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5.8 Strain Energy in an Elastic Body 
à In Sec. 2.6 the concept of elastic energy was introduced in terms 

of springs and uniaxial members. Here we extend the concept to 
arbitrary linearly elastic bodies subjected to small deformations. 

  =    (5.11) 

▶ The strain energy stored in the element (in a linearly elastic 
material) 

for Fig. 5.20 (a)  =  	( )()   
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=    (5.12) →  = ∫ 	  (5.13) 

Since σ = /,				 = /;  =    ∫ 	   =    (5.14) 

for Fig. 5.20 (c)  =  ( )()  =     (5.15) 

  = /2	  

 The individual strain components may depend on more than one 
stress component, but we assume that the dependence is linear. 
Thus, if we imagine a gradual loading process in which all stress 
components maintain the same relative magnitudes as in the final 
stress state, the strain components will also grow in proportion, 
maintaining the same relative magnitudes as in the final strain 
state. During this process in which all stresses and strains are 
growing, a single stress component such as  will do work only 
on the deformation due to its corresponding strain . 

▶ The total stain energy stored in the element  =    +	 + + +  +      (5.16) 

∴ In general, the final stresses and strains vary from point to point 
in the body. The strain energy stored in the entire body is obtained 
by integrating (5.16) over the volume of the body. 
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 = ∫   +	 + + +  +      (5.17) 

 In the case of plane stress or plane strain  = ∫  +  +    (5.18) 

  In Chaps. 6 and 7 we shall use these results to develop special 
formulas for strain energy in torsion and bending. 

   

Overall abstract 

▶ Hooke’s law  =   −  +  + ( − )														 =  	 	 =   − ( + ) + ( − )														 =  	 	 (5.8)	 =   −  +  + ( − )														 =  	 	
In case of statically determinate structure, the thermal strain does not 
generate the stress. But in the case of statically indeterminate 
structure, it generates the stress. 

By strain-term 

  In case of 2d  =  ( + )   =  ( + )  

  In case of 3d  = ()() (1 − ) +  +   
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 = ()() (1 − ) + ( + )   = ()() (1 − ) +  +   

▶ Unit volume change  = ∆ =  +  +  =  ( +  + )  

Spherical stress : In the case of  =  =  =   and shear 
stress components are absent. In addition, the Mohr’s circle of stress 
and strain is indicated by a point.  =  =  =  =  (1 − 2)   = ∆ = () = 3  

∴ This stress distribution is called hydrostatic stress distribution. 

▶ Relation between  and   = ()  (5.3) 

▶ Strain energy density ( = U/V) 
By stress-term  =  ( +  +  +  +  +  )  =   +  +  −   +  +  +  ( +  + )  

By strain-term  = ()()()  +  +  −   +  +  −  +  +    
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= ()() (1 − ) +  +  + 2 +  + −  ( +  +  )  

 

5.9 Stress Concentration 

 = − (/)(/)(/)(/) = (/)(/)(/)(/) 	 	 (5.9)	
▶ Stress concentration 

  The local increase in stress caused by the irregularity in geometry 

▶ Stress concentration factor  =  /   

   : The maximum stress in the presence of a geometric 
irregularity or discontinuity. 

   : The nominal stress which would exist at the point if the 
irregularity were not there. 

à The magnitude of this factor depends upon the particular geometry 
and loading involved, but factors of 2 or more are common. 

 In case of plastic flow or ductile fracture, strain concentration 
might be more important than stress concentration. 
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5.11 Criteria for Initial Yielding 

  We now turn to the problem of what happens when, in a general state 
of stress, the material is stressed to the point where it no longer 
behaves in a linearly elastic manner. 

  For most materials, including metals, the deviation from 
proportionality in a uniaxial tensile test is an indication of the 
beginning of plastic flow (yielding). 

à We shall restrict ourselves to polycrystalline materials which are 
at least statistically isotropic. 
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▶ Dislocation; 

i) During elastic deformation of a crystal, there is a uniform shifting of 
whole planes of atoms relative to each other. 

ii) Plastic deformation depends on the motion of individual 
imperfections in the crystal structure. 

iii) Under the presence of a shear stress, one kind of imperfection called 
an edge dislocation will tend to migrate until there has been a 
displacement of the upper part of the crystal relative to the lower by 
approximately one atomic spacing. 

iv) By a combination of such motions, plastic strain can be produced. 

