree with 

each other up to approximately 0.85σYS.
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8 Crack-Tip Plasticity

Comparison of plastic zone corrections 

for a through crack in plane strain.
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Plastic Zone Shape

 The estimates of plastic zone size that have been presented so far consider only the 

crack plane θ = 0.

 For plane stress, Setting σe = σYS
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8 Crack-Tip Plasticity

𝜎3=0
(𝜎1−𝜎2)

2 + (𝜎2)
2 + (𝜎1)

2=2𝜎𝑌𝑆
2

𝐾𝐼
2

2𝜋𝑟𝑦
𝑐𝑜𝑠2

𝜃

2
{6𝑠𝑖𝑛2

𝜃

2
+ 2}=2𝜎𝑌𝑆

2

𝑟𝑦=
𝐾𝐼
2

2𝜋𝜎𝑌𝑆
2 𝑐𝑜𝑠2

𝜃

2
{3𝑠𝑖𝑛2

𝜃

2
+ 1}=

𝐾𝐼
2

4𝜋𝜎𝑌𝑆
2 [1 + cos 𝜃 +

3

2
𝑠𝑖𝑛2 𝜃 ]

𝜎1=
𝐾𝐼

2𝜋𝑟
cos

𝜃

2
{1 + 𝑠𝑖𝑛

𝜃

2
}

𝜎2=
𝐾𝐼

2𝜋𝑟
cos

𝜃

2
{1 − 𝑠𝑖𝑛

𝜃

2
}

𝜎3=0  for plane stress 

= 
2𝜐𝐾𝐼

2𝜋𝑟
cos

𝜃

2
for plane strain

Crack tip stress by principal stress

𝑐𝑜𝑠2
𝜃

2
=
1

2
1 + cos 𝜃 , 𝑐𝑜𝑠2

𝜃

2
𝑠𝑖𝑛2

𝜃

2
=
1

4
𝑠𝑖𝑛2 𝜃
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Plastic Zone Shape

 For plane strain, Setting σe = σYS
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8 Crack-Tip Plasticity
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Plastic Zone Shape

 Crack-tip plastic zone shapes estimated from the elastic solutions.

 Not strictly correct because they are based on a purely elastic analysis.

 The Irwin plasticity correction, which accounts for stress redistribution by 

means of an effective crack length, is also simplistic and not totally correct.
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8 Crack-Tip Plasticity

 Plane stress
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Plastic Zone Shape

 The latter, which was published by Dodds et al. [27], assumed a material with the 

following uniaxial stress-strain relationship:

 The definition of the elastic-plastic boundary is somewhat arbitrary, since materials 

that can be described by the above Eq do not have a definite yield point. σe = σYS (the 

0.2% offset yield strength). 
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8 Crack-Tip Plasticity

Contours of constant effective stress

in Mode I, obtained from finite element 

analysis, n=50

Effect of strain-hardening on the

Mode I plastic zone; n = 5 : a high strain 

hardening, n = 50 : very low hardening
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Introduction

 The stresses near the crack tip in a linear 

elastic material vary as 1 𝑟; the stress intensity 

factor defines the amplitude of the singularity.

 If K> Kcrit , cack extension must occur. 

 Kcrit : a measure of fracture toughness, is a 

material constant that is independent of the size 

and geometry of the cracked body 

 G  also provides a single-parameter description 

of crack-tip conditions, and Gc is an alternative 

measure of toughness.

 Under certain conditions, K still uniquely 

characterizes crack-tip conditions when a 

plastic zone is present. In such cases, Kcrit is a 

geometry-independent material constant.

 Assume that the plastic zone is small compared 

to all the length dimensions in the structure and 

test specimen.

 KI characterizes crack-tip conditions. As the 

load is increased, both configurations 

(specimen and structure) will fail at the same 

critical stress intensity, provided the plastic zone 

remains small in each case.
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9. K-CONTROLLED FRACTURE

Schematic test specimen and structure 

loaded to the same stress intensity. The 

crack-tip conditions should be identical in 

both configurations as long as the plastic 

zone is small compared to all relevant 

dimensions. Thus, both will fail at the 

same critical K value.
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Introduction

 The NASA data exhibited an apparent effect of specimen thickness on 

the critical stress intensity for fracture, Kcrit.

 The explanation that was originally offered was that thin specimens 

are subject to plane stress loading at the crack tip, while thick 

specimens experience plane strain conditions.

 The biaxial stress state associated with plane stress results in a higher 

measured toughness than is observed in the same material when 

subject to a triaxial stress state.

 This section presents an updated perspective on the interrelationship 

between specimen dimensions, crack-tip triaxiality, and fracture 

toughness.
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10. Plane strain fracture : Fact vs. Fiction

Plastic crack tip zone for a thin and a thick plate
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Crack-Tip Triaxiality

 If there was no crack, the plate would be in a state of plane stress. Regions of the 

plate that are sufficiently far from the crack tip must also be loaded in plane stress. 

 Because of the large stress normal to the crack plane, the crack-tip material tries to 

contract in the x and z directions, but is prevented from doing so by the surrounding 

material. This constraint causes a triaxial state of stress near the crack-tip.

