20160502 2nd Seminar : General Topic

Heat resistant materials & Creep behavior

Min-Gu Jo

[CSSM]

Contents

• Thermal power station & Heat resistant materials

• Creep deformation

• HEA for Creep-resistant material

Energy consumption & Thermal power station

• IEO Energy consumption prospect

• Thermal power station

• '14 Korea 1st Energy supplement ratio

2015 Korea Energy Handbook

- CCT (Clean Coal Technology)
 - → HELE coal technology (High Efficiency Low Emission coal technology)
 - → CCS(CO₂ Capture & Storage)

***** Coal thermal power station & Heat resistant materials

SC(Supercritical) : $538 \ \mathbb{C} \downarrow$ USC(Ultra-supercritical) : $566 \ \mathbb{C} \uparrow$ HSC(Advanced-USC) : $704 \ \mathbb{C} \uparrow$

$T \uparrow \rightarrow Efficiency \uparrow \rightarrow CO_2 \text{ emission } \downarrow$

- Current state of Korea - SC \rightarrow USC
- 6000 ton CO₂/MW
- 30% efficiency (ave)

• Heat resistant materials

- Corrosion

- Oxidation

* Creep

• Definition

: Phenomenon which materials gradual are changed(are deformed) under a constant applied load(stress) Normally, under a constant applied load at an elevated temperature ($T > 0.4 T_m$)

\rightarrow a time dependent dimensional change

Jet engine (1% in 10,000 hrs), steam tube (1% in 100,000 hrs)

To determine the engineering creep curve of metal, a constant load is applied to a tensile specimen maintained at constant temperature and the strain of the specimen is determined as a function of time

Tensile test

: constant displacement determined stress

Creep test

: constant stress determined strain and time

• Creep stages (3 steps) Primary creep (Transient)

: strain rate decreases with increasing time \rightarrow work hardening

Secondary creep (Steady-state)

: balance between work hardening and recovery

Tertiary creep (Acceleration)

: strain rate increases due to creep damage (effective area decrease, metallurgical change)

• Creep mechanisms

- Dislocation glide ($\sigma/G > 10^{-2}$)

Involves dislocation moving along slip planes and overcoming barriers by thermal activation Occurs at high stress and low T

- Dislocation creep (climb, $10^{-1} > \sigma/G > 10^{-4}$)

Involves dislocation movement to overcome barriers by thermally assisted mechanisms involving diffusion of vacancies or interstitials

- Diffusion creep $(10^{-4} > \sigma/G)$

Involves the flow of vacancies and interstitials through a crystal under the influence of applied stress Favored at high T and low stress Bulk diffusion (Nabarro-Herring creep), GB diffusion (Coble creep)

- Grain boundary sliding

Involves the sliding of grains past each other

Josh Kacher, Acta Materialia 60 (2012) 6657–6672

Strengthening mechanism

Solid Solution Hardening

Substitutional solid solution (Mo, W, Co..) Interstitial solid solution (C, N, B)

Precipitation(Dispersion) Hardening

 $\sigma=0.8MGb/\lambda$

Work Hardening(Dislocation Hardening)

 $\sigma_0 = \sigma_i + \alpha G b \rho^{1/2}$

Grain Size Refinement Hardening $\sigma_y = \sigma_0 + kD^{-1/2}$

Secondary Phase Hardening

 $\sigma_{\text{ave}} = f_1 \sigma_1 + f_2 \sigma_2$ f : volume fraction

But, Creep is time-dependent deformation → Microstructure changes are effective

Microstructural degradation \rightarrow heterogeneous \rightarrow failure

Carbo-Nitride

 $M_{23}C_6$ ((Cr,Fe,Ni,Mo)₂₃C₆) Crystal structure : FCC (a=10.57~10.68Å) Precipitation site : Grain boundary, Twin boundary Shape : Globular, Plate Typical Size : 200~500nm

Initial stage : Precipitation hardening Precipitate at grain boundary \rightarrow depletion zone \rightarrow Coarsening \rightarrow Decreasing strength

MX precipitates (MC, MN, M(CN), M₁M₂(CN))

Alloy : Ti, Nb, V, Zr, Ta.. (strong carbide/nitride former) Crystal structure : FCC (a=4.40~4.47Å) Precipitation site : dislocation, stacking faults. Twin or grain boundary Shape : Cuboidal shape after sufficient aging

Providing good strengthening effect Stabilizing the alloy against intergranular corrosion

Z-Phase (CrNbN)

Crystal structure: Tetragonal (a=3.037Å, C=7.391Å) Precipitation site : grain boundaries, twin boundary, dislocation Shape : Rodlike, Cuboidal Typical Size : 20~50nm

Z phase forms Nb stabilised steel with N at low temperature than MX particles. Modified Z- phase : (Cr(Nb,V)N), CrVN MX precipitates \rightarrow Z-phase after long time annealing (stable phase below 1000°C)

M_2N (Cr_2N)

Crystal structure: Hexagonal close packed (a=4.78Å c=4.44Å) Precipitation site : grain boundaries, twin boundary, dislocation Shape : Rodlike, Cuboidal Typical Size : 20~50nm

Intermetallic compound

Laves phase (Fe₂Mo, Fe₂Nb, Fe₂W, Fe₂Ta, Fe₂Ti)

Crystal structure : Hexagonal (a=4.73Å, C=7.72Å)

