

Contents	
☑ Ch. 1 Introduction to Ship Design	
☑ Ch. 2 Design Equations	
☑ Ch. 3 Design Model	
Image: Ch. 4 Deadweight Carrier and Volume Carrier	
☑ Ch. 5 Freeboard Calculation	
☑ Ch. 6 Resistance Prediction	
☑ Ch. 7 Propeller and Main Engine Selection	
☑ Ch. 8 Hull Form Design	
🗹 Ch. 9 General Arrangement (G/A) Design	
☑ Ch. 10 Structural Design	
☑ Ch. 11 Outfitting Design	
Innovative Ship and Offshore Plant Design. Spring 2019. Myung-Il Roh	ydlab 2

(2) Principal Dimensions							
The following principal dimensions are used in accordance with DNV rule. 1) Rule length (L or L_s) : Length of a ship used for rule scantling procedure							
 0.96 · L_{WL} < L < 0.97 · L_{WL} Distance on the summer load waterline (L_{WL}) from the fore side of the stem to the axis of the rudder stock Not to be taken less than 96%, and need not be taken greater than 97%, of the extreme length on the summer load waterline (L_{WL}) Starting point of rule length: F.P 							
Ex.	L _{BP}	L _{WL}	0.96·L _{WL}	0.97·L _{WL}	L		
	250	261	250.56	253.17	250.56		
	250	258	247.68	250.26	250.00		
	250	255	244.80	247.35	247.35		
2) Breadth : Greatest moulded breadth in [m], measured at the summer load waterline							

304 The midship section modulus about the vertical neutral axis (centre line) is normally not to be less than:

$$Z_{OH} = \frac{5}{f_1} L^{9/4} (T + 0.3B) C_B (cm^3)$$

The above requirement may be disregarded provided the combined effects of vertical and horizontal bending stresses at bilge and deck corners are proved to be within 195 $f_1 \text{ N/mm}^2$. The combined effect may be taken as:

$$\sigma_{\rm s} + \sqrt{\sigma_{\rm w}^2 + \sigma_{\rm wh}^2}$$

sydlab 21

$$\begin{split} \sigma_{\rm s} &= {\rm stress} \mbox{ due to } {\rm M}_{\rm S} \\ \sigma_{\rm w} &= {\rm stress} \mbox{ due to } {\rm M}_{\rm W} \\ \sigma_{\rm wh} &= {\rm stress} \mbox{ due to } {\rm M}_{\rm WH}, \mbox{ the horizontal wave bending moment as given in B205.} \end{split}$$

