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6.6 Torsion of Elastic Hollow Circular Shafts 

  
à The only difference is that the integral in (6.4) now extends over 

an annulus instead of a complete circle. 

  =  1 −  =  1 −   (6.11) 

 

 ∫ () =   (6.4) 
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▶ Analysis 

i) Making a concentric hole in a shaft does not reduce the torsional 
stiffness in proportion to the amount of material removed. 
à An element of material near the center of the shaft has a low 

stress and a small moment arm and thus contributes less to the 
twisting moment than an element near the outside of the shaft. 

 
ii) The torsional stiffness for a given length of given material depends 

only on the polar moment of inertia . 
 

iii) It is apparent that a given amount of material is used most 
efficiently in torsion when it is formed into a hollow shaft. 

 There is a limit on the increase in effectiveness that can be 
obtained by increasing the diameter and decreasing the wall 
thickness. (If the wall is made too thin, the cylinder wall will 
buckle due to compressive stresses which act in the wall on 
surfaces inclined at 45° to the axis of the cylinder.) 

 
iv) Compare the hollow shaft and solid shaft in Fig 6.13 which have 

the same cross-sectional area but markedly different maximum 
stresses and deformation.  = // =  = ()() =  =  = 0.37	   = // =  =  =  = 4.56  

 
 The shear-stress ratio is same with yield  ratio and stiffness 
ratio means ratio of torsion angle. 
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▶Non-uniform torsion examples 

   = ∑  																																						 = ∫  = ∫    

 

▶Composite shaft  =  +											 =  =  =    

  =    =     

 ∴ 		 =  =   

  = gg =   

 
 Above ratio can be smaller than 1. 
 Shear strains in two parts which are attached have same value, 
but each material has different coefficient and therefore stress is 
different. 
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6.7 Stress Analysis in Torsion; Combined Stress 
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à When shaft is twisted, it is on the pure shear stress state. And a 
convenient way to determine these stress components is to use 
Mohr’s circle for stress. 

 We may use the two-dimensional Mohr’s circle because there is no 
stress in the -direction. 

▶ Magnitudes of principal stresses (from Mohr circle) || = || = ||   = 45°  

 If a piece of chalk (which is a brittle material with a low tensile 
strength and much larger strength in compression and shear) is 
twisted, the chalk will fracture along a spiral line normal to the 
direction of maximum tension (e.g., along the line  in Fig. 6.14) 
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▶ Combined-stress 

à The stresses and strains contributed by one form of loading are not 
altered by the presence of another kind of loading. 

à The justification for superposition lies in the linearity of Eqs. (5.6), 
(5.7), and (5.8) underlying the theory of elasticity. 

▶Example 6.3 
In Fig. 6.16 (a) an uniform, homogeneous, circular shaft is shown 
subjected simultaneously to an axial tensile force   and a twisting 
moment  . In Fig. 6.16 (b) the individual stress distributions are 
sketched for the separate loads. 
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From the Fig. 6.16 (a),   =    (a)  =   (b) 

 

 
 

 The most convenient method of describing the combined-stress 
state is to use the principal stress components. 

 Note that this element is in a state of plane stress, i.e., the third 
principal stress  is zero. 

 
à Positive shear stress   (see Fig. 4.11) is plotted downward at  
and upward at . Negative shear stress is plotted upward at  and 
downward at .  

 
 

▶Note 
▷ In pure shear state,   = /2  
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6.8 Strain Energy Due to Torsion 
à In this section we apply that result specifically to the case of 

torsion of circular members and consider an example of 
Castigliano’s theorem applied to torsional deformation. 

 Obtaining the strain energy is important in many ways such as 
dynamic analysis and structure theory. 

 

▶For circular shaft  [Isotropic-linear-elastic] 

à The only non-vanishing stress and strain components are  
and . The total strain energy (5.17) thus reduces to 

  = ∫  	   (6.12) = ∫    	 = ∫   ∫ 	   = ∫  	 = ∫  ∅ 	   (6.13) 

 →  = 	 =   	 =    (6.14) 

▷ For uniform torsion 

 =  =  =  =  =  = ∅ = ∅ 											  

 
 

 We illustrate the application of Castigliano’s theorem (  =
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/) to a torsional system in the following example 6.4. 

 

 

▶Example 6.4 

Consider a closely wound coil spring of radius  loaded by a force  
(Fig. 6.18 (a)). The spring consists of  turns of wire with wire radius . 
We wish to find the deflection of the spring and hence the spring constant. 

 
1▷ The strain energy associated with the twisting moment  = ∫  	 = ∫  	 =  2   (a) 

 
2▷ Strain energy due to the transverse shear force 

à There is additional strain energy in the spring due to the 
transverse shear force . It can be shown, however, that the 
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ratio of strain energy due to transverse shear to strain energy due 

to torsion is proportional to  and hence is small for springs 
of usual design. 

 
3▷ Application of Castigliano’s theorem  =  =  2   (b) →			∴ 			 =  =   (c) 

 
Upon substituting for the moment of inertia  in (c), we find that  =   
 

à We see that the spring constant is inversely proportional to the 
number of coils  and directly proportional to the fourth power 
of the wire radius. For example, if we increase the wire radius 
by 19 percent, the spring constant is doubled. 

 
 

6.9 The Onset of Yielding in Torsion 
à In order to apply either criterion to a particular material it is 

necessary to obtain (experimentally) the yield stress  in uniaxial  
à Then, to decide whether yielding will occur in a general state of 

stress, we compute the equivalent or effective stress  (or ̅ ) 
according to the criterion employed and compare with . 