Precipitation site : Grain boundary,

Mo added steel : formation after a minimum of 1000h between 625~800°C

Nb stabilized steel : after long time aging, 5000~10000h between 625~800°C

 \rightarrow However, NbC and Z phase are more stable than Laves phase

σ-Phase (Fe,Ni)_x(Cr,Mo)_y

Crystal structure : Tetragonal (a=8.80Å, C=4.54Å)

Precipitation site : Grain boundary, Twin boundary, Inclusion

The precipitates form after long term aging at high temperature (10,000~15,000h, 600°C)

G Phase $(Ni_{16}Nb_6Si, Ni_{16}Ti_6Si_7, (Ni,Fe,Cr)_{16}(Nb,Ti)_6Si_7)$ (austenitic stainless steel) Crystal structure : FCC Phase (a=1.115~1.12Å)

Table 6 Crystal structures and compositions of main precipitates in austenitic stainless steels					
Precipitate	Structure	Parameters, nm	Composition		
NbC NbN	fcc fcc	a = 0.447 a = 0.440	NbC NbN		
TiN Z phase	fcc fcc tetragonal	a = 0.433 a = 0.424 a = 0.3037, $c = 0.7391$	TiC TiN CrNbN		
M ₂₃ C ₆ M ₆ C	fcc diamond cubic	a = 1.057 - 1.068 a = 1.062 - 1.128 a = 0.880 $a = 0.454$	Cr ₁₆ Fe ₅ Mo ₂ C ₆ (e.g.) (FeCr) ₂₁ Mo ₃ C, Fe ₃ Nb ₃ C, M ₅ SiC		
z phase Laves phase χ phase	hexagonal	a = 0.880, c = 0.434 a = 0.473, c = 0.772 a = 0.8807 - 0.8878	$Fe_{2}Mo, Fe_{2}Nb$ $Fe_{36}Cr_{12}Mo_{10}$		
G phase	TCC	a=1.12	$NI_{16}ND_6SI_7$, $NI_{16}II_6SI_7$		

11/24

Typical creep curve

Stress dependences of minimum creep rates

Norton law (Power law)

 $\dot{\varepsilon}_m = A\sigma^n$

Dislocation creep

n=3~5 : pure metal, simple alloy

n=3~12 austenitic stainless steel

In this study n=6~8.6

Dae-Bum Park, Materials Characterization 93 (2014) 52 – 61 Activation energy for dislocation creep

The similarly value of apparent activation energy (465~485kJ/mol)

Kyu-Ho Lee, Materials Characterization 102 (2015) 79-84

Fig. 4. (a) Creep rate versus time tested at 866 K and (b) creeprupture plot of the Steel Aand Steel B acquired at various creep conditions.

Fig. 5. XRD profiles of the powders electrolytically extracted from the gauge part of creep specimens of (a) Steel A and (b) Steel B tested at 866 K.

Kyu-Ho Lee, Materials Characterization 102 (2015) 79-84

Fig. 7. Equilibrium phase fraction of high-Cr martensitic heat-resistant steels, (a) Steel A and (b) Steel B calculated by MatCalc.

Aging time (h) Fig. 8. Development of phase fraction of the precipitates in (a) Steel A, (b) Steel B and (c) chemical composition of M2N in Steel B during aging at 866 K calculated by thermo-kinetic simulation.

Monkman-Grant relationship (predict the rupture time)

Larson-Miller plot (predict the rupture time)

High Entropy alloy(HEA) Introduction

Definition

: At least five major metallic element having an 5-35 at%

- Core effect
- 1) Solid solution strengthening
- 2) Distorted lattice structure
- 3) Cocktail effect
- 4) Sluggish effect
- 5) Nanoscale deformation twin (Cantor alloy)

B. Cantor, Materials Science and Engineering A 375–377 (2004) 213– 218 → FeCrMnNiCo

Yeh, Advanced Engineering Materials, 6, 5 (2004) 299-303 → High-Entropy alloys (HEAs)

Daniel B. Miracle, "Exploration and Development of High Entropy Alloys for Structural Applications", Entropy (2014), 16, 494-525

Initial specimen information

• EBSD IQ(Microstructure)

 $50.34 \mu m \pm 19.89$

• EDS

Element	Wt%	At%	
CrK	18.30	19.76	
MnK	18.36	18.75	
FeK	19.95	20.80	
СоК	21.18	20.92	
NiK	19.94	19.78	
Matrix	Correction	ZAF	

• XRD

FCC singe phase Lattice parameter^{*} : 3.58238 Å (*:Bragg's law와 d-spacing으로 얻은 각각의 면들의 lattice parameter의 평균)

• Vickers hardness

 $161 \mathrm{Hv}{\pm}2.677$

Tensile results

20/24

Tensile results compared with S304H

Creep results

XRD results after creep test

Specimen	Initial	100MPa	200MPa
Crystal structure	FCC	FCC	FCC
Lattice parameter [*] (Å)	3.58238	3.58729	3.59578

(*:Bragg's law와 d-spacing으로 얻은 각각의 면들의 lattice parameter의 평균)

Summary

- To improve efficiency of coal thermal power station, increase of operating temperature is required. Therefore, research on heat-resistant material should be preceded.
- Materials with high heat-resistance, oxidation-resistance, corrosion-resistance, weldability and especially creep-resistance are required as the structural materials for the thermal power station application.
- Creep phenomenon is a time-dependent deformation behavior and microstructural change is dominant effect on the failure of materials.
- Through the creep test condition under high temperature and constant load compare to the real operating condition, we expect to predict the lifetime of structural materials for the thermal power station.

Thank you for your attention

