Lecture Note of Naval Architectural Calculation

Ship Stability

Ch. 9 Numerical Integration Method in Naval Architecture

Spring 2018

Myung-II Roh

Department of Naval Architecture and Ocean Engineering Seoul National University

laval Architectural Calculation, Spring 2018, Myung-II Roh

rydlab i

Contents

- ☑ Ch. 1 Introduction to Ship Stability
- ☑ Ch. 2 Review of Fluid Mechanics
- ☑ Ch. 3 Transverse Stability Due to Cargo Movement
- ☑ Ch. 4 Initial Transverse Stability
- ☑ Ch. 5 Initial Longitudinal Stability
- ☑ Ch. 6 Free Surface Effect
- ☑ Ch. 7 Inclining Test
- ☑ Ch. 8 Curves of Stability and Stability Criteria
- ☑ Ch. 9 Numerical Integration Method in Naval Architecture
- ☑ Ch. 10 Hydrostatic Values and Curves
- ☑ Ch. 11 Static Equilibrium State after Flooding Due to Damage
- ☑ Ch. 12 Deterministic Damage Stability
- ☑ Ch. 13 Probabilistic Damage Stability

val Architectural Calculation, Spring 2018, Myung-II Roh

sydlab 2

Ch. 9 Numerical Integration Method in Naval Architecture

- 1. Simpson's Rule
- 2. Gaussian Quadrature
- 3. Green's Theorem
- 4. Calculation of Hydrostatic Values by Using Simpson's Rule
- 5. Calculation of Hydrostatic Values by Using Gaussian Quadrature and Green's Theorem

lovel Architectural Calculation Spring 2018 Maying II Bob

∕ydlab ₃

1. Simpson's Rule

val Architectural Calculation, Spring 2018, Myung-Il Roh

ydlab 4

5.8.-1, 3.10.-1, and 7.36.-3 Rules

Jydlab 6

Derivation of Simpson's 1st Rule (1/4)

te the function \underline{y} by a parabola (s the form

polynomial curve) whose

$$y = a_0 + a_1 x + a_2 x^2$$

 $y=a_0+a_1x+a_2x^2$ pla is represented by three points defining this curve. So points (y_0,y_1,y_2) are obtained by dividing the given interval into equal y_0 , y_1 , y_2 , y_3 , y_4 , y_5 , y_5 , y_5 , y_6 , y_7 , y_8 , y_9

	/ydlab
aval Architectural Calculation, Spring 2018, Myung-II Roh	SEOUL NAT'L UNIV.

Derivation of Simpson's 1st Rule (3/4)

Integrate the area A from 0 to 2s. (Definite Integral

Naval Architectural Calculation, Spring 2018, Myung-Il Roh

ydlab 9

Derivation of Simpson's 2nd Rule (1/4)

Simpson's 2nd rule:

e the function by a

polynomial curve whose equation has the

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

polynomial curve is represented by four points defining this curve. Sints (y_0, y_1, y_2, y_3) are obtained by dividing the given interval into equal "s"

Cubic polynomial curve

The relation between the coefficients a_0 , a_1 , a_2 , a_3 ("Find") and y_0 , y_1 , y_2 , and y_3 are

aval Architectural Calculation, Spring 2018, Myung II Kon

/ydlab 11

The unknown coefficients, a_{μ} a_{μ} , a_{μ} and a_{μ} lead

Derivation of Simpson's 2nd Rule (3/4)

/ydlab

Integrate the area A from 0 to 3s

	y, y ₁ _y ₂ _y ₃]
Naval Architectural Calculation, Spring 2018, Myung-II Roh	76	JUGO 13

Derivation of 5.8.-1 Rule (1/4)

$$y = a_0 + a_1 x + a_2 x$$

te the function y by a parabola whose equation has the form $y = a_0 + a_1 x + a_2 x^2$ pla is represented by three points defining this curve. Doints (y_0, y_1, y_2) are obtained by dividing the given interval into equal y_0, y_1, y_2, y_3 are obtained by dividing the given interval into equal

rydlab 15

Derivation of 5·8·-1 Rule (3/4) $a_0 + a_1 x + a_2 x^2$

rydiat

Integrate the area A from 0 to s.

