Fundamentals of Monte Carlo Method

Shim, Hyung Jin

Nuclear Engineering Department, Seoul National University

Contents

- 1. What is Monte Carlo?
 - **1.1 Definition of Monte Carlo Method**
 - **1.2 Random Variate Generations**
- 2. Simulation of Neutron's Life
 - 2.1 Generation
 - 2.2 Flight/Collision
 - 2.3 Disappearance

1.1 What is the Monte Carlo method?

Monte Carlo Method & Random Number

- What is the Monte Carlo method?
 - A class of computational algorithms that rely on repeated **random sampling** to compute their results (Wikipedia)
 - A computational method to estimate representative values from the stochastic simulations of a physical or mathematical system using random numbers (H. J. Shim)

- A method of solving problems using **statistics**
- A method of solving problems using **random numbers**

A series of random variate generations by using random numbers

What Is the Random Number?

- Random Number
 - **unpredictable number** (following the uniform distribution in a certain interval)
 - A random number is a number chosen as if **by chance** from some specified distribution such that selection of a large set of these numbers reproduces the underlying distribution. Almost always, such numbers are also required to be independent, so that there are no correlations between successive numbers.

(http://mathworld.wolfram.com)

- A number generated for or part of a set exhibiting statistical randomness.
 - A numeric sequence is said to be statistically random when it contains **no recognizable patterns or regularities**; sequences such as the results of an ideal die roll, or the digits of π exhibit statistical randomness.
 - (Wikipedia)

How to Real Random Number & Difficulties

- Toss an ideal coin, roll an ideal dice, or draw a ball from an ideal machine
 - Takes lots of time.
 - Hard to make the ideal equipments.
 - Cannot re-generate the random sequence for benchmarking and debugging.
- Quantum random number generator (Google it!)

(M. Stipcevic, B. M. Rogina, "Quantum random number generator based on photonic emission in semiconductors," Review of Scientific Instruments **78**, 045104 (2007).)

• Need a big data storage for exact reproductions of the results

(Additive) Multiplicative Congruential Method

Multiplicative Congruential Method

$$\xi_{n+1} = (\lambda \times \xi_n) \mod P$$

- D. H. Lehmer, "Mathematical methods in large-scale computing units," Annals Comp. Laboratory Harvard Univ. 26, 141-146, 1951.
- The maximum sequence length for P of 2^b becomes 2^{b-2} with an odd seed number and λ satisfying $\lambda \mod 8 = \pm 3$.

(L. J. Gannon, L. A. Schmittroth, "Computer generation and testing of random numbers," TID-4500, 1963)

Additive Multiplicative Congruential Method

$$\xi_{n+1} = (\lambda \times \xi_n + \mu) \mod P$$

- A. Rotenberg, "A new pseudo-random number generator," *J. Assoc. Comput.*, Mach. 7, 1960.
- The maximum sequence length for P of 2^{b} becomes 2^{b} with an odd seed number, an odd μ , and λ of $2^{a}+1(a>2)$.

(L. J. Gannon, L. A. Schmittroth, "Computer generation and testing of random numbers," TID-4500, 1963)

Examples of RNG's

 The MCM and AMCM have been widely used for various workstation and Monte Carlo codes.

Name	Equation
Janet Nicholls ^(a)	$\xi_{n+1} = (2e90edd_{(16)} \times \xi_n) \mod 2^{48}$
CRAY Library	$\xi_{n+1} = \left(2875a2e7b175_{(16)} \times \xi_n \right) \mod 2^{48}$
MCNP Code ^(b)	$\xi_{n+1} = \left(1158e460913d_{(16)} \times \xi_n \right) \mod 2^{48}$
GNU-C Library	$\xi_{n+1} = (5 \text{deece66d}_{(16)} \times \xi_n + b_{(16)}) \mod 2^{48}$

(a) Janet Nicholls, "Random number generators," AECL-3476, 1969.

(b) J. F. Briesmeister, Ed., "MCNP - A General Monte Carlo N-Particle Transport Code, Version 4A," LA-12625-M, 1993.