Distributed Loads in Still Wat	oad Curve f.(x)	Actual	Still Water	Actu	al Still Water
	1000 001 0753(0)	Shear	Force, $V_S(x)$	Ben	ding Moment, M _S (x)
- Lightweight	Buoyancy, $b(x)$	$V_{s}(x)$	$=\int_{0}^{x}f_{S}(x)dx$	x M	$V_{S}(x) = \int_{0}^{x} V_{S}(x) dx$
Example of a 3,700 TEU Container Ship		LIGH	TWEIG	нт ѕим	MARY
		1			
	Hull No. : 1	329. 3.70	0 TEU CONTA	INER VESSEL	
	NO AFT END	FORE END	WEIGHT	L.C.G	MOMENT
	1 -5.000	14.350	616.00	7.000	4312.0
	2 14.350	43.400	1387.10	31.400	43554.9
	3 43.400	232.320	7591.50	128.620	976418.7
	4 232.320	252.240	732.30	239.280	175224.7
┍╴╂┰╌╖╋╦ <u>╌╢╴╶</u> ┟╤╼╍╊╼╌╌┨╼╼╼╊╤╼╼╋╦╦╶╉ _┶ ╼╲┨╴ <mark>╷</mark> ╹└┸Ň	5 27.200	41.600	476.40	35.800	17055.1
	6 .000	245.240	30.00	122.620	3678.6
	7 43.400	232.320	340.00	134.200	45628.0
	9 =3.400	2 400	151 90	114.400	13013.0
x	10 .000	252.240	224.00	120.000	26880.0
FP FP	11 202.240	232.320	137.90	217.000	29924.3
AP	12 43.400	202.240	1053.00	121.700	128150.1
LIGHTWEIGHT DISTRIBUTION DIAGRAM	13 143.280	146.680	55.00	144.980	7973.9
TONNES	14 70.480	73.880	55.00	72.180	3969.9
2400 Engine	15 14.350	232.320	115.90	114.360	13254.3
240.0	16 -3.600	232.320	128.00	114.360	14638.1
220.0	18 36 000	170 000	3 00	81 000	243 0
	19 -5.000	4 000	50.00	- 500	-25.0
200.0	20 29.000	41.600	15.50	37.100	575.0
Bow Thruster	21 -3.500	4.000	19.20	.000	. 0
	22 4.000	11.200	34.30	7.600	260.7
160.0 Emergency	23 41.600	173.900	62.50	105.760	6610.0
Dura 1	24 220.160	232.320	20.40	229.240	4676.5
140.0 Pump	26 11.200	232.320	39.20	121.700	4770.6
120.0 Urane	27 11.200	232,320	191.30	121,700	23281.2
120.0	28 27.200	41.600	214.50	36.000	7722.0
100.0	29 23.230	37.600	979.00	30.400	29761.6
	30 11.200	41.600	289.50	22.000	6369.0
80.0	31 5.000	23.230	111.30	29,000	1246.6
	33 11 200	41.600	158 60	28.000	4440 8
	34 11.200	41.600	95.90	28.000	2685.2
40.0	35 11.200	218.480	165.00	114.240	18849.6
	36 27.200	41.600	8.50	36.000	306.0
20.0	37 11.200	41.600	43.00	30.000	1290.0
AP AP	38 27.200	41.600	4.30	36.000	154.8
0 25 50 74 99 125 150 175 200 226 251 276 301 326 FR.N	39 27.200	41.600	5.70	36.000	205.2
	LIGHT SHIP TO)TAL =	15998.10	103.228	1651446.5
					28

(DNV Pt.3 Ch.1 Sec. 5 B108), 2011 108 The design values of stillwater shear forces along the length of the ship are normally not to be taken less than: $Q_{S} = k_{sq} Q_{SO} \quad (kN)$ $Q_{SO} = 5 \frac{M_{SO}}{L} \quad (kN)$ M_{SO} = design stillwater bending moments (sagging or hogging) given in 106. Larger values of Q_S based on load conditions ($Q_S = Q_{SL}$) shall be applied when relevant, see 102. For ships with arrangement giving small possibilities for variation in the distribution of cargo and ballast, Q_{SO} may be dispensed with as design basis $k_{sq} = 0$ at A.P. and F.P. = 1.0 between 0.15 L and 0.3 L from A.P. = 0.8 between 0.4 L and 0.6 L from A.P. = 1.0 between 0.7 L and 0.85 L from A.P. Between specified positions \mathbf{k}_{sq} shall be varied linearly. Sign convention to be applied: - when sagging condition positive in forebody, negative in afterbody - when hogging condition negative in forebody, positive in afterbody. **/ydlab** 37

(DNV Pt.3 Ch.1 Sec. 5 C300), 2011

C 300 Section modulus

301 The requirements given in 302 and 303 will normally be satisfied when calculated for the midship section only, provided the following rules for tapering are complied with:

- a) Scantlings of all continuous longitudinal strength members shall be maintained within 0.4 L amidships. In special cases, based on consideration of type of ship, hull form and loading conditions, the scantlings may be gradually reduced towards the ends of the 0.4 L amidship part, bearing in mind the desire not to inhibit the vessel's loading flexibility.
- b) Scantlings outside 0.4 L amidships are gradually reduced to the local requirements at the ends, and the same material strength group is applied over the full length of the ship.