Derivation of 3·10·-1 and 7·36·-3 Rules

$$M_{y} = M_{L} = \int_{0}^{s} x dA = \int_{0}^{s} xy dx = \int_{0}^{s} a_{0}x + a_{1}x^{2} + a_{2}x^{3} dx$$

$$= \frac{1}{24} s_{\frac{110}{100}}^{2} \left(3 \underbrace{y_{0} + 10y_{0}}_{\frac{1}{100} \text{ total point of a low about } - y_{2}}_{\frac{1}{100} \text{ total point of a low about } - y_{2}} \right)$$

rydlab 19

Naval Architectural Calculation Spring 2018 Myung-II Rob

				Since bending M . The boundary of g is a given boundary of M as a given bound $\{X_i^{(k)}\}$	
Canada	an quadraturs:				C_MINISTER C_MINISTER A_MINISTER
Calculation of Area by U ${\cal N}$	Jsing Gaussian Quadrature	Node t_j			
3		$t_1 = -0.7745966692$ $t_2 = 0$			
		t ₃ = 0.7745966692	Coefficients		
Naval Architectural Calculation, Spring 2018,	, Myung-II Roh			/ydlaby stole Matt Unity.	21

Calculation of Area by Using Green's Theorem

Naval Architectural Calculation, Spring 2018, Myung-Il Roh

JUGIO 23

Calculation of First Moment of Area by Using Green's Theorem (2/2)

$$\therefore 2M_{A,x} = \oint_C \left(xy dy - \frac{y^2}{2} dx \right)$$

Naval Architectural Calculation, Spring 2018, Myung-II Roh

rydlab 25

Naval Architectural Calculation, Spring 2018, Myung-II Roh

[Example] Calculation of Area, First Moment of Area, an Centroid with Respect to the Inertial Frame (2/10)

Segment ②:

$$\frac{1}{2} \int_{\mathcal{Q}} y dz - z dy = \frac{1}{2} \int_{0}^{\sqrt{2}} \left(y \frac{dz}{dt} - z \frac{dy}{dt} \right) dt$$

(Comple) Collidation of Jones, Front Remove of Jones, and Control with Respect to the Instructions (4/16):
$$\frac{1}{2}\int_{\mathbb{D}}\frac{y^2}{2}dz-yzdy=-\frac{\sqrt{2}}{3}$$

[Example] Calculation of Area, First Moment of Area, at Centroid with Respect to the Inertial Frame (8/10)

$$= \frac{1}{2} \int_0^{\sqrt{2}} \left(t(t - \sqrt{2}) \cdot 1 - \frac{(t - \sqrt{2})^2}{2} \cdot 1 \right) dt$$

__

[Example] Calculation of Area, First Moment of Area, an Centroid with Respect to the Inertial Frame (10/10)

$$M_{A,z} = \frac{1}{2} \oint_{C} \frac{y^{2}}{2} dz - yz dy = 0$$

[Example] Calculation of Area, First Moment of Area, and Centroid with Respect to the Body Fixed Frame (2/10)

[Example] Calculation of Area, First Moment of Area, and Centroid with Respect to the Body Fixed Frame (4/10)

[Example] Calculation of Area, First Moment of Area, and Centroid with Respect to the Body Fixed Frame (6/10)

[Example] Calculation of Area, First Moment of Area, and Centroid with Respect to the Body Fixed Frame (8/10)

[Example] Calculation of Area, First Moment of Area, and Centroid with Respect to the Body Fixed Frame (10/10)

4. Calculation of Hydrostatic Values by Using Simpson's Rule

Architectural Calculation, Spring 2018, Myung-II Roh

rydlab 49

Water Line and Water Plan (Half-Breadth Plan) ✓ Water line is a curve located on a water plane (vertical) section (x-y plane). ✓ Water lines make up the water plan or half-breadth plan of lines. Water Plan (Plan View) — DLWL (Design Load Water Line) Design Draft Example of water line of a 320K VLCC

Calculation of the First Moment of Sectional Area

$$Area_1 = \int dA = \frac{1}{3}s(y_0 + 4y_1 + y_2) = \frac{1}{3}w(HB_0 + 4HB_1 + HB_2)$$

∕ydlab ∞

Calculation of the First Moment of Sectional Area

Calculation of the First Moment of Sectional Area (about z axis)

$$\begin{split} M_{z,1} &= \int z dA = \frac{1}{3} s(Y_0 + 4Y_1 + Y_2) \\ &= \frac{1}{3} s \left(1 \cdot ((y_0 / 2) \cdot y_0) + 4 \cdot ((y_1 / 2) \cdot y_1) + 1 \cdot ((y_2 / 2) \cdot y_2) \right) \\ &= \frac{1}{3} w \left(1 \cdot ((HB_0 / 2) \cdot HB_0) + 4 \cdot ((HB_1 / 2) \cdot HB_1) + 1 \cdot ((HB_2 / 2) \cdot HB_2) \right) \end{split}$$

Naval Architectural Calculation, Spring 2018, Myung-II Roh

Calculation of Displacement Volume

☑ The displacement volume (underwater volume) at a certain draft can be calculated by integrating sectional areas in the longitudinal direction.

☑ In addition, the volume can be calculated by integrating water plane areas in the vertical direction. There can be a difference between two volumes due to approximation.