1.2 Random Variate Generation

Inverse Transform Method

■ From a probability density function (PDF), f(x) for a≤x≤b, the corresponding cumulative probability density function (CDF), F(x) can be defined as

$$F(x) = \int_{a}^{x} f(x') dx'$$

When a random variable X follows a PDF, *f*(*x*) and its corresponding CDF, *F*(*x*), it can be sampled using a random number, *ξ*, which is sampled from a uniform distribution in interval (0,1), as

$$\xi = F(x) \implies X = F^{-1}(\xi)$$

• Proof:

$$P(X \le x) = P[F^{-1}(\xi) \le x] = P[\xi \le F(x)] = F(x)$$

Explanatory Diagram of Inverse Transform Method

SNU Monte Carlo Lab.

Acceptance – Rejection Method – 1/2

- It is common that the CDF and its inverse function for a random variable cannot be analytically obtained.
- A random variable X, which follows the PDF, f(x) in interval [a,b] can be sampled by trial and error as

① Sample X by $X = a + (b-a) \cdot \xi_1$ using a random number ξ_1 .

② From another random number ξ_2 , accept X if $\xi_2 \leq f(X)$ and return to ① elsewhere.

Acceptance – Rejection Method – 2/2

 In order to enhance the sampling efficiency, the PDF f(x) can be represented as

f(x) = Ch(x)g(x)

where $C \ge 1$, h(x) is also a PDF, and $0 < g(x) \le 1$.

• Then X can be sampled as

(1) Sample X from the PDF of h(x).

② Using a random number ξ , accept X if $\xi \leq g(X)$ and reject elsewhere.

2. Simulation of Neutron's Life

Monte Carlo Reactor Analysis

Neutron's Life

2.1. Generation

Neutron Generation

• How many ?

< Calculation Mode by the source type >

Mode	Fixed Source Calculation	Criticality Calculation or Eigenvalue Calculation
Source	Predefined Fixed Source	Fission Neutron
Input Card	NSrc 10000	Criticality 1.0 1000x110 10

• What kinds of source information?

<status> * Location: * Energy: * Direction: * Weight: * Time:</status>	3 (loc[0], loc[1], loc[2]) 1 (energy) 3 (dir[0], dir[1], dir[2]) 1(weight) 1 (time)	
<geometry data=""> * Cell Index:</geometry>	1 (Cel)	

Example of Input Parameters

Built-in energy distribution functions

Spectrum	Usage
Maxwellian Fission Spectrum $p(E) = C\sqrt{E}e^{-E/a}$	n + ²⁴¹ Pu Thermal 1.3597 1 1.3752 14 1.5323
Watt Fission Spectrum $p(E) = Ce^{-E/a} \sinh \sqrt{bE}$	n + 235U Thermal 0.988 2.249 1 0.988 2.249 14 1.028 2.084
Evaporation Spectrum $p(E) = CEe^{-E/a}$	

2.2. Flight and Collision

Sampling the flight length

 A probability that a particle flies as long as l and collides with a atom can be written as

• Then, the flight length can be sampled by

$$\xi = \int_0^x \Sigma_t \exp(-\Sigma_t l) dl$$
$$\mathbf{I}$$
$$\mathbf{I}$$
$$x = -\frac{\ln(1-\xi)}{\Sigma_t} = -\frac{\ln\xi'}{\Sigma_t}$$

Simulation of Neutron's Flight

• Sample a distance to collision (DTC) by the inverse transform method.

$$p(l) = \Sigma_{t} \exp(-\Sigma_{t} l) \implies \xi = \int_{0}^{x} \Sigma_{t} \exp(-\Sigma_{t} l) dl \implies x = -\frac{\ln(1-\xi)}{\Sigma_{t}}$$

$$< \text{PDF}> \qquad < \text{CDF}> \qquad < \text{Inverse}>$$

- Calculate the minimum distance to surface (DTS).
 - Line equation for a given pos. and dir.: $\frac{x x_0}{UUU} = \frac{y y_0}{VVV} = \frac{z z_0}{WWW}$...(1)
 - Plane equation: $f(x, y, z) = 0 \dots (2)$
 - Find the cross point between Eqs. (1) and (2), calculate the distance between two points current location and the cross point.
- Calculate the flight length:

Flight length = DTC if DTC < DTS = DTS if DTC > DTS

Selection of a Collided Nuclide

Nuclide	Σ_{t}	PDF	CDF
U-235	0.107	0.216	0.216
U-238	0.211	0.425	0.641
O-16	0.178	0.359	1.000

Simulation of Neutron's Collision with Atoms

• Sample a nuclide with which the neutron collides after a flight.

$$\sum_{i=1}^{k-1} \Sigma_{ti} < \xi \sum_{i=1}^{N} \Sigma_{ti} \le \sum_{i=1}^{k} \Sigma_{ti}$$

where *N* is the number of different nuclides forming the material corresponding to the neutron location.

