Engineering Economic Analysis

2019 SPRING

Prof. D. J. LEE, SNU

INTRODUCTION

MOTIVATION

Engineering

- Engineering: the science or profession of engineer who plans and understands the making of machines, roads, bridges, etc.
 Longman Dictionary
- A discipline which is related to 'making something'
- Making: designing, producing, manufacturing
- Something: goods, services
- By whom?
 - Producer, Firm
- For whom?
 - User, Consumer
- In what place is something delivered?
 - Market

OBJECTIVES

 Engineers must understand economic mechanism, in particular micro-economics, to apply economic analysis in their (engineering) job for better (engineering) results!

Engineering Economic Analysis

- Provide a guide to making good engineering and managerial decisions.
- Use formal models to analyze the effects of engineering and managerial decisions on measures of a firm's success.
- Differs from microeconomics
 - Microeconomics focuses on description and prediction.
 - Engineering economic analysis is prescriptive.

Engineering Economic Analysis

2019 SPRING

Prof. D. J. LEE, SNU

THE MARKET

Economic Modeling

- Simplified representation of a reality
 - Diagram, Graph
 - Mathematical formulation
- Variables: elements of an economic model
 - Exogenous: not determined by forces (mechanisms) in the model, but just given outside the model
 - Endogenous: determined by forces (mechanisms) in the model
- Functions: relationship among variables

Economic Modeling

- Solutions: results of the analysis on an economic model
 - Optimization principle: rational agents pursue the best result given some constraints
 - *Equilibrium principle*: the results where rational agents do not have incentive to deviate from

Modeling the Apartment Market

- How are apartment rents determined?
- Suppose
 - apartments are close or distant, but otherwise identical
 - distant apartments rents are exogenous and known
 - many potential renters and landlords

Modeling the Apartment Market

- Who will rent close apartments?
- At what price?
- Will the allocation of apartments be desirable in any sense?
- How can we construct an insightful model to answer these questions?

Modeling Apartment Demand

- Reservation price: the highest price that a given person will accept and still purchase the good
- How much is your (maximum) willingness to pay to rent a close apartment?

Modeling Apartment Demand

- Demand: Suppose the most any one person is willing to pay to rent a close apartment is \$500/month. Then p = \$500 ⇒ Q^D = 1.
- Suppose the price has to drop to \$490 before a
 2nd person would rent. Then $p = $490 \Longrightarrow Q^{D} =$ 2.
- The lower is the rental rate p, the larger is the quantity of close apartments demanded

$$p \downarrow \Longrightarrow Q^{D} \uparrow.$$

Demand Curve for Apartments

Market Demand Curve for Apartments

 The quantity demanded vs. reservation price with many demanders

Modeling Apartment Supply

- Supply: It takes time to build more close apartments so in this short-run the quantity available is fixed (at say 100).
 - Many independent landlords who are each want to rent their apartments for the highest: competitive market
 - No costs after rental: To give rental at any rental fee is always better than idling the apartment

Short-run Supply Curve for Apartments

Quantity demanded = Quantity supplied
 ⇒ price will neither rise nor fall

so the market is at an equilibrium.

In more general mathematical form

 $Q^{D}(p; a_{1},...,a_{n})$: Demand function $Q^{S}(p; a_{1},...,a_{n})$: Supply function

Equilibrium condition

$$Q^{D}(p; a_{1},...,a_{n}) = Q^{S}(p; a_{1},...,a_{n})$$

Equilibrium price

$$p^{e} = f(a_{1},...,a_{n})$$

Q: Who rents the close apartments?

Q: Who rents the close apartments?

A: Those most willing to pay.

The assignment of apartments to renters is determined by how much they are willing to pay and the level of market equilibrium price

Invisible hand

Comparative Statics

- Method to analyze the behavior of the equilibrium price (the solution of model) when various aspects (exogenous variables) of the market change
- What is exogenous in our model?
 - price of distant apartments
 - quantity of close apartments
 - incomes of potential renters
 - Etc.

Comparative Statics

- Suppose the price of distant apartment rises.
- ⇒ Demand for close apartments increases (rightward shift), causing

Comparative Statics

- In mathematical methods, *partial differentiation* can be used for comparative statics
- To analyze the changes of equilibrium price with respect to the changes of certain exogenous variable, i.e. a_i, it is enough to calculate

$$\frac{\partial p^e}{\partial a_i} = \frac{\partial f(a_1, \dots, a_n)}{\partial a_i}$$

Other Ways to Allocate Apartments

- Amongst many possibilities are:
 - a monopolistic landlord (for example Prof. DJ) who can set the uniform price
 - a perfectly discriminatory monopolistic landlord who can sell the identical apartment to each rent seeker with different prices
 - a competitive market subject to rent control.

A Monopolistic Landlord

- When the landlord sets a rental price p, the monopolist can rent Q^D(p) amount of apartments.
- Revenue = $p^*Q^D(p)$
- The monopolist wants to maximize this revenue

Monopolistic Market Equilibrium

Monopolistic Market Equilibrium

Perfectly Discriminatory Monopolistic Landlord

- Imagine the monopolist knew everyone's willingness-to-pay.
- Force to charge \$500 to the most willing-to-pay,
- Force to charge \$490 to the 2nd most willing-topay, etc.
- Auction

Discriminatory Monopolistic Market Equilibrium

Rent Control

 Local government imposes a maximum legal price which is less than the competitive price, p^{max} < p^e,

Which Way is Best?

• Which is better?

- Rent control
- Perfect competition
- Monopoly
- Discriminatory monopoly
- How to define "best"?
- Pareto efficiency: Bottom line

- Pareto improvement: Be able to find a way to make some economic agents(whatever individual or firm) better off without making anybody else worse off
- Pareto efficient: a state where if an allocation is such that no Pareto improvements are possible

- Jill has an apartment; Jack does not.
 - Jill values the apartment at \$200; Jack would pay \$400 for it.
 - Jill could sublet the apartment to Jack for \$300.
 - Both gain with nobody hurts, so it was Pareto inefficient for Jill to have the apartment.
- Now Jack has an apartment; Jill does not.
 - Jack values the apartment at \$400; Jill would pay at most \$200 for it.
 - No ways of gains-to-trade
 - This is Pareto efficient (optimal)

- How to check whether one way of apartment allocation is Pareto efficient or not?
- Enough to check that (i) anyone who has a close apartment must have a higher reservation price than anyone who has a distant apartment – otherwise, they could make a trade and make both people better off, and (ii) the number of allocated apartment is an equilibrium (Demand = Supply).

- Competitive equilibrium:
 - all close apartment renters value them at the market price p^e or more
 - all others value close apartments at less than p^e
 - so no mutually beneficial trades remain
 - so the outcome is Pareto efficient.

Discriminatory Monopoly:

- assignment of apartments is the same as with the perfectly competitive market
- so the discriminatory monopoly outcome is also Pareto efficient.

Monopoly:

- not all apartments are occupied
- so the monopolist can increase his revenue by renting an apartment to someone who doesn't have one at positive price
- Both the monopolist and the renter must be better off without lowering anybody else's welfare.
- so the monopoly outcome is Pareto inefficient.

- Rent Control:
 - some close apartments are assigned to renters valuing them at below the competitive price p^e
 - some renters valuing a close apartment above pe don't get close apartments
 - Pareto inefficient outcome.

LONG-RUN EQUILIBRIUM

- The supply can change in the long run
- Problem: How many apartments will be provided by various types of market institution?
 - the supply of close apartments increase?
 - rent control decrease the supply of apartments?
 - a monopolist supply more apartments than a competitive rental market?