Naval Architectural Calculation, Spring 2018, Myung-II Roh

Calculation for Wetted Surface Area

- ☑ The wetted surface area means ship's area which contacts with water.
- ☑ This area can be calculated with the following approximate formula.

$$S = \mathcal{S}z \int_{Sta. \, 6}^{Sta. \, 6} \sqrt{1 + \left(\frac{dy}{dx}\right)^2 + \left(\frac{dy}{dz}\right)^2} dx$$

Naval Architectural Calculation, Spring 2018, Myung-Il Roh

∕ydlab ₅₅

 $\delta z = (6-3) = 3 \, m$ 67 10 MeV hadro make 10, MeV hadro make 10, MeV hadro make 10, MeV hadro make 10 MeV hadro make MeV 10, MeV 10

(1)	(1.1)	(1.2)	(2)	(3)	(4)	(4.1)	(4.2)	(5)	(5.1)	(5.2)	(6)	(7)	(8)	(9)	(10)	(11)
Sta.	HB 6m	HB 3m	δу/δz	(δy/δz) ²	Sta. Ford.	HB 6m	HB 3m	Sta. Aft.	HB 6m	HB 3m	Mean δy/δx	(δy/δx) ²	Sum	(Sum) ^{1/2}	S.M	Prod.
5	19,66	18.41	0.42	0.17	6	20,12	19.84	4	17.56	15,56	-0.12 (2)	0.01	1,18	1.09	1	1.09
4	17.56	15,47	0.70	0.49	5	19.66	18.41	3	13,38	11.16	-0.24	0,06	1.55	1.24	3	3.72
3	13,38	11,16	0,74	0,55	4	17,56	15,47	2	8,14	6,64	-0,33	0,11	1,66	1,29	3	3,87
2	8.14	6,64	0.50	0,25	3	13,38	11.16	1	2,62	2,16	-0,35	0,13	1,38	1.17	1, 444	1.69
11/2	5,43	4,39	0,35	0.12	2	8,14	6,64	1 (3)	2,62	2,16	-0,36	0,13	1,25	1,12	1,778	1,99
1	2.62	2,16	0.15	0.02	11/2	5,43	4,39	1/2	-0.22+	-0.28+	-0.37	0.14	1,16	1,08	0, 444	0.48
															Σ =	12.84

2. Substituting 1) and 2) into the formula.

$$S \approx \delta z \int_{Sta.5}^{Sta.5} \sqrt{1 + \left(\frac{\delta y}{\delta x}\right)^2 + \left(\frac{\delta y}{\delta z}\right)^2} dx$$

邶

(1)	(1.1)	(1.2)	(2)	(3)	(4)	(4.1)	(4.2)	(5)	(5.1)	(5.2)	(6)	(7)	(8)	(9)	(10)	(11)
Sta.	HB 6m	HB 3m	δу/δz	(δy/δz) ²	Sta. Ford.	HB 6m	HB 3m	Sta. Aft.	HB 6m	HB 3m	Mean δy/δx	(δy/δx) ²	Sum	(Sum) ^{1/2}	S.M	Prod.
5	19,66	18,41	0.42	0.17	6	20,12	19.84	4	17.56	15,56	-0.12 (2)	0.01	1,18	1.09	1	1.09
4	17.56	15,47	0.70	0.49	5	19.66	18.41	3	13,38	11.16	-0.24	0,06	1,55	1.24	3	3.72
3	13,38	11,16	0,74	0,55	4	17,56	15,47	2	8,14	6,64	-0,33	0,11	1,66	1,29	3	3,87
2	8.14	6,64	0.50	0,25	3	13,38	11.16	1	2,62	2,16	-0,35	0,13	1,38	1.17	1, 444	1.69
11/2	5,43	4,39	0,35	0,12	2	8,14	6,64	1 (3)	2,62	2,16	-0,36	0,13	1,25	1,12	1,778	1,99
1	2,62	2,16	0.15	0.02	11/2	5,43	4,39	1/2	-0.22+	-0.28+	-0,37	0.14	1,16	1.08	0, 444	0.48
															Σ =	12,84

71

III bellowith control III, bellowith control II, bellowith cont

laval Architectural Calculation, Spring 2018, Myung-II Roh

∕ydlab 73

Description of Section Lines (1/2)

Given: B-spline curve, the intersection points between the B-spline curve and water plane, and B-spline parameter "u" at each end point of the line segments Find: Sectional area and 1st moment of section

Children of Technical Area and 1º Manuscut of Sectional
Area Good Technical Code

Manuscut of Sectional

Area Code Technical Code

Area Code Technic

 $u = \frac{(t+1)(u_{\text{max}} - u_{\text{min}})}{2} + u_{\text{min}}$

X Method to check whether the line segments are located under the water plane or not

 $\mathbf{n} \cdot (\mathbf{X} - \mathbf{O}) > 0$

Calculation of Water Plane Area, 1st and 2nd Moment of Water Plane Area

Given: Intersection points between the water plane and the section lines Find: Water plane area, 1st moment and 2nd moment of the water plane area

