

Contents	
☑ Ch. 1 Introduction to Ship Design	
☑ Ch. 2 Design Equations	
☑ Ch. 3 Design Model	
☑ Ch. 4 Deadweight Carrier and Volume Carrier	
☑ Ch. 5 Freeboard Calculation	
☑ Ch. 6 Resistance Prediction	
☑ Ch. 7 Propeller and Main Engine Selection	
☑ Ch. 8 Hull Form Design	
☑ Ch. 9 General Arrangement (G/A) Design	
☑ Ch. 10 Structural Design	
☑ Ch. 11 Outfitting Design	
nnovative Ship and Offshore Plant Design, Spring 2018, Myung-II Roh	

Engine 0 - 10	power range Reference: MAN/B&W, Two-stroke Engines MC Program, 2007 http://www.manbw.com/engines/TwoStrokeLowSpeedPropEnginesPr
	Search
Click or	engine type for details
r/min	12500 25000 37500 50000 82500 75000 87500 100000 KW
97	K98MC7
94	K98MC6
104	K98MC-C7
104	K98MC-C6
78	S90MC-C8
76	S90MC-C7
104	K90MC-C6
79	SBOMC6
78	S80MC-C8
76	\$80MC-C7
104	K80MC-C6
91	\$70MC6
91	S70MC-C8
91	\$70MC-C7
108	L70MC-C8
108	L70MC-C7
105	S60MC6
105	S60MC-C8
105	S60MC-C7
123	L60MC-C8
123	L60MC-C7
127	S50MC6
127	S50MC-C8
127	S50MC-C7
129	S46MC-C8
129	S46MC-C7
136	S42MC7
173	\$35MC7
210	L35MC6
250	S26MC6

MAN/Ba - S80M0	&W Two C6 Engine	Stroke	Low S	peed [Diesel E	ngine	
Example) S	80MC6 Engin	e: Bore 8	800 mm, 1	Stroke 3,	056 mm		
	Bore: 800 mm, Stro Main Data	oke: 3056 mm					
	Layout points		L	L ₂	L ₃	L ₄	
	Speed	r/min	79	79	59	59	
	mep	bar	18.0	11.5	18.0	11.5	
			kW	kW	kW	kW	
	5S80MC6		18200	11650	13600	8700	
	6S80MC6		21840	13980	16320	10440	
	7S80MC6	7580MC6 8580MC6 9580MC6 10580MC6		16310	19040	12180	
	8S80MC6			18640	21760	13920	
	9S80MC6			20970	24480	15660	
	10S80MC6			23300	27200	17400	
	11S80MC6		40040	25630	29920	19140	
	12S80MC6		43680	27960	32640	20880	
	Specific Fuel Oi	Consumption (SFC)C)				
	g/kWh		167	155	167	155	
	Lubricating an	d Cylinder Oil Co	nsumption				
	Lubricating oil			0.15 g/kWh			
	Cylinder oil			0.7 g/kWh			

[Appendix] Optimization by Using Lagrange Multiplier Method (1/2)

$$\frac{P}{2\pi n} = \rho \cdot n^2 \cdot D_p^{-5} \cdot K_Q$$

$$G_1(P_i, n, P) = \frac{P}{2\pi n} - \rho \cdot n^2 \cdot D_p^{-5} \cdot K_Q = 0 \quad \dots \quad (a)$$

$$\frac{R_T}{1-t} = \rho \cdot n^2 \cdot D_p^{-4} \cdot K_T$$

$$G_2(P_i, n) = \frac{R_T}{1-t} - \rho \cdot n^2 \cdot D_p^{-4} \cdot K_T = 0 \quad \dots \quad (b)$$

$$F(P_i, n) = \eta_0 = \frac{J}{2\pi} \cdot \frac{K_T}{K_Q} \quad \dots \quad (c)$$

$$move the and offshore Plant Design. Spring 2018. Myung-II Roh$$

$$P(P_i, n) = \frac{M_T}{2\pi n} \cdot \frac{M_T}{K_Q} \quad \dots \quad (c)$$

$$P(P_i, n) = \frac{M_T}{2\pi n} \cdot \frac{M_T}{K_Q} \quad \dots \quad (c)$$

 $\begin{array}{c} \label{eq:constraint} \hline \textbf{[Appendix] Optimization by Using Lagrange Multiplier}_{(M,n,P)=\frac{P}{2\pi n}-\rho\cdot n^2\cdot D_{\nu}^{1-k}, \xi_{0}} & (e) \\ \hline \textbf{Method (2/2)}_{(G,P,n,P)=\frac{P}{2\pi n}-\rho\cdot n^2\cdot D_{\nu}^{1-k}, \xi_{0}} & (e) \\ \hline \textbf{F}(P,n)=n_{0}=\frac{J}{2\pi}, \frac{K_{T}}{K_{0}} & (e) \\ \hline \textbf{F}(P,n)=n_{0}=\frac{J}{2\pi}, \frac{K_{T}}{K_{0}} & (e) \\ \hline \textbf{F}(P,n)=r_{0}=\frac{J}{2\pi}, \frac{K_{T}}{K_{0}} & (e) \\ \hline \textbf{F}$