- Sample a reaction type.
 - Sampling among the absorption, elastic scattering, and inelastic reaction types.

$$\sum_{i=1}^{k-1} \sigma_i < \xi \sum_{i=1}^{3} \sigma_i \le \sum_{i=1}^{k} \sigma_i \quad (i = abs., els., ins.)$$

• When the inelastic reaction type is selected, sample a specific inelastic reaction type.

$$\sum_{i=1}^{k-1} \sigma_i < \xi \sum_{i=1}^{N-3} \sigma_i \le \sum_{i=1}^{k} \sigma_i \quad (i = (n, 2n), (n, fis.), ...)$$

Definition of Reaction (MT) Types used in ENDF format

- From http://www.nea.fr/html/dbdata/data/nds_eval_mfmt.htm
- Summary

mt 1~100	Reaction types in which secondary particles of the same type as the incident particles are emitted
mt 101~150	Reaction types in which no secondary particles of the same type as the incident particles are emitted
mt 151 ~ 200	resonance region information
mt 201 ~ 450	quantities derived from the basic data
mt 451 ~ 699	miscellaneous quantities
mt 700 ~ 799	excitation cross sections for the reactions that emit charged particles

Monte Carlo Reactor Analysis Definition of Reaction (MT) Types used in ENDF format - Important MT Numbers

MT number	Definition
1	(n,total)
4	(z,n), sum of the MT $50 \sim 91$
16	(z,2n)
17	(z,3n)
18	(n,F), sum of the MT 19, 20, 21, and 38
19	(n,f), first-chance fission
20	(n,nf), second-chance fission
21	(n,2nf), third-chance fission
38	(n,3nf), fourth-chance fission
51~90	(n,n'), cross-section to the excited state of the residual nucleus from the first to the 40^{th} excitation
91	(z,nc), not included in MT51~90
102	(z,y), radiative capture xs
103	(z,p)

Simulation of Neutron's Collision with Atoms (Again)

- Determine a number of emitting neutrons from the selected collision.
 - Reaction types: (n,fis.), (n,2n), (n,3n), (n,4n)
 - For a fission reaction, v = [v] if $\xi > \overline{v} [v]$ v = [v] + 1 else
- Sample an energy and direction after the collision.
 - Sample them from the PDF's given in the xs libraries.
 - Energy PDF: ENDF Law1, 2, 3, 4, 5, 7, 9, 11, 22, 24, 44, 66, 67

• Direction PDF: Isotropic distribution or 32 equiprobable cosine dist.

2.3. Disappearance

Neutron's Death

- When it escapes the analyzed system,
- When an absorption reaction happens in the analog Monte Carlo calculations,
- When the neutron is killed by the Russian roulette algorithm which is performed for a low-weight neutron in the non-analog Monte Carlo calculations,

Flowchart for the MC Neutron Simulations

Insert the processes of neutron's disappearance.

Collision Density Equation

• The integral equation for the collision density $\psi(\mathbf{P})$ defined by $\Sigma_t(\mathbf{r}, E)\phi(\mathbf{P})$ can be written as

$$\psi(\mathbf{P}) = \int d\mathbf{r}' T(E, \Omega; \mathbf{r}' \to \mathbf{r}) S(\mathbf{r}', E, \Omega) + \int d\mathbf{P}' K_s(\mathbf{P}' \to \mathbf{P}) \psi(\mathbf{P}') \quad \text{(B.1)}$$