 
à It is important to note that a consequence of this simple model is that 
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shear stress is the dominant agent in the migration of these dislocations. 

 

▶ Strength Theory; 

i) The state of stress can be described completely by giving the 
magnitude and materials, the orientation of the principal stress. 

ii) Since considering only isotropic materials, the orientation of the 
principal stresses is unimportant, but we consider only the magnitude 
of the principal stresses. 

iii) Since experimental work that a hydrostatic state of stress does not 
affect yielding, above two criteria are based not on the absolute 
magnitude of the principal stresses but rather on the magnitude of the 
differences between the principal stresses. 

 

▶ Maximum Stress Theory 

 

  Yielding can occur when the any principal stress at arbitrary point 
reaches the same value which the stress has when yielding occurs in 

1

1

-1

-1
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the tensile test ∴ 		 () =   or |()| = ||  

 Limitation: 1) () ≠ ()  ,  
         2) ( )  differs for different materials 

▶ Von Mises Criterion 

à It is also called the maximum distortion-energy theory and applied 
to the ductile materials. 

Yielding condition 

  Yielding can occur in a three-dimensional state of stress when the root 
mean square of the differences between the principal stresses reaches 
the same value which it has when yielding occurs in the tensile test. 

Since  = ,			 =  = 0, the yielding occurs when the condition 
like below 

   [( − ) + ( − ) + ( − )]  

  =  [( − 0) + (0 − 0) + (0 − ) = 2/3	  

 

à For general stress state, we can derive  [( − ) + ( − ) + ( − )] =   (5.23) 

à In case of non-principal stress axis, we can derive   −  +  −  + ( − ) + 3 + 3 +    =   
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 The criterion (5.23) then is represented in this space by a right-

circular cylinder of radius whose axis makes equal angles 

with the , 		 coordinate axes, as illustrated in Fig. 5.30. 
Yielding occurs for any state of stress which lies on the surface of 
this circular cylinder. 

 

Yielding condition in Plain stress   −  +   = 1  
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▶ Tresca Criterion 

à It is also called the maximum shear-stress criterion and applied to 
the elastic materials. 

Yielding condition 

  Yielding occurs whenever the maximum shear stress reaches the 
value it has when yielding occurs in the tensile test.  	 =    =   (5.25) 

 the criterion (5.25) can be represented by a hexagonal cylinder 
inscribed within the right-circular cylinder of the Von Mises 
criterion. 

Yielding condition in Plain stress 

  Refer to Fig. 5.29 

Application of the Tresca Criterion (see Fig. 5.28, 5.29) 

i) When only internal pressure (  ) increased, it corresponds to 
proceeding along the straight line from A toward B. (Fig. 5.29) 

 Further increasing the inner pressure (), the axial load or  no 
more influents on yielding condition, and thus   = 1/2( − ) = 1/2( − )  

 In case of  =  (∴  = ), it corresponds to the point B. 

ii) If the axial load () decreases, it corresponds to proceeding along the 
straight line from B toward C. 

 If axial load (  ) changes from tensile to compressive, it 
corresponds to proceeding along the straight line from C toward D. 

à This means that the internal pressure () must be decreased in 
order to avoid the yielding. 
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  In this case, as  ,  	are important, it’s not possible to apply 
the Von Mises criterion to this situation directly. 

   

à Check the figures below 
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\  

▶ Comparison of the criteria 

  These criteria are identical in case of uniaxial stress. 

  Thus, one of the principal stress at arbitrary point is greater than the 
others, these criteria have identical values in the majority of case.  

  On the other hands, in case that the absolute value of principal stress 
is same, these criteria have distinguished difference. 