 In the interior of the plate, the z stress, and therefore the level of triaxiality is high.

 The central region :  plane strain. 

 Near the free surface : low stress triaxiality.

 The free surface : pure plane stress.
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10. Plane strain fracture : Fact vs. Fiction

Three-dimensional deformation at the tip of a crack. Schematic variation of transverse stress and 

strain through the thickness
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Crack-Tip Triaxiality

 These results were obtained from a three-dimensional elastic-plastic finite element 

analysis performed by Narasimhan and Rosakis

 Under plane strain loading, the quantity σzz /(σxx + σyy) is equal to Poisson’s ratio for 

elastic material behavior and is equal to 0.5 for incompressible plastic deformation.

 Material near the crack tip experiences high triaxiality, but  σzz = 0 when x is a 

significant fraction of the plate thickness.

71

10. Plane strain fracture : Fact vs. Fiction

Transverse stress through the thickness as a 

function of distance from the crack tip

 Consider a point on the crack plane (θ 

= 0) just ahead of the crack-tip.

 σxx = σyy under linear elastic conditions.

 Plane stress : σzz = 0

 Plane strain : σzz = 2νσyy (ν = 0.3)

HW #2 : Prove this.
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Effect of thickens on Apparent Fracture toughness

 The measured Kcrit values decrease with specimen thickness until a plateau 

is reached.

 This apparent asymptote in the toughness vs. thickness trend is designated 

by the symbol KIc, and is referred to as “plane strain fracture toughness”.

 A decrease in apparent toughness with specimen thickness, generally 

correspond to materials in which the crack propagation is ductile.
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Variation of measured fracture toughness with 

specimen thickness for an unspecified alloy

Variation of measured fracture toughness with 
specimen thickness for 7075-T6 Aluminum
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Effect of thickens on Apparent Fracture toughness

 In such tests, the crack “tunnels” through the center of the specimen.

 The crack grows preferentially in the region of high triaxiality. Crack growth 

on the outer regions of the specimen lags behind, and occurs at a 45° angle 

to the applied load. The resulting fracture surface exhibits a flat region in the 

central region and 45° shear lips on the edges.

 Fracture toughness tests on very thin plates or sheets typically result in a 

45° shear fracture. At larger thicknesses, there is generally some mixture of 

shear fracture and flat fracture. The thickness effect on the apparent 

fracture toughness is due to the relative portions of flat and shear fracture. 

 In the limit of a very thick specimen, the flat fracture mechanism dominates, 

and further increases in thickness have relatively little effect on the 

measured toughness.
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Effect of specimen thickness on fracture surface 

morphology for materials that exhibit ductile crack growth.
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Effect of thickens on Apparent Fracture toughness

 For very thin sections, plane strain conditions do not exist at x = xc. As the thickness 

increases, the size of the plane strain zone increases relative to the low triaxiality

zone near the free surfaces.

 This trend are not indicative of a transition from “plane stress fracture” to “plane 

strain fracture.” 

 Rather, this trend reflects the differing relative contributions of two distinct fracture 

mechanisms.

 In fact, there is no such thing as “plane stress fracture” except perhaps in very thin 

foil. There is nearly always some level of triaxiality along the crack front.

74

10. Plane strain fracture : Fact vs. Fiction

Effect of thickness on stress—the crack-tip 

stress state in the fracture process zone.

Fracture process zone at the tip of a 
crack tip
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Plastic Zone Effects

 3D elastic plastic finite element analyses of fracture toughness specimens  a high 

degree of triaxiality near the crack tip exists even when the entire cross-section has 

yielded.

 Although K is not valid as a characterizing parameter under fully plastic conditions, a 

single-parameter description of fracture toughness is still possible using the J integral, 

or cracktip-opening displacement.  

 The evolution of the Mode I plastic zone at mid-thickness in a plate containing an 

edge crack. The plastic zone boundary is defined at σe = σYS. 

 As the quantity increases relative to plate thickness B, the plastic zone size increases.

 At low KI values, the plastic zone has a typical plane strain shape, but evolves into a 

plane stress shape at higher KI values.
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Effect of KI, relative to thickness, of the 

plastic zone size and shape.
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Plastic Zone Effects

 Although the stress state at the plastic zone boundary is plane stress, the material 

close to the crack tip is subject to a triaxial stress state. The figure depicts a plastic 

zone in the center of an edge-cracked plate.

 Because the plastic zone size is of the same order of magnitude as the plate 

thickness, the plastic zone has a plane stress shape.

 At the crack tip, however, there is a zone of high triaxiality. As stated above, the zone 

of high triaxiality at the crack tip can persist even in the presence of large-scale 

plasticity.

 When performing laboratory KIc tests on standard specimens, the following size 

requirements have been adopted.
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Cracked plate in which the plastic zone 

size is of the same order of magnitude as 

the plate thickness

 Recall that the quantity (KIC/YS)
2 is proportional 

to the plastic zone size.

 The minimum requirements on the crack length 

and ligament length (W – a) are designed to 

ensure that the plastic zone is sufficiently small 

for fracture to be K-controlled. => ensure plane 

strain conditions along the crack front.