 K_s is defined by the product of the scattering collision kernel, C_s and the transition kernel [B.1] (or the free flight kernel), *T*:

$$K_{s}(\mathbf{P}' \to \mathbf{P}) = T(E, \mathbf{\Omega}; \mathbf{r}' \to \mathbf{r}) \cdot C_{s}(\mathbf{r}'; E', \mathbf{\Omega}' \to E, \mathbf{\Omega}); \qquad (B.2)$$

$$C_{s}(\mathbf{r}'; E', \mathbf{\Omega}' \to E, \mathbf{\Omega}) = \sum_{r \neq fis.} \nu_{r} \frac{\Sigma_{r}(\mathbf{r}'; E', \mathbf{\Omega}')}{\Sigma_{t}(\mathbf{r}', E')} f_{r}(E', \mathbf{\Omega}' \to E, \mathbf{\Omega})$$
(B.3)

$$T(E, \mathbf{\Omega}; \mathbf{r}' \to \mathbf{r}) = \frac{\Sigma_t(\mathbf{r}, E)}{\left|\mathbf{r} - \mathbf{r}'\right|^2} \exp\left[-\int_0^{|\mathbf{r} - \mathbf{r}'|} \Sigma_t(\mathbf{r} - s\frac{\mathbf{r} - \mathbf{r}'}{\left|\mathbf{r} - \mathbf{r}'\right|}, E)ds\right] \delta\left(\mathbf{\Omega} \cdot \frac{\mathbf{r} - \mathbf{r}'}{\left|\mathbf{r} - \mathbf{r}'\right|} - 1\right) \quad (B.4)$$

 v_r is the average number of neutrons produced from a reaction type *r* and f_r is the probability that a collision of type *r* by a neutron of direction Ω' and energy *E'* will produce a neutron in direction interval $d\Omega$ about Ω with energy in *dE* about *E*.

([B.1] I. Lux, L. Koblinger, "Monte Carlo Particle Transport Methods: Neutron and Photon Calculations," CRC Press (1991).)

Neumann Series Solution of CDE

• From the Neumann series solution for the integral transport equation, the neutron flux can be written as

$$\phi(\mathbf{r}, E, \mathbf{\Omega}) = \frac{1}{\Sigma_t(\mathbf{r}, E)} \sum_{j=0}^{\infty} \int d\mathbf{r}' \int dE_0 \int d\mathbf{\Omega}_0 K_{s,j}(\mathbf{r}', E_0, \mathbf{\Omega}_0 \to \mathbf{r}, E, \mathbf{\Omega}) \\ \times \int d\mathbf{r}_0 T(E_0, \mathbf{\Omega}_0; \mathbf{r}_0 \to \mathbf{r}') S(\mathbf{r}_0, E_0, \mathbf{\Omega}_0),$$

$$K_{s,j}(\mathbf{r}', E_0, \mathbf{\Omega}_0 \to \mathbf{r}, E, \mathbf{\Omega}) = \int d\mathbf{r}_1 \int dE_1 \int d\mathbf{\Omega}_1 \cdots \int d\mathbf{r}_{j-1} \int dE_{j-1} \int d\mathbf{\Omega}_{j-1}$$
$$\times K_s(\mathbf{r}_{j-1}, E_{j-1}, \mathbf{\Omega}_{j-1} \to \mathbf{r}, E, \mathbf{\Omega}) \cdots K_s(\mathbf{r}', E_0, \mathbf{\Omega}_0 \to \mathbf{r}_1, E_1, \mathbf{\Omega}_1)$$

 $K_{s}(\mathbf{r}', E', \mathbf{\Omega}' \to \mathbf{r}, E, \mathbf{\Omega}) = T(E', \mathbf{\Omega}'; \mathbf{r}' \to \mathbf{r})C_{s}(\mathbf{r}; E', \mathbf{\Omega}' \to E, \mathbf{\Omega})$

$$C_{s}(\mathbf{r}'; E', \mathbf{\Omega}' \to E, \mathbf{\Omega}) = \sum_{r \neq fis.} \nu_{r} \frac{\Sigma_{r}(\mathbf{r}'; E', \mathbf{\Omega}')}{\Sigma_{t}(\mathbf{r}', E')} f_{r}(E', \mathbf{\Omega}' \to E, \mathbf{\Omega})$$
$$T(E, \mathbf{\Omega}; \mathbf{r}' \to \mathbf{r}) = \frac{\Sigma_{t}(\mathbf{r}, E)}{\left|\mathbf{r} - \mathbf{r}'\right|^{2}} \exp\left[-\int_{0}^{|\mathbf{r} - \mathbf{r}'|} \Sigma_{t}(\mathbf{r} - s\frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}, E) ds\right] \delta\left(\mathbf{\Omega} \cdot \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|} - 1\right)$$