The section modulus at other positions along the length of the ship may have to be specially considered for ships with small block coefficient, high speed and large flare in the forebody or when considered necessary due

to structural arrangement, see A106.

In particular this applies to ships of length L \geq 120 m and speed V \geq 17 knots.

(DNV Pt.3 Ch.1 Sec.5 C302), 2011										
302 The midship section modulus about the transverse neutral axis shall not be less than:										
			2	$Z_0 = \frac{C_V}{f}$	<u>vo</u> L ² B (C	(B + 0.7)	(cm ³)			
C ₁ Vi C ₁	WO = 10.75 - = 10.75 = 10.75 - alues of C _{WO} a _B is in this case	 [(300 - for 300 ≤ [(L - 3) re also given to be 	- L) /100] L ≤ 350 50) /150] ven in Tabi taken less	 ^{3/2} for ^{3/2} for le C1. than 0.6 	L < 300 L > 350 0.					
Т	able C1 Values	for C _{WO}	6	T	6]				
Fc	L Cwo 100 7.92 110 8.14 120 8.34 130 8.53 140 8.73 150 8.91 pr ships with res	L 160 170 180 190 200 210 220 230 240 250 tricted sen	Cwo 9.09 9.27 9.44 9.60 9.75 9.90 10.03 10.16 10.29 10.40 vice, Cwo Cwo	L 260 280 300 350 370 390 410 440 470 500 may be r	Cwo 10.50 10.66 10.75 10.75 10.75 10.61 10.50 10.29 10.03 9.75 educed as f	follows:				
	 service area 1 	notation R notation R notation R notation R notation R notation R	RO : No redu 1 : 5% 2 : 10% 3 : 15% 4 : 20% RE : 25%.	action						
Innovative Ship and Offshore Plant.	Desian, Spring 2019	. Myuna-II R	oh					-	rydla	56

Example of Midship Scantling - Midship Scantling for 3,700	TEU Container Ship $f_{2b,2d} = \frac{5.7(M_S + M_W)}{Z_{b,d}}$
 ① Assume section modulus Bottom stress factor of the basis ship Z_B = 2.595e⁷ cm³ 	• Deck stress factor of the basis ship $Z_D = 2.345e^7 \text{ cm}^3$
(2) Actual section modulus • Bottom section modulus $Z_B = 2 \times I / y_B$ (port & starboard) $= 2 \times 1.234 e^{10} / 873.2$ $= 2.826 e^7 [cm^3]$ (y_B : Vertical distance from N.A to bottom = 873.2cm) Because the section modulus at bottom is larger than that of the basis ship, the stress factor should be decreased.	• Deck section modulus $Z_D = 2 \times I / y_D$ (port & starboard) $= 2 \times 1.234e^{10} / 1,226.8$ $= 2.012e^7 [cm^3]$ (v_D : Vertical distance from N.A to deck=2094-873.2 = 1,226.8 cm) Because the section modulus at deck is smaller than that of the basis ship, the stress factor will be increased. However, if HT-36 is used, then the stress factor can be decreased.
• Bottom stress factor $f_{2b} = \frac{5.7(M_s + M_w)}{f_1 \times Z_B}$ $= \frac{5.7 \times 4,924,653.67}{1.0 \times 2.826e^7} =$	$f_{2d} = \frac{5.7(M_s + M_W)}{f_1 \times Z_D}$ $= \frac{5.7 \times 4,924,653.67}{1.39 \times 2.012e^7} =$
(3) Because the stress factor (f_{2b}) is decreased, the allowable stress is increased. $\sigma = 225 f_1 - 130 f_{2b} - 0.7 \sigma_{db}$ e.g, Allowable stress for longitudinals at inner bottom	(a) Because the allowable stress is increased, the required section modulus is decreased. So, we can reduce the size of the structure member. $Z = \frac{83l^2 spw_k}{\sigma} [cm^3] e.g. Required section modulusfor longitudinals at inner bottom 72$