Data at nominal MC	R (L1):	Data	of optimising poir	O2		
Power: 100% (L1)	21,360 BHP	Powe	er: 100% of (O)	17,730 BHP	15,100 BHP	
Speed: 100% (L1)	106 r/min	Speed: 100% of (O)		95.4 r/min	90.1 r/min	
Nominal SFOC	127 g/BHPh	SFO	C found:	125 g/BHPh	122.6 g/BHPh	
L70MC	Nominal SFOC in g at nominal MCR (L1	/BHPh)	ASFOC g/BHPh without TCS	Diagram 2 Part Load SFOC cur	SFOC g/BHPh 131	
Conventional turbochargers	127		+3		130	
High efficiency turbochargers	125		+1	Nominal SFOC -	128	
High efficiency turbochargers and TCS	min. 122			Saving Penalty-	01=M 125 124 123	
O ₁ : Optimised in M O ₂ : Optimised at 85% Point 3: is 80% of O ₂ Point 4: is 50% of O ₂	o of power in M = 0.80 x 0.85 of M = 68 = 0.50 x 0.85 of M = 42	% M .5% M	-5 -6 -7 40% 50% 6 42,5%	02 30 50% 70% 80% 90% 68% 85%	122 121 120 100% 110% 120% Power ZM	

[Stage 3] the Deter	Determination of Ship Speed, Engine Power, Engineed Propeller (1/5)	gine ed.	Spe	ed by Using
				Requirements of Design ship
Given	$D_P[\mathbf{m}]$: Propeller diameter			Determination of Principal Dimensions and C _b , L _{ob} , C _m , V _s (Fn)
	<i>P_i</i> [m]: Propeller pitch			Estimation of Resistance and Propulsion Power based on Empirical Methods, for example, Holtrop & Mennen (Cw, k, w, t, η _R)
	z: Number of blades			Prediction of Resistance and Propulsion Power by Applying Correction Factor
	A_E/A_O : Expanded area ratio			Assume the Diesel Engine Power and Speed (RPS)
	V _s [m/s]: Ship speed	Eng	Jine s	Assume the Propeller Diameter (D _p) Determination of Engine Power (P) and Speed (n), tage 1 and Propeller Pitch for Maximum η_0
	$R_T(V)$ [kN]: Resistance varied with ship speed	1 74	Ye	s Does Modify Main Engine?
Find	P [kW]: Delivered power to propeller from main engine (P=DHP·η _R) n [1/s]: Engine speed	Engine	Stage Stage	Determination the Propeller Design Point Determination of the Optimum Propeller Principal Dimensions and Ship Speed Determination of the Ship Speed, Engine Power, Engine Speed by Using the Given Propeller
nnovative Ship and	Offshore Plant Design, Spring 2018, Myung-II Roh			

Example of Determination of Propeller Principal Dimensions (1/9)									
Example) Determination of Propeller Principal Dimensions of									
DWT 7,400 ton/400TEU Container Ship								/	V
Given Data					draft	h^*			÷
Power and S	Speed of Diesel	Engine		 Mis 	cellane	eous Data			Т
- MCR = 4,500 PS, at 220 rpm - NCR = 85% MCR, at 208 rpm - Propeller RPM : 220 rpm - Blade Number (z): 4				- h (- h* - Dr - Se	Shaft (Shaft aft: 6.5 a Marg	Center He Immersio 5 [m] gin = 15%	ight): 2.35 n Depth):	[m] 4.15 [m]	
Model Test	Data								
Ship Speed V [knots]	EHP in calm water [PS]	T [kN]	R [kN	1]	w	t	η _R	$\eta_H = \frac{1-t}{1-w}$	
12.5	1686	248	192.	5 0	.381	0.224	1.018	1.254	
13.0	1965	278	216.	0 0	.380	0.223	1.022	1.253	
13.5	2240	304	236.	8 0	.379	0.221	1.024	1.254	
14.0	2536	331	258.	5 0	.377	0.219	1.026	1.253	
Innovative Ship and Offshore Pl	ant Design, Spring 2018, M	yung-Il Roh						-ydlab	83

Propeller EfficiencyImage: The efficiency of a propeller in open water is called open water efficiency $\eta_0 = \frac{T \cdot V_A}{2\pi n Q_0}$ Where, VA is the advance speed, T is the thrust, n is the rotation speed
(number of rotations per unit time), and Qo is the torque measured in the
open water test when the propeller is delivering thrust T at the rotation
speed n.Image: Image: Descent test is the thrust T at the same advance speed
it delivers the same thrust T at the same revolution n but needs torque Q
ungeneral, Q is different from Qo. Then, the efficiency of the propeller
behind the hull, $\eta_B = \frac{T \cdot V_A}{2\pi n Q}$

50

Hull Efficiency

e Ship and Offshore Plant Design, Spring 2018, Myung-II Roh

☑ The hull efficiency is defined as the ratio of the effective power for a hull with appendages to the thrust power developed by propellers. $\eta_{H} = \frac{EHP}{THP} = \frac{R_{T} \cdot V_{s}}{T \cdot V_{A}} = \frac{1-t}{1-w}$ where, EHP : Effective horse power, EHP = $R_{T} \cdot V_{s}$ R_{T} : Total resistance of bare hull V_{s} : Speed of the ship THP : Work done by the propeller in delivering a thrust T V_{A} : Advanced speed

(= Speed of the propeller with respect to the ambient water)

ydlab 101