   

5.12 Behavior Beyond Initial Yielding in the Tensile Test 
à The following description is an idealized description of the 

behavior of a real material during loading and unloading beyond 
initial yielding. 
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▶ For Fig. 5.34 (b) 

i) A fresh specimen of the material is stretched in tension to point , 
where the plastic extensional strain is  ̅ and the stress is . 

ii) The load is released, bringing the specimen to point  , and then 
reapplied as compression. 

iii) Further yielding begins when the stress − is reached at point . 
iv) As the compressive load is increased, yielding continues along the 

curve , which has the same shape as the curve  in Fig. 5.34 
(a). 

v) When the point  is reached, a compressive plastic strain of  ̅ 
has occurred between  and , and the stress required to cause 
further yielding has reached the value −. 

vi) If the load is now released, the material returns to . 
vii) A reapplication of the tensile load will cause the material to move 

along the curve , which is identical with the curve  in 
Fig. 5.34 (a). 

 All the plastic-strain increments 
along the loading path have 
contributed in a positive manner to 
the strain-hardening so that the 
material in state  has been strain-
hardened the same amount as the 
material in state  in Fig. 5.34 (a). 

 

▶ Example 5.3 Returning to Example 5.1, 
we ask, what will happen if we remove the 
load   after we have strained the 
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combined assembly so that both the steel and the aluminum are in the 
plastic range, that is, beyond a strain of 0.005?  

 

  We can again use the model of Fig. 5.9, and the equilibrium relation 
(e) and geometric compatibility relation (a) still remain valid. We 
need new stress-strain relations which will be valid during unloading. 

▷Stress-strain relation 

  : deflection when the assembly is loaded by  

  : deflection after the load has been decreased somewhat 

  Then,  

 =  −  () =  −  ()   (f) 

  Substituting (f) into Eq. (e) of Example 5.1 and setting P = 0, we 
obtain 
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∑ =  +  −  = 0  (e)   −    +   −    = 0  (g) ∴  = () (h) 

  Substituting (h) into (f), we find the residual stresses which remain in 
the assembly after the load has been removed () =  // =  () =  // =  

 (i) 

à Since in the present case  >  , the Eq. (i) show that the steel 
will be in compression and the aluminum in tension. 

 The residual stresses will be zero only when the initial yield strains  = / and  = / are equal. 

▶ Engineering stress-strain 

1▷ Engineering stress  =  ( 	 )	   

à The maximum value of the engineering stress is termed the tensile 
strength. 

2▷ Engineering strain ε = ∆/ =  − / (5.26) 

  where : original length between two dots of specimen, : length between two dots of specimen after loading. 
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▶ True stress-strain 

1▷ True stress  =  ( 	 )	   

à Even when the axial strain has reached the relatively large (for 
engineering purposes) value of 0.05, the true stress is only about 
5 percent greater than the engineering stress.  

2▷ True strain 

  The strain, obtained by adding up the increments of strain which are 
based on the current dimensions, is called a true strain. Sometimes it 
is called logarithmic strain or natural strain.  = ∫ (1/)	 =  / (5.27) 

à For very small strain, assume that  = .  =   = 2   (5.28) 

▷▷ Confer 

1) Most of the dislocation processes are more conveniently described by 
an incremental concept of strain. 

2) When a ductile metal is tested both in tension and in compression, the 
true-stress and true strain curves practically coincide, whereas the two 
curves are quite different when engineering strain is used. 

∴ When deciding which definition of strain to use in describing the 
behavior beyond initial yielding in the tensile test, the balance is 
in favor of using true strain. 
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▶ Necking 

à It is difficult to decide the time when 
necking starts. 

 

 Details about necking will be discussed 
in Ch. 9-7. 

 

 

▶ Reduction of area (R.A.) . .=  − / = 1 − / = 1 −   

à The ductility of a material can be described by the reduction of 
area (R.A.). 

▶ Elongation  = ∆/ =  − /  

à Elongation is defined as the change in gage length to final fracture 
divided by the original gage length (i.e., the engineering strain at 
fracture). 

à As a measure of ductility of the material, the elongation has the 
disadvantage that it is an engineering, rather than a true, strain. 

à It is very dependent on the length as well as on the cross-sectional 
dimensions of the specimen. 

 