▶ The principal stresses acting on an element of a shaft in torsion  =  	,								 = − 			,								 = 0  (6.15) 

1▷ Using the Mises criterion  =  =  [(2) + (−) + (−)] = √3   (6.16) 
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  thus an element of a shaft in torsion would be expected to begin 
yielding when ∴ 					  = √ = 0.577	  (6.17) 

2▷ Using the maximum shear-stress criterion  =    =   (6.18) 

  The equivalent shear stress is ̅ =    ∴ 			  =  = 0.500  (6.19) 

à As can be seen from (6.17) and (6.19), this discrepancy is about 
15 percent. From the point of view of the designer trying to avoid 
yielding, it is more conservative to design on the basis of (6 19). 

 Since the shear stress   is proportional to the radius  in an 
elastic shaft, it is clear that according to either criterion the 
elements on the outer surface of the shaft will reach the yield 
condition first. 

 

6.10  Plastic Deformations 
à It is important to remember that in passing from elastic to plastic 

behavior there is no alteration in the conditions of equilibrium or 
in the conditions of geometric compatibility. The only change is 
in the stress-strain relation. 

 The only non-vanishing strain component was  remain valid 
whether the material is elastic or plastic. What will be different is 
the relation between  and . 

▶ Two ways to obtain the relation between   and   in 
plastic region 

i) Direct experiment in which the material is subjected to uniform pure 
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shear 
ii) To make use of tension test data and to predict the relation between  and  in torsion by using one of the plastic flow rules → it 

is less exact, but simpler. 
 

 In this chapter we shall confine our analytical treatment to the 
elastic-perfectly plastic material. (∴ Strain hardening is not exist.) 

à In plastic region,  =  =  . 
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▶Analysis 
1▷ To obtain quantitative representations of the sketches in Fig. 6 20, 

we proceed as follows. The elastic relations (6.8) and (6.9) apply 
until the yield-point situation in Fig. 6.20 (b) is reached.   =   =  	 	 (6.8)	 =   =  	 	 (6.9)	

 
2▷ Let us call the twisting moment and twisting angle associated with 

this (b) stress distribution  and	, respectively. Then from (6.8) 
and (6.9) we have 



446.201A (Solid Mechanics) Professor Youn, Byeng Dong 

Ch. 6 Torsion 14 / 17 

 

 =  =    (6.20 a) ∴  =   =   /		 =   (6.20 b) 

 
  = ∫ 	 	 = 		  (6.8)  =   (6.9) 

3▷ Now as the shaft is twisted further the shear strain at the outer 
radius becomes larger than . We still have the geometric relation 
(6.1) between shear strain and twist angle γ =   =    (6.21) 

4▷ At some intermediate radius  the strain will be just equal to . 
We can solve for  when  >   =    (6.22) 

5▷ Using the fact that  =   and introducing the second of 
(6.20), we find  =  =     (6.23) 

6▷ Next, we obtain a quantitative representation for the stress 
distribution   corresponding to the strain distribution  of  
(6.21) by using the stress-strain relation of Fig. 6.19. In the inner 
elastic core 0 <  < ,  =   

=   =  [/] =    (6.24) 

7▷ In the outer plastic region  <  < ,   =   (6.25) 
8▷ The stress distribution defined by (6.24) and (6.25) is sketched in 

Fig. 6.20 (c). Finally, we use the equilibrium requirement that the 
stress distribution of Fig. 6.20 (c) should be equivalent to the 
applied twisting moment .  = ∫    
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= ∫ ( ) 2	 + ∫  2	   =   1 −    (6.26) 

9▷ This result can be put into a more useful final form by introducing 
the yield-point twisting moment from (6.20) and the twisting angle 
from (6.23)  =  1 −    (6.27) 

 This nonlinear relationship is valid when  >  
 

10▷ The limit or fully plastic 
twisting moment   (Fig. 
6.21) 

 
when	 → ∞  
  →   

 

6.11 Residual Stresses 

▶ from Fig. 6.22; 

  If we assume that the material of the shaft unloads elastically after it 
has been strained plastically, then if at any stage the twisting moment 
were to be decreased, the twisting moment-twisting angle curve 
would trace out a straight line parallel to the original elastic relation 
of (6 8), as sketched in Fig. 6.22. 
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à The justification for this lies in the fact that the geometric and 
equilibrium requirements for torsion remain unchanged while the 
stress-increment strain-increment relation is now elastic for the 
entire shaft. 

 
▶ Residual stress 

  Although there is no external load on the shaft in this condition, there 
is a distribution of self-balancing internal stresses in the shaft. These 
internal stresses which are “locked in” the material by the plastic 
deformation are called residual stresses. 

à The distribution of residual stresses can be found by using 
superposition. 

▶ Calculation of residual stress 
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i) When parts (a) and (b) of Fig. 6.23 are superposed, we end up with 
no external twisting moment but with a distribution of residual 
stresses, as shown in Fig. 6.23 (c). 

ii) The outer part of the shaft carries shearing stresses of the opposite 
sense to that imposed by the original application of the load, while 
the inner part carries stresses of the same sense as those originally 
imposed. 

iii)  Under some circumstances the reversed stresses obtained in this 
manner might be larger than the yield stress in the opposite 
direction. In this case simple linear superposition would not be 
applicable (see Prob. 6.41). 

 

 


